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We present a new metho d to generate chaotic hyp erb olic systems. The metho d is based on the knowledge of a

chaotic hyp erb olic system and the use of a synchronization technique. This pro cedure is called hyp erb oli�cation

of dynamical systems. The aim of this pro cess is to create or enhance the hyp erb olicity of a dynamical system. In

other words, hyp erb oli�cation of dynamical systems pro duces chaotic hyp erb olic (structurally stable) b ehaviors

in a system that would not otherwise b e hyp erb olic. The metho d of hyp erb oli�cation can b e outlined as follows.

We consider a known n -dimensional hyp erb olic chaotic system as a drive system and another n -dimensional

system as the resp onse system plus a feedback control function to b e determined in accordance with a sp eci�c

synchronization criterion. We then consider the error system and apply a synchronization metho d, and �nd

su�cient conditions for the errors to converge to zero and hence the synchronization b etween the two systems

to b e established. This means that we construct a 2 n -dimensional continuous-time system that displays a

robust hyp erb olic chaotic attractor. An illustrative example is given to show the e�ectiveness of the prop osed

hyp erb oli�cation metho d.

1. INTRODUCTION

Generally, the dynamics of a dynamical system is

interesting if it has a closed, b ounded, and hyp erb olic

attractor. In fact, the co existence of highly compli-

cated long-term b ehavior, sensitive dep endence on the

initial conditions, and the overall stability of the or-

bit structure are the most imp ortant features resulting

from hyp erb olicity. In strange attractors of the hyp er-

b olic typ e, all orbits in phase space are of the saddle

typ e, and the invariant sets of tra jectories approach

the original one in forward or backward time direc-

tions, i. e., the stable and unstable manifolds intersect

transversally.

The hyp erb olic theory of dynamical systems is

widely used for characterizing chaotic b ehavior of re-

alistic nonlinear systems, but it has never b een ap-

plied to any physical pro cess with a continuous-time

dynamics. Generally, b est-known physical systems do

not b elong to the class of systems with hyp erb olic at-
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tractors [ 1 ; 2 ]. Because hyp erb olic strange attractors

are robust (structurally stable) [3], it is interesting to

�nd physical examples of hyp erb olic chaos, i. e., noise

generators and transmitters in chaos-based communi-

cations. Recently, some continuous-time dynamical

systems were constructed and con�rmed to b e hyp er-

b olic. The pro of was given based on the corresp onding

Poincaré map [4]. The metho d most used for such a

construction involves coupled self-sustained oscillators

with alternating excitation and invokes the numerical

analysis to visualize diagrams illustrating the phase

transfer [4�12], where an additional coupling allows

transfering the phases simultaneously from one part-

ner to the other in order to obtain the desired chaotic

map on a circle or a torus (robust hyp erb olic b ehav-

ior). We note that some of the constructed hyp erb olic

systems have six variables [9] or eight variables [7].

Realistic examples of physical systems with hy-

p erb olic chaotic attractors are of considerable signif-

icance b ecause they op en the p ossibility for real ap-

plications of the hyp erb olic theory of dynamical sys-

tems. As far as we know, all examples of chaotic hyp er-

b olic continuous-time systems were constructed based
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on well-known discrete hyp erb olic chaotic maps. In

fact, the many applications of chaos synchronization in

secure communications [ 3 ; 4 ; 6 �23] make it much more

imp ortant to synchronize two di�erent chaotic systems

[13� 15 ; 17 � 19 ; 23 �25]. Also, it was shown in [26] that

the frictionless motion of a mechanical system called

triple linkage can b e describ ed in terms of a geo desic

�ow on a surface with everywhere negative Gaussian

curvature. In fact, this system is exp ected to have a

hyp erb olic chaotic attractor in the presence of friction

and an appropriate feedback control law. These two ex-

amples show the imp ortance of the hyp erb olic nature

of dynamical systems mo deling real-world phenomena.

