Journal of Experimental and Theoretical Physics
HOME | SEARCH | AUTHORS | HELP      
Journal Issues
Golden Pages
About This journal
Aims and Scope
Editorial Board
Manuscript Submission
Guidelines for Authors
Manuscript Status
Contacts


ZhETF, Vol. 118, No. 6, p. 1463 (December 2000)
(English translation - JETP, Vol. 91, No. 6, p. 1268, December 2000 available online at www.springer.com )

МНОЖЕСТВЕННОЕ ДРОБЛЕНИЕ ВОЛНОВЫХ ПАКЕТОВ В НЕЛИНЕЙНОЙ СРЕДЕ С НОРМАЛЬНОЙ ДИСПЕРСИЕЙ ГРУППОВОЙ СКОРОСТИ
Литвак А.Г., Миронов В.А., Шер Э.М.

Received: May 22, 2000

PACS: 42.65.Tg, 42.25.Bs, 42.65.Re

Рассмотрены особенности динамики самовоздействия волнового поля, описываемой нелинейным уравнением Шредингера (НУШ) с гиперболическим пространственным оператором. Проведено аналитическое исследование характерных режимов самовоздействия, связанных с пространственной конкуренцией самофокусировочного сжатия волнового пакета в одном направлении и дефокусировки в другом. Проанализированы начальные распределения волнового поля с целью использования их при численном моделировании для иллюстрации особенностей самовоздействия. Показано, что в эволюции локализованных распределений можно выделить три этапа: самофокусировочную филаментацию волнового поля в поперечном направлении, сжатие и последующее дробление в дефокусирующем (продольном) направлении. Наиболее сильные неоднородности возбуждаются при автомодельном схлопывании волнового поля к гиперболам (характеристикам гиперболического оператора НУШ). Отдельно рассмотрена стабилизация развития неустойчивости дробления.

 
Report problems