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We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance

circuits, in particular, with application to quantum readout. The developed quantitative description demon-

strates strong influence of higher harmonics on their characteristics. While this effect is relevant for various

circuits, including the conventional Josephson bifurcation amplifier and the parametrically driven circuit, we

first focus on the period-doubling bifurcation under a force driving. This kind of bifurcation is due to nom-

inally quadratic nonlinearity, which enables parametric down-conversion of the driving signal at nearly double

resonance frequency to the basic mode. We analyze the effect of higher harmonics on the dynamics of the

basic mode, inherent in a nonlinear circuit, which in our case is based on a Josephson junction with a sinusoidal

current-phase relation as the origin of nonlinearity. We demonstrate that effects beyond the monochromatic

approximation significantly modify the bare characteristics and evaluate their contribution. Due to high sensi-

tivity of this circuit to small variations of parameters, it can serve as an efficient detector of the quantum state

of superconducting qubits.
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1. INTRODUCTION

Further development of high-efficiency quantum de-

tectors for solid-state quantum-information circuits, in

particular, for Josephson quantum bits, is a task of high

importance, relevant for realization of novel devices and

investigation of quantum behavior of such circuits. Due

to their high sensitivity and weak backaction, detec-

tors based on bifurcation phenomena are extensively

used (see, e. g., Ref. [1] for review). These circuits are

generally based on a bistability between low- and high-

amplitude forced oscillations at a frequency close to

the basic frequency of a resonator with a cubic non-

linearity (equivalently, Kerr or χ(3)-nonlinearity [2]).

The dynamics of this circuit is described by the Duffing

* E-mail: makhlin@itp.ac.ru

equation [3]. A device using this method of operation

was first proposed and developed by Siddiqi et al. [4].

In this device, known as a Josephson bifurcation am-

plifier (JBA), driving near the resonance frequency is

used to induce oscillations, and at sufficiently strong

driving the circuit bifurcates from a single-valued to a

bistable regime. These two possible oscillation states

have different amplitudes and phases, but the same fre-

quency, equal to the drive frequency. When biased near

the bifurcation point, this circuit is extremely sensitive

to small changes of its parameters, especially its reso-

nance frequency, which in its turn depends on the state

of a coupled qubit. This device and its modifications,

operating as threshold detectors, were investigated and

used by various experimental groups [5–11].

A different threshold detector [12], termed a

period-doubling bifurcation readout (PDBR), is based

on a parametric period-doubling bifurcation in an
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externally driven Josephson-junction-based resonator

with a quadratic nonlinearity (also known as non-

centrosymmetric or χ(2)-nonlinearity [2]). A bistability

in this circuit is developed between the zero state and

an oscillation state at the basic frequency, whereas the

drive is applied at a double frequency. A quadratic

nonlinearity in the current-phase relation I(ϕ) of the

Josephson junction is provided by a dc current bias,

|I0| < Ic, where Ic is the critical current (see Fig. 1 a).

Alternatively, such nonlinearity can be obtained using

a constant-flux biased rf-SQUID [13], as shown in

Fig. 1 b, or an asymmetric multi-junction SQUID or

the so called SNAIL circuit [14]. This PDBR regime

was experimentally realized in a microwave-driven

superconducting Nb CPW resonator including an

rf-SQUID [15]. A similar approach was used in a

demonstration of a SNAIL cavity-based parametric

amplifier with a large dynamic range [16].

Instead of nonlinearity-assisted pumping of the

circuit, a period-doubling bifurcation may arise due

to parametric modulation of the inductance or ca-

pacitance. This regime was studied by Dykman

et al. [17, 18] and demonstrated experimentally in a

superconducting coplanar waveguide cavity including

a magnetic-flux modulated dc-SQUID by Wilson et

al. [19] Eventually, a parameter-modulated nonlinear

circuit can also be used to detect quantum states of

Josephson qubits; as we show below, its analysis is simi-

lar and its properties are comparable to those presented

earlier in Ref. [12]. Since such readout strategy also

implies generation of oscillations at the half-frequency

of the drive, below we refer to this kind of device as

PDBR-2, while PDBR-1 is reserved for the PDBR with

quadratic nonlinearity and a force drive [12]. All these

bifurcation-based devices can be used as efficient quan-

tum detectors, and it is important to accurately analyze

their behavior.

To describe the behavior of such a detector, one

needs to find stationary states of a driven system and

then analyze their stability and relaxation toward sta-

ble states. This analysis requires a quantitative de-

scription of the device dynamics. For the simplest de-

scription of the circuit, one normally assumes that only

oscillations at the basic frequency ω are induced (on

top of a weak linear response at the drive frequency 2ω

in the case of PDBR-1), cf. the literature cited above.

To find the amplitude of these oscillations, one retains

only the first harmonic of the evolution equation. This

approach was referred to as ‘monochromatic approxi-

mation’ in Ref. [20] in the case of JBA, and we use

this term also for the case of the drive at the double

frequency (although in this case it also involves the

‘trivial’ weak response at 2ω mentioned above).

