Journal of Experimental and Theoretical Physics
HOME | SEARCH | AUTHORS | HELP      
Journal Issues
Golden Pages
About This journal
Aims and Scope
Editorial Board
Manuscript Submission
Guidelines for Authors
Manuscript Status
Contacts


ZhETF, Vol. 142, No. 2, p. 397 (August 2012)
(English translation - JETP, Vol. 115, No. 2, p. 356, August 2012 available online at www.springer.com )

HYPERBOLIFICATION OF DYNAMICAL SYSTEMS: THE CASE OF CONTINUOUS-TIME SYSTEMS
Elhadj Z., Sprott J.C.

Received: December 9, 2011

DJVU (331K) PDF (3725.6K)

We present a new method to generate chaotic hyperbolic systems. The method is based on the knowledge of a chaotic hyperbolic system and the use of a synchronization technique. This procedure is called hyperbolification of dynamical systems. The aim of this process is to create or enhance the hyperbolicity of a dynamical system. In other words, hyperbolification of dynamical systems produces chaotic hyperbolic (structurally stable) behaviors in a system that would not otherwise be hyperbolic. The method of hyperbolification can be outlined as follows. We consider a known n-dimensional hyperbolic chaotic system as a drive system and another n-dimensional system as the response system plus a feedback control function to be determined in accordance with a specific synchronization criterion. We then consider the error system and apply a synchronization method, and find sufficient conditions for the errors to converge to zero and hence the synchronization between the two systems to be established. This means that we construct a 2n-dimensional continuous-time system that displays a robust hyperbolic chaotic attractor. An illustrative example is given to show the effectiveness of the proposed hyperbolification method.

 
Report problems