# АТОМНАЯ И ЭЛЕКТРОННАЯ СТРУКТУРА ДЕФЕКТНЫХ КОМПЛЕКСОВ $N_i$ И ВАКАНСИЙ КИСЛОРОДА В $HfO_2$ И ИХ ВЛИЯНИЕ НА ТРАНСПОРТ ЗАРЯДА В МЕМРИСТОРАХ

 $T. \, B. \, \Pi$ еревалов  $a^*, \, \mathcal{A}. \, P. \, \mathit{Исламов}^{a,b}, \, A. \, A. \, Чернов <math>a,b$ 

<sup>а</sup> Институт физики полупроводников им. А. В. Ржанова Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

<sup>b</sup> Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 17 сентября 2025 г., после переработки 17 октября 2025 г. Принята к публикации 27 октября 2025 г.

Работа посвящена теоретическому исследованию в рамках теории функционала плотности атомной и электронной структуры дефектных комплексов, образованных атомами никеля и кислородными вакансиями в  $HfO_2$ . Рассматриваются как Ni в междоузельной позиции, так и в позиции замещения Hf. Показано, что Ni облегчает образование кислородных вакансий и их кластеризацию. Локализация носителей заряда происходит преимущественно на кислородных вакансиях, тогда как никель оказывает косвенное влияние на транспорт заряда. Комплексы никеля и вакансий кислорода не формируют мелких ловушек. Показано, что филаментарные структуры в виде непрерывных металлических цепочек в  $HfO_2$  не обладают металлической проводимостью.

## **DOI:** 10.7868/S3034641X25120124

## 1. ВВЕДЕНИЕ

Несмотря на прогресс в области разработки резистивной (мемристорной) памяти (RRAM), основанной на обратимом изменении сопротивления диэлектрической пленки при воздействии импульса напряжения, коммерчески доступные чипы на этой технологии пока имеют небольшую емкость [1]. Основными проблемами на пути повышения емкости RRAM являются нестабильность параметров и разброс характеристик от устройства к устройству [1]. Решение этих проблем требует глубокого понимания физических процессов, происходящих в диэлектрическом слое. Резистивное переключение происходит за счет разрыва и восстановления в диэлектрическом слое проводящего филамента, который формируется в результате первого переключения устройства в низкоомное состояние (т.н. формовка) [2]. Состав и структура филамента все еще являются предметом исследований, направленных на оптимизацию и повышение надежности мемристоров, а также на реализацию аналоговых переключений и нейроморфные вычисления [2, 3].

В качестве активного слоя мемристорных металл-диэлектрик-металл структур наиболее технологичным материалом является оксид гафния, поскольку он сочетает совместимость с технологией комплементарных металл-оксидполупроводниковых (КМОП) процессов, высокую диэлектрическую проницаемости, а также химическую и термическую стабильность [4]. Одним из популярных материалов электродов в мемристорах на основе HfO<sub>2</sub> является Ni, благодаря его относительно низкой стоимости и хорошей адгезии к оксидным слоям [5-24]. Использование Ni в качестве электрода в RRAM на основе HfO<sub>2</sub> демонстрирует ряд достоинств: окно памяти  $\sim 10^3$ [5-11], улучшенная воспроизводимость и однородность переключений по сравнению с электродами из Pt, TiN, Та и Cu [12,13], а также совместимость с 3D-интеграцией при использовании Ni в качестве межсоединений [14-17]. Однако роль Ni в резистивном переключении остается предметом дискуссий.

<sup>\*</sup> E-mail: timson@isp.nsc.ru

В работах [13, 18–20] утверждается, что филамент в структурах металлический и формируется из атомов Ni, мигрирующих из электрода, тогда как авторы исследований [11, 21, 22] для аналогичных структур придерживаются модели филамента из вакансий кислорода ( $V_O$ ) в оксиде гафния. В работе [10] предлагается схема переключения с участием и Ni, и  $V_O$  в зависимости от полярности напряжения на Ni электроде. В работах [6, 8] предполагается, что роль Ni ограничивается формированием интерфейсного слоя NiO $_x$  на границе Ni/HfO $_2$ .