In this pap er, we present a new metho d for

such a construction based on a known chaotic hyp er-

b olic continuous-time system and a synchronization

metho d, namely, the active control metho d presented

in [ 15 ; 17 ; 23 ; 25 ]. An illustrative example is given to

show the e�ectiveness of the prop osed hyp erb oli�cation

metho d.

2. HYPERBOLIFICATION OF DYNAMICAL

SYSTEMS

In this section, we present our metho d for hyp erb o-

li�cation of continuous-time dynamical systems. This

is a partial answer to a question p osed in [27]. Indeed,

let

x
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b e the resp onse system, where U ( t ) is a feedback con-

trol function (in fact, the function U ( t ) dep ends on the

time t and the dynamical variables x
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) to b e de-
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criterion. Let the error states b e
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We then consider the error system and apply the syn-

chronization metho d, and then �nd su�cient condi-

tions for which the errors ( e

i

)

1 � i � n

converge to zero

as t ! 1 , and hence synchronization b etween the two

systems is achieved. This means that we construct a

2 n -dimensional continuous-time system with a robust

hyp erb olic chaotic attractor.

The synchronization criterion used in this pap er is

the active control metho d presented in [ 15 ; 17 ; 23 ; 25 ].

We also use a 4 -dimensional continuous-time dynamical

system as a drive system. This system corresp onds to

the 3 -dimensional Smale�Williams attractor, the com-

p osed equations studied in [4] and given by

x

0

1

= � 2 � u

1

+

�

h

1

+ A

1

cos

2 � t

N

�

x

1

�

1

3

x

3

1

;

u

0

1

= 2 � ( x

1

+ "

2

y

1

cos 2 � t ) ;

y

0

1

= � 4 � v

1

+

�

h

2

� A

2

cos

2 � t

N

�

y

1

�

1

3

y

3

1

;

v

0

1

= 4 �

�

y

1

+ "

1

x

2

1

�

(1)

which were �rst intro duced in [8]. System (1) is a non-

autonomous nonlinear system consisting of two coupled

van der Pol oscillators whose frequencies are !

0

and

2 !

0

, where h

1 ; 2

, A

1 ; 2

, "

1 ; 2

, and N are real constants.

System (1) exhibits a Smale�Williams-typ e strange at-

tractor when it is represented by a 4 -dimensional stro-

b oscopic Poincaré map. In this case, the hyp erb olicity

is veri�ed numerically by analyzing the distribution of

the angle ' b etween the stable and unstable subspaces

of manifolds of the resulting chaotic invariant set. Sys-

tem (1) has b een constructed as a lab oratory device [4],

and exp erimental and numerical solutions were found.

The resp onse system is given by the general equa-

tion
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) , 1 � i � 4 , are smo oth func-

tions. We assume that system (2) without the active

control functions z

1

( t ) , z

2

( t ) , z

3

( t ) , and z

4

( t ) displays

b ounded solutions. The required smo othness of system

(2) means that there is a derivative at every p oint. The

advantages of smo othness can b e seen in the fact that

the lo cal picture can b e given by a derivative. Also

in the hyp erb olic case, the concept of a tangent space,

which splits into expanding and contracting directions,

requires smo othness of the system under consideration.
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Using the active control metho d, for the active control

function
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where � , � , 
 , and � are real parameters to b e chosen

such that the error states e

i

, 1 � i � 4 , converge to

zero, and the resp onse system (2) b ecomes
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We note that equation (3) is an 9 -dimensional dy-

namical system (where t is a variable) relating solutions

of the drive system (1) and the resp onse system (2).

