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HYPERBOLIFICATION OF DYNAMICAL SYSTEMS:THE CASE OF CONTINUOUS-TIME SYSTEMSZ. Elhadj a*, J. C. Sprott b**aDepartment of Mathematis, University of Tébessa12002, AlgeriabDepartment of Physis, University of Wisonsin, MadisonWI 53706, USAReeived Deember 9, 2011We present a new method to generate haoti hyperboli systems. The method is based on the knowledge of ahaoti hyperboli system and the use of a synhronization tehnique. This proedure is alled hyperboli�ationof dynamial systems. The aim of this proess is to reate or enhane the hyperboliity of a dynamial system. Inother words, hyperboli�ation of dynamial systems produes haoti hyperboli (struturally stable) behaviorsin a system that would not otherwise be hyperboli. The method of hyperboli�ation an be outlined as follows.We onsider a known n-dimensional hyperboli haoti system as a drive system and another n-dimensionalsystem as the response system plus a feedbak ontrol funtion to be determined in aordane with a spei�synhronization riterion. We then onsider the error system and apply a synhronization method, and �ndsu�ient onditions for the errors to onverge to zero and hene the synhronization between the two systemsto be established. This means that we onstrut a 2n-dimensional ontinuous-time system that displays arobust hyperboli haoti attrator. An illustrative example is given to show the e�etiveness of the proposedhyperboli�ation method.1. INTRODUCTIONGenerally, the dynamis of a dynamial system isinteresting if it has a losed, bounded, and hyperboliattrator. In fat, the oexistene of highly ompli-ated long-term behavior, sensitive dependene on theinitial onditions, and the overall stability of the or-bit struture are the most important features resultingfrom hyperboliity. In strange attrators of the hyper-boli type, all orbits in phase spae are of the saddletype, and the invariant sets of trajetories approahthe original one in forward or bakward time dire-tions, i. e., the stable and unstable manifolds intersettransversally.The hyperboli theory of dynamial systems iswidely used for haraterizing haoti behavior of re-alisti nonlinear systems, but it has never been ap-plied to any physial proess with a ontinuous-timedynamis. Generally, best-known physial systems donot belong to the lass of systems with hyperboli at-*E-mail: zeraoulia�mail.univ-tebessa.dz, zelhadj12�yahoo.fr**E-mail: sprott�physis.wis.edu

trators [1; 2℄. Beause hyperboli strange attratorsare robust (struturally stable) [3℄, it is interesting to�nd physial examples of hyperboli haos, i. e., noisegenerators and transmitters in haos-based ommuni-ations. Reently, some ontinuous-time dynamialsystems were onstruted and on�rmed to be hyper-boli. The proof was given based on the orrespondingPoinaré map [4℄. The method most used for suh aonstrution involves oupled self-sustained osillatorswith alternating exitation and invokes the numerialanalysis to visualize diagrams illustrating the phasetransfer [4�12℄, where an additional oupling allowstransfering the phases simultaneously from one part-ner to the other in order to obtain the desired haotimap on a irle or a torus (robust hyperboli behav-ior). We note that some of the onstruted hyperbolisystems have six variables [9℄ or eight variables [7℄.Realisti examples of physial systems with hy-perboli haoti attrators are of onsiderable signif-iane beause they open the possibility for real ap-pliations of the hyperboli theory of dynamial sys-tems. As far as we know, all examples of haoti hyper-boli ontinuous-time systems were onstruted based397