Ni-филаменты обычно связывают с униполярным переключением RRAM [10, 13, 16, 18–20], а V<sub>O</sub>филаменты — с биполярным [8,11,21], однако в работе [14] оба типа переключения объясняются формированием Vo. Исследуемые в работах [11, 22–24] механизмы транспорта заряда в мемристорах на основе Ni/HfO2 объединяет установленные факты о транспорте заряда по дефектам, предположительно V<sub>O</sub>, формирующим ловушки с энергией ионизации порядка нескольких сотен мэВ. Однако VO в HfO<sub>2</sub> являются глубокими ловушками с энергий активации около 1 эВ [25, 26]. Естественно предположить, что в роли мелких ловушек могут выступать комплексы из атомов Ni, продиффундировавших в оксид, и вакансий (поливакансий) кислорода. Исследований, позволяющих установить возможность образования таких дефектов, на данный момент не проводилось.

Исследование влияния Ni в матрице HfO2 на атомную и электронную структуру VO является актуальной задачей для разрешения вышеописанных разногласий. Эффективным инструментом для решения этой задачи является квантово-химическое моделирование. Существующие теоретические исследования HfO<sub>2</sub>, легированного Ni, сильно ограничены [19, 27-30]. По данным расчетов, Ni может инжектироваться в виде ионов  $Ni^{+2}$  в  $HfO_2$ под действием электрического поля и температуры, облегчает формирование Vo, обуславливает рост плотности электронных состояний вблизи уровня Ферми. Результаты работ [27-29] указывают на то, что Ni способствует формированию филаментов в HfO<sub>2</sub> с транспортом заряда по дефектным комплексам Ni-Vo.

Целью настоящей работы является установление с помощью квантово-химического моделирования атомной и электронной структуры дефектных комплексов из атомов Ni (замещающего и междо-узельного) и вакансий кислорода в  $HfO_2$ , их способности формировать мелкие ловушки для носителей заряда и участвовать в транспорте заряда.

#### 2. МЕТОДИКА

Моделирование осуществлялось в рамках спинполяризованной теории функционала плотности (ТФП) в модели периодических ячеек с гибридным обменно-корреляционным функционалом HSE06 в программном пакете Quantum ESPRESSO [31]. Оптимизация структуры выполнялась с обменнокорреляционным функционалом PBEsol. Моделировался HfO<sub>2</sub> в моноклинной фазе, являющейся наиболее стабильной и близкой по физическим свойствам к аморфной фазе. Расчеты проводились с использованием оптимизированных сохраняющих норму псевдопотенциалов Вандербильта и энергии отсечки плосковолнового базиса 1088 эВ (80 Ry). Используемая методика дает корректное значение ширины запрещенной зоны (5.8 эВ) m-HfO<sub>2</sub> [32]. Дефектные комплексы моделировались в 96- и 192-атомных суперячейках HfO<sub>2</sub> с атомом  $N_{i}$  в междоузельной позиции ( $N_{int}$ ), а также с замещением одного Hf на Ni (Ni<sub>sub</sub>). Структуры HfO<sub>2</sub> с замещением О на Ni не рассматривались, т.к. они релаксируют в  $Ni_{int} + V_O$ . Положение  $\mathrm{Ni}_{int}$  находилось перебором потенциальных междоузельных позиций и выбором такой, для которой энергия системы минимальна. Энергии формирования  $(E_{form})$  Ni<sub>int</sub> и Ni<sub>sub</sub> рассчитывались по следующим формулам:

$$E_{form}(\text{Ni}_{int}) = E(\text{Ni}_{int}) - E_p - \mu(\text{Ni}),$$

$$E_{form}(\text{Ni}_{sub}) = E(\text{Ni}_{sub}) - E_p - \mu(\text{Ni}) + \mu(\text{Hf}),$$

$$\mu(\text{Ni}) = E(\text{NiO}) - \mu(\text{O}),$$

$$\mu(\text{Hf}) = E(\text{HfO}_2) - 2\mu(\text{O}).$$
(1)