Here we demonstrate that the monochromatic ap-

proximation is not sufficiently accurate, in the following

sense: in the effective equation of motion (EOM) for

(the amplitude of) the basic harmonic the monochro-

matic approximation correctly yields the leading, linear

term. For the PDBR, this term determines the param-

eter range, where the zero solution becomes unstable,

and where the quantum measurement is at all possible.

For the JBA, the linear term defines the response in

the linear regime. However, subleading nonlinear terms

govern development of the parametric instability in the

PDBR regime as well as the full response for the JBA

in the readout regime of interest. The monochromatic

approximation, as we demonstrate, fails to provide ac-

curate values of the subleading terms. We emphasize

that the deviation is substantial, typically by a factor of

order one, but in general it depends on the parameters

of the effective potential of our nonlinear system and

could be even stronger. Obviously, this modification

of the nonlinear term needs to be accounted for in the

description of the device operation. Such effects may

generally appear in driven nonlinear resonators [3], and

we develop a systematic approach to their quantitative

description.

The effect considered here appears in generic non-

linear oscillators, but in our description below we have

in mind circuits with a nonlinear Josephson induc-

tance. The regimes of interest (i. e., JBA, PDBR-1, and

PDBR-2) are described by similar equations, which dif-

fer only by the driving term. After setting the problem,

we describe its solution for the PDBR-1 and summa-

rize our results for the other two cases. We extend

the general method of analysis of anharmonic oscilla-

tions [3] to account for various driving terms and higher

nonlinearities. We also note that recently, effects of

higher nonlinearities and multiple harmonics attracted

attention in the field of Josephson-junction-based cir-

cuits. For instance, Ref. [21] analyzed their effect on

the gain saturation in a Josephson parametric amplifier

in the regime below bistability, while the so called har-

monic balance analysis for parametric amplifiers was

presented in Ref. [22].

The circuits under consideration contain a phase-

biased Josephson junction, which provides for para-

metric frequency conversion due to quadratic nonlin-

earity in the current-phase relation. When the circuit

is current-driven at a frequency close to the double ba-

sic frequency of the resonator (the case of PDBR-1), a

sharp onset of oscillations may occur at half of the drive

frequency, i. e., close to the basic frequency. The Kerr

nonlinearity of the Josephson junction leads to a sig-
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nificant amplitude of these oscillations. Exploiting this

bistability between the zero state and finite-amplitude

oscillations, one may efficiently detect small variations

of the effective circuit capacitance or inductance, and

therefore the quantum state of a coupled Josephson

qubit. The dynamics of the nonlinear Josephson cir-

cuit was analyzed in Ref. [12] in a simplified model,

where the renormalization corrections were introduced

only at the final stage. However, full characterization

of this and similar devices and their potential use for

quantum-state detection requires an accurate quantita-

tive description of its behavior. Here we investigate an

important correction and its influence on the dynamics

of the circuit. Let us first briefly indicate the origin of

this correction.

Driving at frequency 2ω, close to the double basic

frequency of the resonator with an ordinary quadratic

nonlinearity, induces oscillations at frequency ω, close

to its basic frequency. However, due to the inher-

ent Kerr nonlinearity unaccounted oscillations at mul-

tiples nω of this frequency are also induced, where

n = 0, 3, 4, 5, . . . In this article we analyze the feed-

back of these higher harmonics to the dynamics of the

basic oscillations in the resonator. We derive the corre-

sponding dynamic equations and show that their func-

tional form is not modified, whereas the coefficients are

changed, so we analytically find the contribution of the

higher harmonics to these coefficients. We show that

the non-dissipative part of the EOM is of Hamiltonian

nature, which can be used to explain certain apparent

coincidences of the coefficients and to find the most

generic form of the low-order EOM describing small

oscillations.

For the description of the circuit dynamics we use

a version of the method of averaging or the method

of slowly varying amplitudes, developed for the anal-

ysis of nonlinear systems (see, e. g., Refs. [23, 24]). A

specific extension of this approach was developed by

Peter Kapitza for the analysis of his seminal Kapitza

pendulum [25–27] and is now part of the standard

theoretical-physics toolbox (cf. Ref. [3, § 30]). For

example, Arnold describes [28] interesting connections

between Kapitza’s results and the Kolmogorov-Arnold-

Moser theory (known as KAM theory) of quasi-periodic

motions in Hamiltonian systems and their stability.

2. JOSEPHSON BIFURCATION DETECTORS
AND MONOCHROMATIC APPROXIMATION

The conventional circuit of a period-doubling-

bifurcation detector proposed in Ref. [12] PDBR-1 (see

Fig. 1 a) consists of a dc-current-biased Josephson junc-

tion with critical current Ic, capacitance C including

both the self-capacitance of the junction and a possi-

ble external capacitance, linear conductance G, as well

as an attached qubit, depicted here as a small capaci-

tance Cq, presumably of quantum origin [29, 30]. The

circuit is driven by a harmonic signal Iac = IA cos 2ωt

at a frequency close to the double frequency of small-

amplitude plasma oscillations ωp [31], i. e., ω ≈ ωp.

