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ELECTRON SPECTRUM OF A SINGLE-WALL CARBONNANOTUBE IN THE FRAMEWORK OF THE NONLINEARSCHRÖDINGER EQUATIONH. A. Ishkhanyan a;b, V. P. Krainov a*aMosow Institute of Physis and Tehnology141700, Dolgoprudny, Mosow Region, RussiabInstitute for Physial Researh, National Aademy of Sienes of Armenia0203, Ashtarak-2, ArmeniaReeived January 23, 2015The eletron spetrum of a single-wall arbon metal nanotube is analyzed numerially. The interation of afree eletron with atomi ions and bound eletrons is approximated by an attrative delta-funtion potential inthe single-partile Shrödinger equation. The interation of an eletron with other free eletrons is presentedby the Hartree nonlinear repulsive short-range potential.DOI: 10.7868/S00444510150801791. INTRODUCTIONCarbon nanotubes attrat signi�ant sienti� in-terest due to their extraordinary properties [1℄. Theyhave been onsidered for a wide range of appliationsfrom mehanis to nanoeletronis [2; 3℄. The studyof their eletroni properties was stimulated in 1991,soon giving the �rst outome as a series of artiles byseveral groups [4; 5℄. Theoretial studies have shownthat shell depends on the symmetry of the tube (thehiral angle and radius) and that the tube an exhibitmetal or semiondutor behavior. The problems of on-dutivity of a single-wall nanotube (SWNT) have alsobeen addressed (see, e. g., [6℄). Density funtional the-ory (DFT) studies of SWNT eletroni properties aredesribed in [7℄. However, the �rst experimental sepa-ration of metalli and semiondutor nanotubes [8℄ wasnot performed until some time after the publiation of�rst theoretial estimates of arbon nanotube eletroniproperties. The �rst experiments were arried out onsamples ontaining bundles of metalli SWNTs, andhene the measured spetra were signi�antly broad-ened. Prodution of separated nanotubes (Fig. 1) al-lowed investigating their properties muh better [9℄. In*E-mail: vpkrainov�gmail.om

an ideal arbon nanotube, every arbon atom has fourvalene eletrons, three of whih form loalized � bondsand the fourth takes part in the formation of a deloal-ized � system (Fig. 2). The piture is quite similar tothe one in benzol. The � eletrons are weakly boundto their atoms and may partiipate in the ondutiv-ity of the system. The urrent of free eletrons alongthe SWNT depends on the positions of separated lev-els of angular quantization. We onsider interatingeletrons in a long single-wall arbon metalli armhairnanotube without defets (Fig. 3). Most SWNTs have adiameter lose to 1�10 nanometers, with a tube lengththat an be many millions of times longer. The stru-ture of an SWNT an be oneptualized by wrappinga one-atom-thik layer of graphite alled graphene intoa seamless ylinder.An e�etive linear model that allows studyingthe eletri urrent onsists of a ontinuous ondut-ing ylinder with an attrative delta-funtion poten-tial [10℄. This potential desribes the mean �eld ofatomi ions and bound eletrons in the nanotube. Suhan approah is appliable to relatively large nanotubeswhen the tube radius a is large ompared with the ef-fetive width of the graphite layer r0 � 0:1 nm, whihis on the atomi sale. Typially, a � 5 nm. The sim-ple linear single-eletron Hamiltonian of an SWNT isof the form (atomi units are used here and hereafter,~ = m = 1)333
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Fig. 1. Ideal metalli arbon nanotube

Fig. 2. Eletron orbitals of a arbon atom in a nan-otube (trigonal planar arbon with a p orbital)
Fig. 3. Arrangement of the eletron orbitals of arbonatoms

