Журнал Экспериментальной и Теоретической Физики
НАЧАЛО | ПОИСК | ДЛЯ АВТОРОВ | ПОМОЩЬ      e
Общая информация о журнале
Золотые страницы
Адреса редакции
Содержание журнала
Сообщения редакции
Правила для авторов
Загрузить статью
Проверить статус статьи


ЖЭТФ, Том 142, Вып. 2, стр. 397 (Август 2012)
(Английский перевод - JETP, Vol. 115, No 2, p. 356, August 2012 доступен on-line на www.springer.com )

HYPERBOLIFICATION OF DYNAMICAL SYSTEMS: THE CASE OF CONTINUOUS-TIME SYSTEMS
Elhadj Z., Sprott J.C.

Поступила в редакцию: 9 Декабря 2011

DJVU (331K) PDF (3725.6K)

We present a new method to generate chaotic hyperbolic systems. The method is based on the knowledge of a chaotic hyperbolic system and the use of a synchronization technique. This procedure is called hyperbolification of dynamical systems. The aim of this process is to create or enhance the hyperbolicity of a dynamical system. In other words, hyperbolification of dynamical systems produces chaotic hyperbolic (structurally stable) behaviors in a system that would not otherwise be hyperbolic. The method of hyperbolification can be outlined as follows. We consider a known n-dimensional hyperbolic chaotic system as a drive system and another n-dimensional system as the response system plus a feedback control function to be determined in accordance with a specific synchronization criterion. We then consider the error system and apply a synchronization method, and find sufficient conditions for the errors to converge to zero and hence the synchronization between the two systems to be established. This means that we construct a 2n-dimensional continuous-time system that displays a robust hyperbolic chaotic attractor. An illustrative example is given to show the effectiveness of the proposed hyperbolification method.

 
Сообщить о технических проблемах