The JBA can be represented by the same circuit with

a different driving frequency, i. e. Iac = IA cosωt. A

possible modification of this universal circuit is shown

in Fig. 1 b, where the dc-current-biased junction is re-

placed by a constant-flux-biased rf-SQUID with in-

ductance Lg. In this case the effective linear induc-

tance of the circuit L is expressed via the phase-

bias dependent Josephson-junction inductance LJ , i. e.,

L−1 = L−1J + L−1g . Nonlinear properties of such an el-

ement (quite similar to those of a dc-biased Josephson

junction) are given by Eq. (4) of Ref. [13]. In the third

case of PDBR-2 (see Fig. 1 c) the driving signal also

has the double frequency but a different nature, viz., it

modulates a reactance parameter of the resonator (the

effective Josephson inductance of the dc-SQUID).

In the absence of fluctuations, the dynamics of the

bare system (shown in Fig. 1 a, excluding the signal

source, whose quantum state only slightly changes the

plasma frequency ωp of the entire circuit) is governed

by the model of a resistively shunted Josephson junc-

tion [32, 33]:

C
Φ0

2π

d2ϕ

dt2
+G

Φ0

2π

dϕ

dt
+ Ic sinϕ = I0 + Iac .

Here Φ0 = h/2e is the magnetic flux quantum. A fi-

nite subcritical current bias, |I0| < Ic, establishes a

dc phase drop ϕ0 = arcsin(I0/Ic) across the Josephson

junction. The small-signal expansion (x = ϕ−ϕ0 ≪ 1)

of the Josephson supercurrent term includes the follow-

ing dominant components:

sinϕ = sin(ϕ0 + x) ≈

≈ sinϕ0

(
1− x2

2
+
x4

24

)
+ cosϕ0

(
x− x3

6

)
.

The resonant frequency of small oscillations of ϕ

around ϕ0 is given by

ωp = (cosϕ0)
1/2ωp0,

see [31], where ωp0 = (LJ0C)
−1/2 is the bare plasma

frequency and the Josephson inductance of the unbi-

ased junction LJ0 = Φ0/(2πIc).
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Fig. 1. a — Electric diagram of the period-doubling bifurcation detector including a resonator formed by an inductance

LJ = Φ0/(2πIc cosϕ0) = LJ0/ cosϕ0 of the Josephson junction with critical current Ic (denoted by a cross symbol), externally

biased by a dc current I0, and capacitance C, which includes the self-capacitance of this junction. Its effective conductance G

accounts for linear losses. The resonator is coupled to a signal source, e. g., a charge qubit with an effective quantum capacitance

Cq, which depends on the state of the qubit [29,30]. Both the microwave drive and readout are realized by means of a circulator.

b — Modification of the generic circuit (a), where the current-biased Josephson junction is replaced by a flux-biased rf-SQUID

with a screening parameter βL = Lg/LJ0 < 1. The drive at frequency 2ω ≈ 2ωp leads to the regime of period-doubling bifur-

cations (PDBR-1), while the drive at frequency ω ≈ ωp leads the conventional bifurcations (JBA) in both types of circuits (a)

and (b). c — The circuit based on a flux-driven symmetric dc-SQUID. For non-zero flux bias Φe, the ac flux drive at 2ω ≈ 2ωp

may also lead to the period-doubling bifurcations due to periodic modulation of the effective SQUID inductance (the PDBR-2

regime, see text)

After the small-signal expansion, the equation of

motion for the dimensionless phase x takes the form

ẍ+ x = ξx− 2θẋ+ χ2x
2 + χ3x

3 − χ4x
4+

+ driving term , (1)

where the dots denote derivatives with respect to the

dimensionless time τ = ωt. The dimensionless detun-

ing and dissipation coefficients in Eq. (1) are

ξ = 1− ω̄−2 , |ξ| ≪ 1 ,

θ = G/2ωC ≡ 1/2Q≪ 1 ,
(2)

respectively [12]. The normalized frequency

ω̄ = ω/ωp (3)

approaches one, ω̄ → 1, on resonance. Expressions for

the nonlinear coupling coefficients,

χ2 = 12χ4 = tanϕ0/2ω̄
2, χ3 = 1/6ω̄2,

are particular cases of the general expression (5) below.

For the rf-SQUID configuration in Fig. 1b, the res-

onant frequency and nonlinear coefficients can be ex-

pressed in terms of the dimensionless screening param-

eter βL = Lg/LJ0 [31, 34–36] as

ω2
p = ω2

p0(cosϕ0 + β−1L ) = ℓ−1ω2
p0 cosϕ0 , (4)

χ2 = 12χ4 = ℓ tanϕ0/2ω̄
2 , and χ3 = ℓ/6ω̄2 . (5)

Here a universal inductance renormalization factor ℓ is

defined as

ℓ=




1, (PDBR-1a)
βL cosϕ0

1 + βL cosϕ0
=

Lg
Lg + LJ

=
L

LJ
, (PDBR-1b)

(6)

where

LJ(ϕ0) = LJ0/ cosϕ0.

With this definition, one can describe both PBDR-1a

and PDBR-1b by the same Eqs. (1)–(6). In particular,

for PDBR-1b we find

χ2 = 12χ4 = (1/2ω̄2)βL sinϕ0(1 + βL cosϕ0)
−1,

χ3 = (1/6ω̄2)βL cosϕ0(1 + βL cosϕ0)
−1.

