öÕÒÎÁÌ üËÓÐÅÒÉÍÅÎÔÁÌØÎÏÊ É ôÅÏÒÅÔÉÞÅÓËÏÊ æÉÚÉËÉ
îáþáìï | ðïéóë | äìñ á÷ôïòï÷ | ðïíïýø      e
ïÂÝÁÑ ÉÎÆÏÒÍÁÃÉÑ Ï ÖÕÒÎÁÌÅ
úÏÌÏÔÙÅ ÓÔÒÁÎÉÃÙ
áÄÒÅÓÁ ÒÅÄÁËÃÉÉ
óÏÄÅÒÖÁÎÉÅ ÖÕÒÎÁÌÁ
óÏÏÂÝÅÎÉÑ ÒÅÄÁËÃÉÉ
ðÒÁ×ÉÌÁ ÄÌÑ Á×ÔÏÒÏ×
úÁÇÒÕÚÉÔØ ÓÔÁÔØÀ
ðÒÏ×ÅÒÉÔØ ÓÔÁÔÕÓ ÓÔÁÔØÉ


öüôæ, ôÏÍ 148, ÷ÙÐ. 2, á×ÇÕÓÔ 2015
(áÎÇÌÉÊÓËÉÊ ÐÅÒÅ×ÏÄ - JETP, Vol. 121, No 2, August 2015 ÄÏÓÔÕÐÅÎ on-line ÎÁ www.springer.com )


áÔÏÍÙ, ÍÏÌÅËÕÌÙ, ÏÐÔÉËÁ

FEASIBILITY OF A FEEDBACK CONTROL OF ATOMIC SELF-ORGANIZATION IN AN OPTICAL CAVITY
  211
ôòáåëôïòîùê áîáìéú ÷òáýáôåìøîïê äéîáíéëé íïìåëõì
  219

ñÄÒÁ, ÞÁÓÔÉÃÙ, ÐÏÌÑ, ÇÒÁ×ÉÔÁÃÉÑ É ÁÓÔÒÏÆÉÚÉËÁ

GRAVITATING LEPTON BAG MODEL
  228
TRANSVERSE MOMENTUM DISTRIBUTIONS OF STRANGE HADRONS PRODUCED IN p-p COLLISIONS AT \sqrt{sNN}=200 GeV
  241
óåúïîîùå íïäõìñãéé üîåòçéé íàïîï÷ ëïóíéþåóëéè ìõþåê ðïä úåíìåê
  247

ô×ÅÒÄÙÅ ÔÅÌÁ É ÖÉÄËÏÓÔÉ

íïäåìéòï÷áîéå ÷úáéíïäåêóô÷éñ äéóëòåôîùè âòéúåòï÷ òáúìéþîïçï ôéðá ÷ îáîï÷ïìïëîå ëòéóôáììá Pt3 Al
  252
áîéúïôòïðéñ òáóðùìåîéñ íïîïëòéóôáììá óáðæéòá
  258

ðÏÒÑÄÏË, ÂÅÓÐÏÒÑÄÏË É ÆÁÚÏ×ÙÅ ÐÅÒÅÈÏÄÙ × ËÏÎÄÅÎÓÉÒÏ×ÁÎÎÙÈ ÓÒÅÄÁÈ

üææåëôé÷îáñ ðòï÷ïäéíïóôø ðòñíïõçïìøîïçï é çåëóáçïîáìøîïçï úáíïýåîéê ðìïóëïóôé
  266
÷ùóïëáñ Tc ÷ ëõðòáôAX ëáë õîé÷åòóáìøîïå ó÷ïêóô÷ï üìåëôòïî-æïîïîîïê óéóôåíù
  275
Ab initio CALCULATIONS OF POLARIZATION, PIEZOELECTRIC CONSTANTS, AND ELASTIC CONSTANTS OF InAs AND InP IN THE WURTZITE PHASE
  285
ðòéþéîù ÷ùóïëïôåíðåòáôõòîïê ó÷åòèðòï÷ïäéíïóôé ÷ üìåëôòïî-æïîïîîïê óéóôåíå óåòï÷ïäïòïäá
  289