H = �12�� UaÆ (r � a) : (1)Here, r is the radial oordinate in a ylindrial oordi-nate system with the z axis pointing along the tube; Uis the amplitude of the attrative potential, a quantityof the order of the Rydberg energy. Of ourse, a re-alisti attration interation is desribed by a sreenedCoulomb potential. We approximate it by the delta-funtion beause a > r0. This potential is strong suhthat U � ~2=ma2. The quantity U is of the order of30 eV (pseudopotential of arbon).The stationary single-partile Shrödinger equationfor an eletron is written asH	 = E	: (2)We take the eletron wave funtion in the form	(z; r; �) = 1Xn=0 n (r) exp (ipzz + in�) : (3)The eletron moves freely with the momentum pz alongthe tube. The eletron angular motion is determinedby the magneti quantum number n. Separating thevariables, we obtain a di�erential equation for the ra-dial part of the wave funtion,� d2 ndr2 � 1r d ndr + n2r2  n � 2UaÆ (r � a) n == 2�E � p2z2 � n: (4)We assume that the mean potential U is strong suhthat U � 1=a2. This inequality is realized for largenanotubes. We introdue the quantitiesk =pp2z � 2E; x = kr: (5)Then Eq. (4) an be rewritten in the formx2 d2 ndx2 + xd ndx � �x2 + n2� n == �2Uka3Æ (x� x0) n; (6)where x0 = ka. We now impose boundary onditionsand require the wave funtion to be regular at x = 0and to be zero at x ! 1. The solution of Eq. (6) atx < x0 and at x > x0 is n (x) = AnIn (x) ; x < x0; n (x) = BnKn (x) ; x > x0: (7)Here, In (r) and Kn (r) are the respetive modi�edBessel funtions of the �rst and seond kind. Integrat-ing Eq. (6) over an in�nitesimal interval in the viinity334



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Eletron spetrum of a single-wall arbon nanotube : : :of x0, we obtain the relation for derivatives of the wavefuntiond n (x0+0)dx �d n (x0�0)dx = �2Uak  n (x0) : (8)Using the mathing ondition of the wave funtion atx = x0, AnIn (x0) = BnKn (x0) ; (9)and the well-known value for the Wronskian determi-nant of the modi�ed Bessel funtionsW (x) = Kn(x)dIn(x)dx � In(x)dKn(x)dx = 1x ; (10)we �nd the spetral equation2Ua2Kn (ka) In (ka) = 1: (11)Under the ondition Ua2 � 1, this equation has asimple solution for the eletron energy [10℄ (we restorethe eletron mass m and the Plank onstant ~)En = p2z2m � U2ma22~2 + ~2 �n2 � 1=4�2ma2 : (12)When Ua2 < 1, Eq. (11) always has the solution withn = 0, while if n = 1; 2; : : : , the eletron levels disap-pear when Ua2 < n.2. NONLINEAR SCHRÖDINGER EQUATIONThe main goal of this paper is to take into aountthe repulsive interation of a given free eletron withother free eletrons in the nanotube. The Coulomblong-range repulsion between eletrons strongly de-reases at large distanes beause of the sreening byatomi ions. Therefore, this interation an be quali-tatively approximated by a short-range delta-funtionfor interating eletrons with opposite spins in aor-dane with the Pauli priniple. Hene, in the Hartreeself-onsistent approah, we an approximate this in-teration by a simple nonlinear potential g j nj2 withthe nonlinearity parameter g > 0, analogously to theHubbard approah [11℄. This approximation ours indi�erent physial situations (e. g., nonlinear optis, spinwaves in magneti �lms) and in partiular has proved toorretly desribe the dynamis of Bose�Einstein on-densates of dilute alkaline atoms [12℄. Analogously tothe linear ase, the variables in the stationary nonlinearShrödinger equation separate. Thus, we obtain a gen-eralization of Eq. (4) for radial motion of the eletron