As expected, the expressions for PDBR-1a can be ob-

tained from those for PDBR-1b at Lg → ∞, which

yields βL → ∞ and ℓ→ 1.

In this rf-SQUID configuration, the dc phase bias

ϕ0 is set by an external magnetic flux Φe. It
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Fig. 2. Schematic plot of the parametric resonance curve (red): Amplitude |A1| of the fundamental-frequency Josephson-phase

oscillations in PDBR-1 vs. frequency for a 2ω-drive signal with the drive amplitude above the bifurcation threshold. The negative

slope of the response curve is shown for positive Kerr nonlinearity, χ3 > 0. At χ3 < 0, the regime accessible in PDBR-1 with

an rf-SQUID biased by flux Φe not far from Φ0/2, the parametric-resonance curve has the opposite (positive) slope. The dashed

red line indicates an unstable state. Increasing the drive frequency induces a PDB (solid vertical arrow); when this frequency

decreases, the system switches back to the zero state (dashed vertical arrow). The insets schematically show transitions in the

corresponding metapotentials [12]. Similar transitions may be induced by variation of other parameters, for instance, of the drive

amplitude (which determines the width of the resonance peak), cf. Ref. [12]

can be found from the transcendental equation [31]

ϕ0 + βL sinϕ0 = 2πΦe/Φ0, which has a single so-

lution for arbitrary Φe in the non-hysteretic regime

βL < 1 [36], considered here. The external-flux depen-

dence of the nonlinear coefficients χ2 and χ3 is shown,

for instance, in Fig. 3 of Ref. [37]. Their values and

signs can be efficiently controlled via Φe in the full

range of phase bias, −π ≤ ϕ0 < π (mod 2π), with-

out any risk of the circuit switching from the supercon-

ducting to resistive state (as in a stand-alone Joseph-

son junction at ϕ0 → π/2 [34]). In particular, both

the Kerr-free case, χ2 6= 0 with χ3 = 0 (reached at

ϕ0 = ±π/2), and the pure Kerr case, χ3 6= 0 with

χ2 = 0 (attained at ϕ0 = 0 or π), are easily accessible

by tuning the flux Φe.

Apart from the dynamics of PDBR-1, the generic

nonlinear Eqs. (1)–(6) can also describe the JBA. The

respective driving terms read

driving term = 3P2 cos 2τ,

where 3P2 =
ℓ

ω̄2 cosϕ0

IA
Ic
,

(PDBR-1a,b; current drive), (7)

driving term = P1 cos τ,

where P1 =
ℓ

ω̄2 cosϕ0

IA
Ic
,

(JBA-a,b; current drive), (8)

where the subscript of the drive amplitude P indicates

the drive frequency, and the factor 3 is introduced for

convenience in further analysis. The rf-SQUID res-

onator (see Fig. 1 b) can either be current-driven as

above, or flux-driven by an additional ac flux applied

to the SQUID loop, Φac(t) = ΦA cos 2τ (PDBR-1b) or

Φac(t) = ΦA cos τ (JBA-b). In this case

driving term = 3P2 cos 2τ,

where 3P2 =
ℓ

ω̄2 cosϕ0

2π

βL

ΦA
Φ0

,

(PDBR-1b; flux drive), (9)

driving term = P1 cos τ,

where P1 =
ℓ

ω̄2 cosϕ0

2π

βL

ΦA
Φ0

,

(JBA-b; flux drive). (10)

The evolution equation (1), formally, can also de-

scribe the PDBR-2 circuit with a dc-SQUID shown in

Fig. 1 c. In contrast to PDBR-1 with forced oscilla-

tions, the frequency conversion in PDBR-2 occurs due

to periodic modulation of the effective critical current,

and hence inductance, of the dc-SQUID [17, 19, 23].

This modulation is controlled by an ac magnetic flux

in the SQUID loop. Thus PDBR-2 can operate with-

out quadratic nonlinearity, for instance, at zero current

bias, ϕ0 = 0. An optimal dc flux bias

Φe = Φopt
e ≈ ±Φ0/3

sets an effective critical current

Ieff
c = 2Ic| cos(πΦe/Φ0)| ≈ Ic
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and allows one to combine efficient, nearly linear modu-

lation of the critical current (∂Ieff
c /∂Φe 6= 0) with max-

imal possible swing. Expanding the current through

the dc-SQUID at ϕ0 = 0,

I = Ieff
c sinϕ = Ieff

c (ϕ− ϕ3/6 + ...),

we find the coefficients χ3 = 1/6ω̄2 and χ2 = 0. An

applied alternating flux

Φac(t) = ΦA cos 2τ

modulates the critical current

Ieff
c = Ieff

c (Φ0
e)[1 + fΦac(t)/Φ0]

(and thereby the SQUID inductance). At an opti-

mal dc-flux bias point, ±Φ0/3, we find the modulation

parameter

f =
∂Ieff
c

∂Φe

Φ0

Ieff
c

≈ ∓
√
3π.