Z. Elhadj, J. C. Sprott ÆÝÒÔ, òîì 142, âûï. 2 (8), 2012on well-known disrete hyperboli haoti maps. Infat, the many appliations of haos synhronization inseure ommuniations [3; 4; 6�23℄ make it muh moreimportant to synhronize two di�erent haoti systems[13�15; 17�19; 23�25℄. Also, it was shown in [26℄ thatthe fritionless motion of a mehanial system alledtriple linkage an be desribed in terms of a geodesi�ow on a surfae with everywhere negative Gaussianurvature. In fat, this system is expeted to have ahyperboli haoti attrator in the presene of fritionand an appropriate feedbak ontrol law. These two ex-amples show the importane of the hyperboli natureof dynamial systems modeling real-world phenomena.In this paper, we present a new method forsuh a onstrution based on a known haoti hyper-boli ontinuous-time system and a synhronizationmethod, namely, the ative ontrol method presentedin [15; 17; 23; 25℄. An illustrative example is given toshow the e�etiveness of the proposed hyperboli�ationmethod.2. HYPERBOLIFICATION OF DYNAMICALSYSTEMSIn this setion, we present our method for hyperbo-li�ation of ontinuous-time dynamial systems. Thisis a partial answer to a question posed in [27℄. Indeed,let x01 = f (x1)be a known hyperboli haoti system regarded as adrive system, wherex1 = �x11; x21; : : : ; xn1 � 2 Rn :Let x02 = g (x2) + U (t)be the response system, where U (t) is a feedbak on-trol funtion (in fat, the funtion U (t) depends on thetime t and the dynamial variables x1 and x2) to be de-termined in aordane with a spei� synhronizationriterion. Let the error states beei = xi2 � xi1; i = 1; 2; : : : ; n:We then onsider the error system and apply the syn-hronization method, and then �nd su�ient ondi-tions for whih the errors (ei)1�i�n onverge to zeroas t!1, and hene synhronization between the twosystems is ahieved. This means that we onstrut a2n-dimensional ontinuous-time system with a robusthyperboli haoti attrator.

The synhronization riterion used in this paper isthe ative ontrol method presented in [15; 17; 23; 25℄.We also use a 4-dimensional ontinuous-time dynamialsystem as a drive system. This system orresponds tothe 3-dimensional Smale�Williams attrator, the om-posed equations studied in [4℄ and given byx01 = �2�u1 +�h1 +A1 os 2�tN �x1 � 13x31;u01 = 2� (x1 + "2y1 os 2�t) ;y01 = �4�v1 +�h2 �A2 os 2�tN � y1 � 13y31 ;v01 = 4� �y1 + "1x21� (1)
whih were �rst introdued in [8℄. System (1) is a non-autonomous nonlinear system onsisting of two oupledvan der Pol osillators whose frequenies are !0 and2!0, where h1;2, A1;2, "1;2, and N are real onstants.System (1) exhibits a Smale�Williams-type strange at-trator when it is represented by a 4-dimensional stro-bosopi Poinaré map. In this ase, the hyperboliityis veri�ed numerially by analyzing the distribution ofthe angle ' between the stable and unstable subspaesof manifolds of the resulting haoti invariant set. Sys-tem (1) has been onstruted as a laboratory devie [4℄,and experimental and numerial solutions were found.The response system is given by the general equa-tion x02 = f1 (x2; u2; y2; v2) + z1 (t) ;u02 = f2 (x2; u2; y2; v2) + z2 (t) ;y02 = f3 (x2; u2; y2; v2) + z3 (t) ;v02 = f4 (x2; u2; y2; v2) + z4 (t) ; (2)where fi (x2; u2; y2; v2), 1 � i � 4, are smooth fun-tions. We assume that system (2) without the ativeontrol funtions z1(t), z2(t), z3(t), and z4(t) displaysbounded solutions. The required smoothness of system(2) means that there is a derivative at every point. Theadvantages of smoothness an be seen in the fat thatthe loal piture an be given by a derivative. Alsoin the hyperboli ase, the onept of a tangent spae,whih splits into expanding and ontrating diretions,requires smoothness of the system under onsideration.The funtions z1(t), z2(t), z3(t), and z4(t) are the a-tive ontrol funtions to be determined. Let the errorstates be e1 = x2 � x1; e2 = u2 � u1;e3 = y2 � y1; e4 = v2 � v1:398



ÆÝÒÔ, òîì 142, âûï. 2 (8), 2012 Hyperboli�ation of dynamial systems : : :Using the ative ontrol method, for the ative ontrolfuntion U = [z1(t); z2(t); z3(t); z4(t)℄Twe obtainz1 (t) = ���A1 os 2�tN � e1 + 2�e2 ���f1 ��h1 +A1 os 2�tN �x2 + 2�u2 + 13x31� ;z2 (t) = �2�e1 + �e2 � 2�"2e3 os 2�t�� (f2 � 2�x2 � 2�"2y2 os 2�t) ;z3 (t) = � +A2 os 2�tN � e3 + 4�e4 ���f3 + 4�v2 ��h2 �A2 os 2�tN � y2 + 13y31� ;z4 (t) = �4�e3 + Æe4 � �f4 � 4�y2 � 4�"1x21� ;where �, �, , and Æ are real parameters to be hosensuh that the error states ei, 1 � i � 4, onverge tozero, and the response system (2) beomesx02 = ���A1 os 2�tN � e1 + 2�e2 ++�h1 +A1 os 2�tN �x2 � 2�u2 + 13x31;u02 = �2�e1 + �e2 � (2�"2 os 2�t) e3 ++ 2�x2 + (2�"2 os 2�t) y2;y02 = � +A2 os 2�tN � e3 + 4�e4 � 4�v2 ++�h2 �A2 os 2�tN � y2 � 13y31 ;v02 = �4�e3 + Æe4 + 4�y2 + 4�"1x21:
(3)