� d2 ndr2 � 1r d ndr + n2r2  n � 2UaÆ (r � a) n ++ g j nj2  n = 2�E � p2z2 � n: (13)The generalization of Eq. (6) is of the formx2 d2 ndx2 + xd ndx � �x2 + n2� n �� gk2x2 j nj2  n = �2Uka3Æ (x� x0) n: (14)In the numerial solution of Eq. (14), the delta-funtion is substituted by the Lorentz urveÆ(x)! 1� 0:010:0001+ x2 : (15)The typial radius of the tube was hosen as a == 0:5 nm = 10 a. u., the potential of the order ofU = 13:6 eV = 0:5 a. u. and g < U . The bound-ary ondition at in�nity is analogous to the one in thelinear ase,  n(x ! 1) = 0. The seond boundaryondition at the origin is also analogous to that in thelinear ase (the solution of the equation for r < r0should beome the solution of the orresponding linearproblem when the nonlinearity vanishes, i. e., the mod-i�ed Bessel funtion In(r) of the �rst kind). We addan additional (nonobvious) ondition of normalizationof the wave funtion for the nonlinear single-partileShrödinger equation:1Z0 j n(x)j2 dx = 1: (16)2.1. Magneti quantum number n = 0The Cauhy problem is de�ned by Eq. (14) withthe delta-funtion substituted by a Lorentzian urveand with three boundary onditions. The �rst bound-ary ondition states that the wave funtion vanishes inthe limit x ! 1. For the seond boundary ondition,we onsider the region x� 1. The term with the delta-funtion is negligible there and Eq. (14) an be writtenin the equivalent formd2 0dx2 + 1x d 0dx �  0 � gk2 j 0j2  0 = 0; (17)with the well-known solution  0Lin = 0I0(r), 0 == onst. Sine the initial derivative of  0 must be zero, 0 = 0 +O(r2) and Eq. (17) an be approximated bythe linear equation ( 0 is assumed to be real)d2 0dx2 + 1x d 0dx � (1 + gk220) 0 = 0; (18)335
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Fig. 4. An example of a physially meaningful solution(the magneti quantum number n = 0 and the non-linearity parameter g = 1). The thin line denotes thedelta-potentialwhih has the solution 0 = 1I0(q1 + gk220r); r � 1: (19)Thus, the seond ondition along with Eqs. (14)and (15) for physially meaningful solutions is thatd 0=dx(x ! 0) = 0. In the linear ase, the wave fun-tion should be regular at x = 0. In the nonlinear ase,this requirement is insu�ient beause the eingenvaluedepends on the value  0(x! 0). The last ondition isgiven by (16).Figure 4 shows a physially meaningful solu-tion of the problem: a normalized wave funtion(R10 j 0(x)j2 dx = 1) orresponding to U = 2:5,g = 1, and  0(x = 0) = 0:037. Our goal is toinvestigate the ation of �-eletron self-interationindued nonlinearity on the eletron energy.Figure 5 shows the dependene of the eletron en-ergy on the nonlinearity parameter. As is learly seen,the nonlinearity shifts the values of k down, whihmeans it shifts the energy levels up.In Se. 2.2, we see that for n > 0 and small values ofU , this shift may result in the disappearane of levels.2.2. n = 1In this ase, the linear solution in the region of smallx is proportional to the modi�ed Bessel funtion of �rstkind, I1(r). This imposes the ondition  1(x! 0) = 0for the nonlinear solution.A meaningful solution is shown in Fig. 6 (the thinvertial line denotes the delta-funtion potential).Figure 7 illustrates the disappearane of eletronenergy levels for Ua2 < n. The shift of the levels by
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Fig. 5. Eletron spetra of an SWNT for the mag-neti quantum number n = 0 and di�erent values ofthe delta-potential amplitude (U = 2:5, 2:0 from topdown). Beause k =pp2z � 2E, the energy levels shiftup with an inrease in the interation strength
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Fig. 6. A physially meaningful solution (the magnetiquantum number n = 1 and the nonlinearity parameterg = 1). The thin line denotes the delta-potential
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Fig. 7. Disappearane of the energy levels at Ua2 < n(k = 0, n = 1)336
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Fig. 8. Eletron spetra for the magneti quantumnumber n = 1 and di�erent values of the delta-potential amplitude (U = 2:5, 2, 1:2 from top down).It is seen that the energy levels shift up with an inreasein the interation strength
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Fig. 9. A realisti solution (magneti quantum numbern = 2, g = 1:5)the nonlinearity is shown in Fig. 8 for di�erent valuesof the delta-potential height U .2.3. n = 2Beause the solution of the linear equation for x < ais equal to I2(r) with a onstant , the boundary ondi-tion for the wave funtion in the nonlinear ase shouldbe written as  2(x ! 0) = 0. The boundary ondi-tion for d 2=dx(x ! 0) is given by the normalizationof the wave funtion to unity. A realisti solution andthe disappearane of levels are shown in Figs. 9 and10. Figure 11 illustrates the shift of the eletron en-ergy levels due to the nonlinearity for di�erent valuesof the potential height U .
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Fig. 10. The energy levels disappear when Ua2 < n(k = 0, n = 2)
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Fig. 11. Ation of the strong nonlinearity shifts the en-ergy levels up, n = 2, and U = 2:52 and 2:3, for therespetive upper and lower lines3. CONCLUSIONTaking the interation of deloalized � eletronsin an ideal metalli single-wall arbon nanotube intoaount in the Hartree mean-�eld approximation, wealulated the spetrum of a long metal armhair idealnanotube. An upward shift of eletron energy levels isshown to our due to this interation. Moreover, itis shown that levels disappear when Ua2 < n with anattrative delta-potential amplitude U , the magnetiquantum number n, and the tube radius a.The work was supported by the State Committee ofSiene of Armenia (13YR-1C0055), the Dynasty Foun-dation (Mosow), and the Ministry of Eduation andSiene of Russia (State assignment No. 3.679.2014/K),RFBR (grant � 13-02-00072).9 ÆÝÒÔ, âûï. 2 (8) 337
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