The resulting driving term for PDBR-2 takes the form

driving term = P ′2x cos 2τ,

where P ′2 = ω̄−2fΦA/Φ0 . (PDBR-2) (11)

In some realistic circuits (for instance, a flux-

driven asymmetric dc-SQUID with different junctions,

Ic1 6= Ic2), the applied ac flux can simultaneously in-

duce both the force- and parametric-driving terms, i. e.,

P2 and P ′2 terms in Eqs. (9) and (11), respectively.

Since the effective evolution equations (23) and (29),

derived below respectively for PDBR-1 and PDBR-2,

are of the same form, to the lowest order in the drive

one can simply add the respective contributions with

P2 and P ′2.

Thus Eq. (1) with appropriate driving terms al-

lows us to consider both PDBR-1 and PDBR-2 circuits

driven near the double resonant frequency and JBA

circuits driven near the fundamental frequency. Below

we focus mostly on the PDBR-1 circuits, whereas our

results can be easily extended to the case of JBA and

PDBR-2.

In the monochromatic approximation, one seeks a

solution of Eq. (1) in the form

x ≡ (A1e
−iτ + c.c.)− P2 cos 2τ.

Substituting this expression in Eq. (1), one finds an

evolution equation for the slow complex amplitude A1

of the first harmonic, cf. Ref. [12], where it was pre-

sented as a pair of equations for its absolute value A

and phase α:

A1 =
1

2
Aeiα.

Rewriting them as a single equation for A1, we thus

find in the monochromatic approximation:

Ȧ1 = −
(
θ − i

ξ

2

)
A1 −

i

2
χ2P2A

∗
1+

+
3i

2
χ3|A1|2A1 + iχ4P2(3|A1|2A∗1 +A3

1) . (12)

However, this derivation of Eq. (12) neglects possible

deviations of the second harmonic from the pure drive

−P2 cos 2τ as well as contributions of the other har-

monics, with numbers n = 0 (dc) and |n| > 2. The dy-

namics of these harmonics (they all are loosely termed

higher harmonics in this article) are coupled to the evo-

lution of A1. We show below that their dynamics is

faster than that governed by Eq. (12), and using sep-

aration of the time scales one can still derive a closed

equation of motion for A1. Since the effect of the higher

harmonics arises due to the weak nonlinearity, it does

not modify the leading, linear terms in the equation

for amplitude A1, but in general does modify the sub-

leading terms. The linear terms determine the stability

range of the zero solution, A1 = 0, under parametric

pumping, P2 6= 0. However, the subleading, nonlinear

terms are crucial for understanding the development

of the instability. Below we analyze the effect of the

higher harmonics on the EOM (12). Surprisingly, we

find that their effect does not modify the functional

form of this equation for A1 but only modifies its co-

efficients. This holds true also when one accounts for

higher-order contributions in amplitude P2.

An illustration of the flow in the phase space (the

plane of the complex amplitude A1) is shown in Fig. 3.

Before we proceed with the analysis, we note that

Eq. (12) allows one to find stationary solutions and

analyze their stability (see Fig. 2), as well as to study

tunnel rates between the states in the bistable regime

(illustrated in the insets). The latter are crucial quan-

tities for the description of the quantum measurement

using this detector [12].

3. EVOLUTION BEYOND THE
MONOCHROMATIC APPROXIMATION

The drive at frequency 2ω generates, in the first

place, oscillations at 2ω (in the linear response) and

ω (under parametric instability). Due to nonlineari-

ties these oscillations induce also a weaker response at

other multiple frequencies nω, |n| = 0, 3, 4, . . . This re-

sponse should be self-consistently taken into account in

order to derive the dynamics of the first harmonics in

higher orders (due to nonlinear effects). In this section

we perform this derivation.
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Fig. 3. Velocity field for the dynamics in the plane of the

complex amplitude A1, governed by Eq. (12) and shown for

a circuit with the quality factor Q = ωC/G = 25, phase

bias ϕ0 = 50◦, and detuning ξ = −0.045. The five red dots

indicate stationary solutions and are arranged symmetrically:

the stable zero state, A1 = 0, in the middle, two degenerate

non-zero states A+ with a relative π-shift on the outside, and

two degenerate π-shifted unstable solutions A− between them.

The red separatrix lines passing through the unstable solutions

A
(π)
− and A

(0)
− delimit the basins of attraction for three stable

states, A
(π)
+ , 0, and A

(0)
+ . During the evolution, fast relaxation

towards the bottom of the valley connecting all five stationary

states (green line) is followed by subsequent slow dynamics

along this green line [12]

Let us derive the EOM for the amplitudes of all

harmonics, induced by the 2ω-drive. We assume that

the resulting oscillations are almost 2π-periodic, and

the phase variable can be represented in the following

form:

x =

+∞∑

n=−∞

An(τ)e
−inτ , (13)

where the amplitudes An(τ) are slowly varying func-

tions on the scale of the oscillation period, τ = 2π,

so that the Fourier transform of x(τ) contains only fre-

quencies close to integers. Since x is a real variable, the

complex amplitudes An satisfy the relation A−n = A∗n.

Below we derive the EOM for the complex ampli-

tudes An(τ). We find that the dynamics of A±1 is

slower than that of the amplitudes with n 6= ±1, which

allows us to find them as functions of A±1 in the adi-

abatic approximation. Thus we derive a closed EOM

for complex amplitudes A±1.