üÌÅËÔÒÏÎÎÙÅ Ó×ÏÊÓÔ×Á Ô×ÅÒÄÙÈ ÔÅÌ

INVESTIGATION OF LOCAL TUNNELING CURRENT NOISE SPECTRA ON THE SILICON CRYSTAL SURFACES BY MEANS OF STM/STS
  299
úá÷éóéíïóôø äéüìåëôòéþåóëïê ðòïîéãáåíïóôé ðòñíïúïîîùè ðïìõðòï÷ïäîéëï÷ ïô ÷óåóôïòïîîåçï äá÷ìåîéñ
  304
ïóïâåîîïóôé ôòáîóðïòôîùè èáòáëôåòéóôéë æïîïîï÷ ÷ óôåëìáè é óôåëìïðïäïâîùè ëòéóôáììáè ÷ ïâìáóôé çåìéå÷ùè ôåíðåòáôõò
  308
æåòòïíáçîåôéúí ðòé ëïíîáôîïê ôåíðåòáôõòå ÷ ðïòïûëáè äéïëóéäá ãåòéñ
  315
ðï÷åòèîïóôîáñ ðòéòïäá ë÷áúéä÷õíåòîùè ïóãéììñãéê ûõâîéëï÷á - ÄÅ çááúá ÷ Bi2 Te2 Se
  321
ELECTRON SPECTRUM OF A SINGLE-WALL CARBON NANOTUBE IN THE FRAMEWORK OF THE NONLINEAR SCHRÖDINGER EQUATION
  333
ëéîåôéëá ÷åòôéëáìøîïçï ôòáîóðïòôá é ìïëáìéúáãéé üìåëôòïîï÷ ÷ îáðòñöåîîùè ðïìõðòï÷ïäîéëï÷ùè ó÷åòèòåûåôëáè
  339
îåìéîåêîáñ ôåïòéñ õúëïðïìïóîïê çåîåòáãéé é äåôåëôéòï÷áîéñ ôåòáçåòãå÷ïçï éúìõþåîéñ ÷ òåúïîáîóîï-ôõîîåìøîùè çåôåòïóôòõëôõòáè
  349

óÔÁÔÉÓÔÉÞÅÓËÁÑ, ÎÅÌÉÎÅÊÎÁÑ ÆÉÚÉËÁ, ÆÉÚÉËÁ <<ÍÑÇËÏÊ ÍÁÔÅÒÉÉ>>

÷ïìîù îá ðï÷åòèîïóôé ëéðñýåê öéäëïóôé ðòé òáúìéþîùè óôòáôéæéëáãéñè óòåä
  369
ëïìåâáôåìøîïå ä÷éöåîéå ÷ñúëïê öéäëïóôé ÷ ðïòéóôïê óòåäå
  386
üëòáîéòï÷áîéå úáòñäá ðùìå÷ïê þáóôéãù ÷ ðìáúíå óõèïçï ÷ïúäõèá, óïúäá÷áåíïê ÷îåûîéí éóôïþîéëïí éïîéúáãéé
  391
÷ìéñîéå çòáîéþîùè ðï÷åòèîïóôåê îá üææåëôé÷îõà äéüìåëôòéþåóëõà ÷ïóðòééíþé÷ïóôø óðéòáìøîïê óôòõëôõòù óåçîåôïüìåëôòéþåóëïçï öéäëïçï ëòéóôáììá
  407
îáóùýåîéå îéúëïðïòïçï÷ïê ä÷õèðìáúíïîîïê ðáòáíåôòéþåóëïê îåõóôïêþé÷ïóôé îåïâùëîï÷åîîïê ÷ïìîù ÷ îåïäîïòïäîïê ðìáúíå
  415
 
óÏÏÂÝÉÔØ Ï ÔÅÈÎÉÞÅÓËÉÈ ÐÒÏÂÌÅÍÁÈ