We note that equation (3) is an 9-dimensional dy-namial system (where t is a variable) relating solutionsof the drive system (1) and the response system (2).With the partiular hoie of the funtions z1(t), z2(t),z3(t), and z4(t), the losed loop system is given bye01 = (h1 + �) e1; e02 = �e2;e03 = (h2 + ) e3; e04 = Æe4;whose eigenvalues are h1 + �, �, h2 + , and Æ. Then,for any set of parameters �, �, , and Æ suh that� < �h1; � < 0;  < �h2; Æ < 0;the linear system for ei, 1 � i � 4, is asymptotiallystable. This hoie leads to the error states e1, e2,
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tFig. 3. The dynamis of synhronization errors states, ei(t), 1 � i � 4, for systems (1) and (4)e3, and e4 onverging to zero as t!1, and hene thesynhronization between the general system (3) and thehaoti hyperboli system (1) is ahieved. For the pa-rameters h1;2, A1;2, "1;2, and N with whih system (1)displays robust (hyperboli) haos (for example N = 8,A1 = 1:5, A2 = 6, "1;2 = 0:1, and h1;2 = 0 as shownin [4℄), it drives another haoti attrator resulting fromthe general system (3), whih is also robust hyperbolibeause the system error between (1) and (3) onvergesto zero for large time t.3. NUMERICAL SIMULATIONIn this setion, we take the Lorenz�Sten�o systemgiven by x02 = �� (x2 � u2) + sv2;u02 = �x2y2 + rx2 � u2;y02 = x2u2 � by2;v02 = �x2 � �v2; (4)

as the response system and system (1) as the drivesystem. Here �; r, b, s 2 R are the bifuration pa-rameters of system (4). Lorenz�Sten�o system (4)desribes �nite-amplitude, low-frequeny, short-wave-length, aousti gravity waves in a rotational system[28℄. The drive system (1) displays robust (hyperboli)haos for N = 8, A1 = 1:5, A2 = 6, "1;2 = 0:1, andh1;2 = 0 [4℄. Its attrator is shown in Fig. 1, and theresponse system (4) displays haos for � = 10, b = 8=3,s = 1619, r = 2289, with an attrator as shown inFig. 2.For the ative ontrol funtionU = [z1(t); z2(t); z3(t); z4(t)℄Tde�ned above, we hoose �, �, , and Æ as� = �1 < �h1 = 0; � = �0:5 < 0; = �0:25 < �h2 = 0; Æ = �0:5 < 0:The dynamis of synhronization errors states ei(t),1 � i � 4, for systems (1) and (4) are shown in Fig. 3.400
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Finally, it is lear that the synhronization error on-verges to zero, and therefore synhronization betweenthe two systems (1) and (4) is ahieved. The solution ofthe response system (3) is shown in Fig. 4 (the largestLyapunouv exponent of this system is about 0:085).It seems that the dynamis of system (3) is inspiredby the one of system (1). This fat is exatly the mainmeaning of the laim that system (1) drives system (4).We note that it is possible to use other synhroniza-tion methods suh as those in [13�15; 17�19; 23�25℄ orother known hyperboli systems suh as those in [4�12℄to generate haoti attrators with a hyperboli stru-ture just like system (1).Finally, our proposed method to hyperboli�ationof ontinuous-time dynamial systems opens new dire-tions in studying the nature of haos in these systemsand improves possibilities for robust real-world appli-ations of hyperboli systems, whih are struturallystable. Strutural stability means the robustness ofsolutions of the governing dynamial equations if thehanges are su�iently small.
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