3.1. Quasi-stationary values of higher

harmonics

To proceed with the derivation, we start with

Eq. (1) for x in the form (13). Assuming small values

of the parameters ξ, θ, and P2 and a small amplitude

of oscillations, A≪ 1, we find that

(1 − n2)An − 2inȦn + Än =

= (ξ+2inθ)An+(χ2x
2+χ3x

3−χ4x
4)n+

3

2
P2δn,±2 ,

(14)

where the last term on the rhs enters only the equa-

tion for n = ±2, and the subscript n in the previous,

higher-order term indicates that the nth term in the

full Fourier series is taken, for instance,

(χ2x
2)n ≡ χ2

∞∑

k=−∞

AkAn−k.

This equation can be rewritten as a system of separate

equations for each harmonic,

−2inȦn + Än = Dn({Am}), n = 0,±1,±2..., (15)

where the rhs of (15) is given by

Dn({Am}) = (n2 − 1 + ξ + 2inθ)An+

+ (χ2x
2 + χ3x

3 − χ4x
4)n +

3

2
P2δn,±2 , (16)

and each Dn depends on all harmonics {Am} with pos-

itive and negative m due to nonlinear terms on the rhs.

Under the assumption that the amplitudes An(τ)

are slow, the first term dominates on the lhs of Eq. (14)

for all harmonics with n 6= ±1. All these harmon-

ics relax or average out sufficiently fast (as compared

to the dynamics of A1) to their instantaneous quasi-

stationary values determined by A1. These values can

be deduced from the conditions Dn({Am}) = 0 for all

n 6= ±1. We remark that strictly speaking the higher

harmonics evolve at frequencies of order 1, which com-

plicates separation into the modes in Eq. (13). How-

ever, when these higher harmonics are fixed to their

quasi-stationary values, their dynamics just slowly fol-

low that of A1, and that is sufficient for our purposes.

Thus, the amplitudes An6=±1 as functions of A±1
and P2 can be deduced from the condition that Dn = 0

for all n 6= ±1, which amounts to solving the self-

consistent equations

An =
−1

n2 − 1 + ξ + 2inθ
×

×
[
(χ2x

2 + χ3x
3 − χ4x

4)n +
3

2
P2δn,±2

]
. (17)
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The resulting expressions for An6=±1 in terms of A±1
should then be substituted to Eq. (14) with n = 1 to

find the EOM for the amplitude A1 (and its conjugate

A−1 = A∗1).

3.2. Hamiltonian form of EOM and gauge

invariance

Before proceeding with the derivation, let us remark

that the final equations turn out to be Hamiltonian (ex-

cept for the dissipative θ-term, like in Eq. (12)). On

one hand, the Hamiltonian form of the equation can

be justified before the derivation; on the other hand, it

constrains the form of the final equation.

Indeed, one can start from the Hamiltonian equa-

tions for position x(t) and the corresponding momen-

tum p(t) and derive equations of motion for A1(τ) by

first changing x, p for the harmonics An and then inte-

grating out all harmonics except A±1. This would give

an effective Hamiltonian H(A1, A
∗
1) for A1 and the cor-

responding evolution equation,

Ȧ1 =
i

2

∂H

∂A∗1
. (18)

The fact, that H is real, implies the following

most general form of the lowest-order terms in the

Hamiltonian

H(A1, A
∗
1) = ξ|A1|2 −

χ2P2

2

[
A2

1 + (A∗1)
2
]
+

+
3

2
χ3|A1|4 + 2χ4P2|A1|2

[
A2

1 + (A∗1)
2
]
+

+ νP 2
2

[
A4

1 + (A∗1)
4
]
, (19)

where |A1|2 = A∗1A1. The symmetry properties that

we discuss in this section leave the coefficients in this

Hamiltonian undetermined, and they need to be found

by other means. However, our notations for these co-

efficients are in agreement with Eq. (12), see below.

Indeed, Eq. (19) includes all possible terms up to

the 4-th order in A1, which are real and ‘gauge invari-

ant’, i. e., invariant under a time translation. It implies

that A1 → A1e
iψ , A∗1 → A∗1e

−iψ, P2 → P2e
2iψ (since

P2 is the second harmonic). Note, however, that all

our equations are written in the gauge, where P2 is

real, whereas in general we could write, for instance,

the second term on the rhs as (χ2/2)P
∗
2A

2
1 + h.c.

All the coefficients in Eq. (19), ξ, χ2, χ3, χ4, and ν

are functions of P2. Because of the gauge invariance,

the expansions in small P2 for the second and fourth

terms (proportional to χ2 and χ4, respectively) begin

with P2, while for the last term (∝ ν) it begins with P 2
2

— hence it is small and appears only in higher orders.

In fact, it does not appear in our low-order derivation,

and is irrelevant for weak pumping P2.

One can see that Hamiltonian (19), without the last,

high-order term, gives rise to EOM of the form (12).