Здесь  $E_p$  — энергия идеальной (бездефектной) суперячейки;  $E(\mathrm{Ni}_{int})$  и  $E(\mathrm{Ni}_{sub})$  — энергия суперячейки с  $\mathrm{Ni}_{int}$  и  $\mathrm{Ni}_{sub}$ , соответственно;  $\mu(\mathrm{Ni})$ ,  $\mu(\mathrm{Hf})$  и  $\mu(\mathrm{O})$  — химические потенциалы  $\mathrm{Ni}$ ,  $\mathrm{Hf}$  и  $\mathrm{O.}$   $\mu(\mathrm{O})$  рассчитывался в трех приближениях: так называемый «O-rich» предел, когда атом  $\mathrm{O}$  уходит из кристалла в вакуум, «O-poor1» предел, когда атом  $\mathrm{O}$  уходит из узла оксида на окисление  $\mathrm{Hf}$  (модель границы  $\mathrm{Hf}/\mathrm{HfO_2}$ ) и «O-poor2» предел, когда атом  $\mathrm{O}$  уходит из узла оксида на окисление  $\mathrm{Ni}$  (модель границы  $\mathrm{Ni}/\mathrm{HfO_2}$ ):

$$\mu(O)_{O\text{-rich}} = \frac{1}{2}E(O_2),$$

$$\mu(O)_{O\text{-poor}1} = \frac{1}{2}(E(HfO_2) - E(Hf)),$$

$$\mu(O)_{O\text{-poor}2} = E(NiO) - E(Ni).$$
(2)

Здесь  $E(O_2)$  — энергия молекулы кислорода в триплетном состоянии;  $E(HfO_2)$  и E(NiO) — энергии

структурных единиц  $\mathrm{HfO}_2$  и  $\mathrm{NiO};\ E(\mathrm{Hf})$  и  $E(\mathrm{Ni})$  — энергии атомов  $\mathrm{Hf}$  и  $\mathrm{Ni}$  в соответствующем металле.

Для каждой из структур  $HfO_2$ :Ni устанавливалось энергетически выгодное (с наименьшей  $E_{form}$ ) положение от 1 до 5  $V_O$  путем расчета всех возможных конфигураций.  $E_{form}$  каждой последующей  $V_O$  в  $HfO_2$ :Ni рассчитывалась для двух зарядовых состояний (q=0,+2), как наиболее стабильных [33], по формуле

$$E_{form}(\mathbf{V}_{\mathbf{O}}^q) = E_d(\mathbf{V}_{\mathbf{O}}^q) - E_{init} + \mu(\mathbf{O}) + q(E_v + E_F + \Delta V),$$

где  $E_{init}$  и  $E_d(V_O^q)$  — полные энергии суперячейки без и с дополнительной  $V_O$ , соответственно;  $E_v$  — расчетное значение энергии потолка валентной зоны кристалла без дополнительной  $V_O$ ;  $E_F$  — уровень Ферми относительно  $E_v$ ;  $\Delta V$  — поправка, необходимая для выравнивания  $E_v$  кристаллов с  $V_O$  и без. Интерес к положительно заряженным системам обусловлен тем, что именно  $E_{form}(V_O^{+2})$  имеет минимальное значение. Это косвенно указывает на преимущественную генерацию  $V_O^{+2}$  в оксидном слое RRAM структуры при инжекции в него дырок из металла с достаточно большой работой выхода.

