Journal of Experimental and Theoretical Physics
HOME | SEARCH | AUTHORS | HELP      
Journal Issues
Golden Pages
About This journal
Aims and Scope
Editorial Board
Manuscript Submission
Guidelines for Authors
Manuscript Status
Contacts


ZhETF, Vol. 166, No. 1, p. 98 (July 2024)
(English translation - JETP, Vol. 139, No. 1, July 2024 available online at www.springer.com )

Josephson bifurcation readout: beyond the monochromatic approximation
Makhlin Yu., Zorin A.B.

Received: May 5, 2024

DOI: 10.31857/S0044451024070101

PDF (1143K)

We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits, in particular, with application to quantum readout. The developed quantitative description demonstrates strong influence of higher harmonics on their characteristics. While this effect is relevant for various circuits, including the conventional Josephson bifurcation amplifier and the parametrically driven circuit, we first focus on the period-doubling bifurcation under a force driving. This kind of bifurcation is due to nominally quadratic nonlinearity, which enables parametric down-conversion of the driving signal at nearly double resonance frequency to the basic mode. We analyze the effect of higher harmonics on the dynamics of the basic mode, inherent in a nonlinear circuit, which in our case is based on a Josephson junction with a sinusoidal current-phase relation as the origin of nonlinearity. We demonstrate that effects beyond the monochromatic approximation significantly modify the bare characteristics and evaluate their contribution. Due to high sensitivity of this circuit to small variations of parameters, it can serve as an efficient detector of the quantum state of superconducting qubits.

 
Report problems