So, the Hamiltonian nature of the equations and their

‘gauge invariance’ imply that the corrections due to

higher harmonics or higher-order terms in the pump-

ing amplitude P2 do not change the functional form

of the equation for A1. Moreover, they also explain

why the last two terms in Eq. (12) include the same

coefficients χ4: indeed, they stem from two conjugate

components of the χ4-term in Hamiltonian (19).

It is noteworthy that the effective Hamiltonian(19)

for the basic harmonic A1 is analogous to the effective

potential for Kapitza’s inverted pendulum [3].

3.3. Corrections due to higher harmonics

To find the coefficients in Hamiltonian (19) to the

leading order in P2, we solve the set of equations (17).

To the lowest order in A1 and P2 a few first harmonics

are found to be

A0=2χ2|A1|2+
(
1

3
χ2
2 −

3

2
χ3

)
[P2A

2
1 + c.c.]+. . . , (20)

A2=−1

2
P2−

1

3
χ2A

2
1+

(
7

12
χ2
2 + χ3

)
P2|A1|2+. . . , (21)

A3=
1

8
χ2P2A1 +

(
1

12
χ2
2 −

1

8
χ3

)
A3

1 + . . . , (22)

where «. . . » stands for terms of higher order in A1.

In particular, the first term on the rhs of Eq. (20) de-

scribes an additional drive-dependent phase offset due

to rectification of harmonic oscillations by quadratic

nonlinearity. The harmonics An of higher order |n| > 3

do not contribute to the relevant terms of the EOM for

A1, and we further neglect corrections of order ξ and

θ. Substituting Eqs. (20)–(22) into Eq. (14) for n = 1

and keeping only terms up to third order in A1, we find

the EOM for A1 of the same form as Eq. (12),

Ȧ1 = −
(
θ − i

ξ̃

2

)
A1 −

i

2
χ̃2P2A

∗
1 +

3i

2
χ̃3|A1|2A1+

+ iχ̃4P2(3|A1|2A∗1 +A3
1) , (23)

with the modified coefficients (marked by the tilde

sign),
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Fig. 4. Effective nonlinear coefficients χ2 (blue), χ3 (dashed

green), and χ̃3 (red) vs. phase bias ϕ0 for βL = 0.5; since

they are 2π-periodic, only one full period is shown. Due to

corrections beyond the monochromatic approximation, the ef-

fective Kerr coefficient χ̃3 is negative in a shorter range of

ϕ0-values around π than χ3. The phase bias ϕ0 is determined

by the external flux Φe (dotted line, right scale); for βL < 1

the dependence ϕ0(Φe) is single-valued, and the whole range

of phase bias ϕ0 is accessible

χ̃3 = χ3 +
10

9
χ2
2 , (24)

χ̃4 = χ4 −
15

16
χ2χ3 +

7

24
χ3
2 , (25)

while ξ̃ = ξ and χ̃2 = χ2 to the lowest order in P2.

Using expressions (5) for χ2, χ3, and χ4 via the phase

bias ϕ0, we find

χ̃3 ≈ ℓ

6
+

5

18
(ℓ tanϕ0)

2, (26)

χ̃4 ≈ ℓ tanϕ0

192
[7(ℓ tanϕ0)

2 − 15ℓ+ 8] , (27)

since ω̄ ≈ 1 near resonance. Note that Eq. (24) is in

agreement with the expression derived by Nayfeh [38].

According to Landau and Lifshitz [3] this result can be

interpreted as an extra correction to the resonant fre-

quency of the anharmonic oscillator due to quadratic

nonlinearity.

For the rf-SQUID-based circuit (PDBR-1b), the be-

havior of the effective Kerr nonlinearity χ̃3 in (24) is

illustrated in Fig. 4. Similar to χ2, its sign varies with

the phase bias ϕ0, which can be controlled via the flux

Φe applied to the SQUID loop. At the Kerr-free points,

χ̃3 = 0 (red dot in Fig. 4), various phenomena based

on pure three-wave mixing may be realized [16, 39, 40].

4. OTHER BIFURCATION DETECTORS

We now comment on the EOM for other bifurcation

readout devices, such as the JBA (either in the conven-

tional configuration with a dc-current-biased Josephson

junction in Fig. 1 a, or in the rf-SQUID configuration

in Fig. 1 b) and the PDBR-2 (based on a parametri-

cally driven nonlinear resonator including a dc-SQUID

shown in Fig. 1 c). For the JBA, similar analysis yields

an equation, reminiscent of Eq. (12),

Ȧ1 = −
(
θ − i

ξ

2

)
A1+

3i

2

(
χ3 +

10

9
χ2
2

)
|A1|2A1+

i

2
P1 ,

(28)

where we keep only lowest-order terms, essential for the

description of the resonance peak. Here the drive term

iP1/2 is induced by near-resonant pumping, used in the

operation of the JBA. One can see that, as expected,

the modified coefficient χ̃3 is again given by Eq. (24)

derived for the PDBR-1, since it does not contain any

details of the drive. Without this modification Eq. (28)

coincides with (the low-order terms of) the respective

equation for the JBA in the monochromatic approx-

imation [20], while the modification generally gives a

substantial correction.

