ZhETF, Vol. 139,
No. 3,
p. 539 (March 2011)
(English translation - JETP,
Vol. 112, No. 3,
p. 469,
March 2011
available online at www.springer.com
)
LONG-TIME RELAXATION PROCESSES IN THE NONLINEAR SCHRÖDINGER EQUATION
Ovchinnikov Yu.N., Sigal I.M.
Received: June 30, 2010
The nonlinear Schrödinger equation, known in low-temperature physics as the Gross-Pitaevskii equation, has a large family of excitations of different kinds. They include sound excitations, vortices, and solitons. The dynamics of vortices strictly depends on the separation between them. For large separations, some kind of adiabatic approximation can be used. We consider the case where an adiabatic approximation can be used (large separation between vortices) and the opposite case of a decay of the initial state, which is close to the double vortex solution. In the last problem, no adiabatic parameter exists (the interaction is strong). Nevertheless, a small numerical parameter arises in the problem of the decay rate, connected with an existence of a large centrifugal potential, which leads to a small value of the increment. The properties of the nonlinear wave equation are briefly considered in the Appendix A.
|
|