Journal of Experimental and Theoretical Physics
HOME | SEARCH | AUTHORS | HELP      
Journal Issues
Golden Pages
About This journal
Aims and Scope
Editorial Board
Manuscript Submission
Guidelines for Authors
Manuscript Status
Contacts


ZhETF, Vol. 147, No. 2, p. 240 (February 2015)
(English translation - JETP, Vol. 120, No. 2, p. 210, February 2015 available online at www.springer.com )

DYNAMICS OF EXCITED INSTANTONS IN THE SYSTEM OF FORCED GURSEY NONLINEAR DIFFERENTIAL EQUATIONS
Aydogmus F.

Received: July 13, 2014

DOI: 10.7868/S0044451015020054

DJVU (420.8K) PDF (2819.3K)

The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the ``Heisenberg dream''. In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.

 
Report problems