With the particular choice of the functions z

1

( t ) , z

2

( t ) ,

z
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( t ) , and z
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( t ) , the closed lo op system is given by
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whose eigenvalues are h
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for any set of parameters � , � , 
 , and � such that
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the linear system for e

i

, 1 � i � 4 , is asymptotically

stable. This choice leads to the error states e
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Fig. 1. The chaotic attractor of the drive system (1) for

N = 8 , A
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= 1 : 5 , A
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= 0 : 1 , and h
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Fig. 2. The chaotic attractor of the resp onse system (4)

for � = 10 , b = 8 = 3 , s = 1619 , and r = 2289
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e
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, and e

4

converging to zero as t ! 1 , and hence the

synchronization b etween the general system (3) and the

chaotic hyp erb olic system (1) is achieved. For the pa-

rameters h

1 ; 2

, A

1 ; 2

, "

1 ; 2

, and N with which system (1)

displays robust (hyp erb olic) chaos (for example N = 8 ,

A

1

= 1 : 5 , A

2

= 6 , "

1 ; 2

= 0 : 1 , and h

1 ; 2

= 0 as shown

in [4]), it drives another chaotic attractor resulting from

the general system (3), which is also robust hyp erb olic

b ecause the system error b etween (1) and (3) converges

to zero for large time t .

3. NUMERICAL SIMULATION

In this section, we take the Lorenz�Sten�o system

given by
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(4)

as the resp onse system and system (1) as the drive

system. Here �; r , b , s 2 R are the bifurcation pa-

rameters of system (4). Lorenz�Sten�o system (4)

describ es �nite-amplitude, low-frequency, short-wave-

length, acoustic gravity waves in a rotational system

[28]. The drive system (1) displays robust (hyp erb olic)

chaos for N = 8 , A

1

= 1 : 5 , A

2

= 6 , "

1 ; 2

= 0 : 1 , and

h

1 ; 2

= 0 [4]. Its attractor is shown in Fig. 1, and the

resp onse system (4) displays chaos for � = 10 , b = 8 = 3 ,

s = 1619 , r = 2289 , with an attractor as shown in

Fig. 2.

For the active control function

U = [ z
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( t ) ; z
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3

( t ) ; z

4

( t )]

T

de�ned ab ove, we cho ose � , � , 
 , and � as

� = � 1 < � h

1

= 0 ; � = � 0 : 5 < 0 ;


 = � 0 : 25 < � h

2

= 0 ; � = � 0 : 5 < 0 :

The dynamics of synchronization errors states e

i

( t ) ,

1 � i � 4 , for systems (1) and (4) are shown in Fig. 3.
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Fig. 4. The chaotic attractor of system (3) for N = 8 ,

A
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= 1 : 5 , A

2
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1 ; 2

= 0 : 1 , h

1 ; 2

= 0 , � = 10 ,

b = 8 = 3 , s = 1619 , and r = 2289

Finally, it is clear that the synchronization error con-

verges to zero, and therefore synchronization b etween

the two systems (1) and (4) is achieved. The solution of

the resp onse system (3) is shown in Fig. 4 (the largest

Lyapunouv exp onent of this system is ab out 0 : 085 ).

It seems that the dynamics of system (3) is inspired

by the one of system (1). This fact is exactly the main

meaning of the claim that system (1) drives system (4).

We note that it is p ossible to use other synchroniza-

tion metho ds such as those in [13� 15 ; 17 � 19 ; 23 �25] or

other known hyp erb olic systems such as those in [4�12]

to generate chaotic attractors with a hyp erb olic struc-

ture just like system (1).

Finally, our prop osed metho d to hyp erb oli�cation

of continuous-time dynamical systems op ens new direc-

tions in studying the nature of chaos in these systems

and improves p ossibilities for robust real-world appli-

cations of hyp erb olic systems, which are structurally

stable. Structural stability means the robustness of

solutions of the governing dynamical equations if the

changes are su�ciently small.

4. CONCLUSION

We have presented a new metho d to generate

chaotic hyp erb olic systems based on the knowledge of

a chaotic hyp erb olic system and the use of a synchro-

nization technique. This pro cess creates hyp erb olicity

in a dynamical system and generates structurally stable

chaotic attractors. An illustrative example is given to

show the e�ectiveness of the prop osed hyp erb oli�cation

metho d.
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