Both circuits in Figs. 1 a and 1 b can also be oper-

ated in the JBA regime. In the latter case, the cor-

rection manifests itself in a shift of the Kerr-free points

toward π and the corresponding narrowing of the inter-

val with negative χ̃3, see Fig. 4. JBA with a negative

Kerr nonlinearity was demonstrated [41] in a supercon-

ducting Nb coplanar-waveguide λ/2-resonator with an

rf-SQUID embedded in the central conductor [40]. In

this case, the resonance curve exhibits a characteristic

positive slope.

Finally, we also consider the evolution equation for

the PDBR-2 with a parametric driving ∝ P ′2x,

ẍ+ x = ξx− 2θẋ+ χ2x
2 + χ3x

3−
− χ4x

4 + P ′2x cos 2τ . (29)

In this case, analysis, similar to that performed above

for PDBR-1, yields an EOM for the amplitude A1 in

the form

Ȧ1 = −
(
θ − i

ξ

2

)
A1 +

i

4
P ′2A

∗
1 +

+
3i

2

(
χ3 +

10

9
χ2
2

)
|A1|2A1 −

− i

32

(
χ3 +

14

3
χ2
2

)[
P ′2
∗
A3

1 + 3P ′2|A1|2A∗1
]
. (30)
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This equation was derived to the lowest orders in the

amplitudes of the oscillations and the drive, A1 and

P ′2, respectively. The second term (∝ P ′2) on the rhs of

this equation induces parametric excitation similarly to

the second term (∝ χ2P2) on the rhs of Eq. (12) orig-

inating from down-conversion of the drive in PDBR-1.

Note that Eq. (30) also satisfies the constraints, set by

the Hamiltonian nature of the non-dissipative terms.

5. DISCUSSION

In summary, we demonstrated the important role

played by weak higher harmonics (with n = 0 and

|n| ≥ 2) in the dynamics of the basic oscillations

(n = ±1) of a nonlinear resonator. Nonlinearities

create these higher harmonics from the basic oscilla-

tions and couple them back to the evolution of the

basic harmonic. We demonstrated that the equations

of motion for the basic harmonic are of Hamiltonian

nature (except the dissipative and noise terms), simi-

lar to the effective-potential description of the Kapitza

inverted pendulum [3]. Time-translation invariance

strongly limits the functional form of the Hamiltonian.

The low-order terms in the Hamiltonian and dynami-

cal equations are given by Eq. (23) for PDBR-1 (the

period-doubling bifurcation readout with a current-

biased junction, Fig. 1 a, or an rf-SQUID, Fig. 1 b), by

Eq. (30) for PDBR-2 (PDBR in an dc-SQUID configu-

ration of Fig. 1 c), and Eq. (28) for JBA, respectively.

These results allow for accurate analysis of the station-

ary states and transitions between them, when control

parameters of the circuit are varied. The relevant anal-

ysis of the Fokker-Planck equation and the switching

process for PDBR-1, which defines the characteristics

of this quantum detector, can be found in Ref. [12].

This analysis demonstrated that the PDBR has prop-

erties comparable to those of the JBA, and for some

parameter regimes exceeding those of the JBA. We

emphasize that the corrections beyond the monochro-

matic approximation that we found in this article, are

essential for the quantitative description of various bi-

furcation quantum detectors, proposed and applied for

readout of Josephson qubits.

We point out that nonlinear coefficients in these bi-

furcation readout circuits crucially depend on the bias

point and can be efficiently tuned via the dc control

current or external magnetic flux. This flexibility may

be used for improving sensitivity and other character-

istics of the bifurcation readout devices. For example,

remarkable properties of the rf-SQUID-based bifurca-

tion circuit (PDBR-1b) allow one to tune the Kerr co-

efficient to a small value and ensure a sufficiently steep

slope of the parametric resonance curve, which may no-

tably improve resolution in reading out a qubit state.

We analyzed various bifurcation regimes using a

lumped-element model of nonlinear resonant circuits.

Experimentally, practical advantages, such as con-

venient control of the quality factor and a simple

coplanar-waveguide design, were demonstrated in a

cavity bifurcation amplifier (CBA) [11]. CBA is based

on a cavity-type superconducting microwave resonator

with an embedded nonlinear element, which in its turn

is integrated with a qubit. Its behavior is normally

described within the monochromatic approximation by

an equivalent lumped-element circuit with effective pa-

rameters [1]. This model, however, is valid only in the

vicinity of the fundamental resonant frequency of the

microwave-driven cavity. For higher oscillating modes,

parameters of equivalent resonant circuits differ for

each mode [42], and thus analysis of the effect of these

modes on the CBA requires modifications of the devel-

oped approach. In particular, dynamical equations for

the modes are coupled via nonlinear terms. For cavity-

based PDBR circuits, such as a coplanar-waveguide

λ/2-resonator with an embedded rf-SQUID [40], anal-

ysis beyond the monochromatic (single-mode) approx-

imation is particularly important because in this case

the microwave drive is normally almost in resonance

with the λ-mode. Moreover, modifications of the res-

onator design toward strong coupling between the λ/2-

and λ-modes [40] enabled observation of the period-

doubling regime at sufficiently weak microwave drive

amplitudes. We leave the analysis of this case for a

subsequent investigation.
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