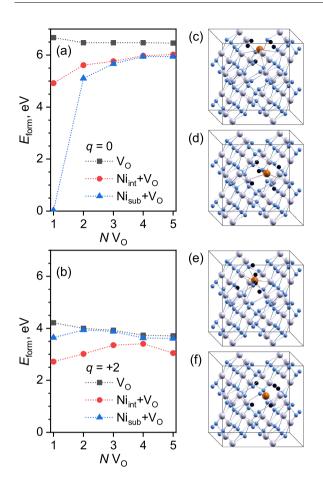
Энергии ловушки оценивались, как выигрыш в энергии при захвате электрона  $\Delta E_e$  со дна зоны проводимости объемного кристалла и дырки  $\Delta E_h$  с потолка валентной зоны на дефект по стандартным формулам [34]:

$$\Delta E_{e/h} = (E_p^{-1/+1} + E_d^{-1/+1}) - (E_p^0 + E_d^0).$$

Здесь  $E_p$  и  $E_d$  — полная энергии исходной и дефектной суперячейки, соответственно, а верхние индексы обозначают полный заряд суперячейки.

# 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

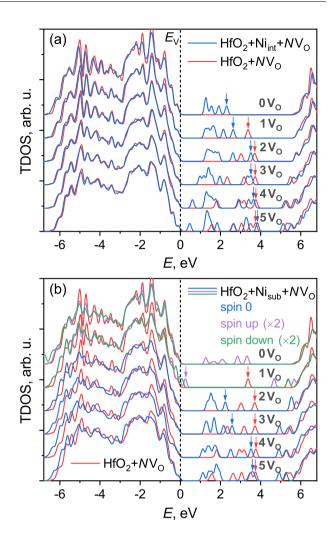
В результате проведенного моделирования выявлено, что  $E_{form}(\mathrm{Ni}_{sub})$  меньше, чем  $E_{form}(\mathrm{Ni}_{int})$  в случае объема стехиометрического  $\mathrm{HfO_2}$  (O-rich предел) и для границы  $\mathrm{Ni/HfO_2}$  (О-poore2), однако для границы  $\mathrm{Hf/HfO_2}$  (или сильно обедненного кислородом  $\mathrm{HfO_2}$ ) значительно выгоднее формирование  $\mathrm{Ni}_{int}$  (см. таблицу). Важно отметить, что термодинамическая выгодность  $\mathrm{Ni}_{sub}$  не гарантирует преимущественного образования этого типа дефектов, поскольку энергетический барьер процесса формирования  $\mathrm{Ni}_{sub}$  очевидно выше, чем для  $\mathrm{Ni}_{int}$ , ввиду необходимости удаления атома  $\mathrm{Hf}$  из узла. Естественно ожидать, что в мемристорах на основе структур  $\mathrm{Ni/HfO_2}$  превалируют именно  $\mathrm{Ni}_{int}$ 


**Таблица.** Значения  $E_{form}$  (в эВ)  $\mathrm{Ni}_{int}$  и  $\mathrm{Ni}_{sub}$  в m-HfO<sub>2</sub> и m-HfO<sub>2</sub> + V<sub>O</sub>, рассчитанные для трех значений химического потенциала  $\mu(\mathrm{O})$  (2)

|                          | O-rich     |            | O-poor1    |            | O-poor2    |            |
|--------------------------|------------|------------|------------|------------|------------|------------|
|                          | $Ni_{int}$ | $Ni_{sub}$ | $Ni_{int}$ | $Ni_{sub}$ | $Ni_{int}$ | $Ni_{sub}$ |
| $0 \text{ V}_{\text{O}}$ | 6.2        | 3.1        | 0.6        | 8.7        | 5.1        | 4.2        |
| $1 \text{ V}_{\text{O}}$ | 2.8        | -5.7       | -2.8       | -0.1       | 1.7        | -0.1       |

дефекты, и это согласуется с результатами предшествующих расчетов [35]. Однако о возможности формирования именно  $\mathrm{Ni}_{sub}$  свидетельствуют экспериментальные данные для легированного никелем  $\mathrm{HfO}_2$  [36]. Также отметим, что в приведенной таблице большую ценность имеют именно относительные значения  $E_{form}$ , тогда как абсолютные имеют зависимость от расчетной модели и методики.

Установлено, что  $E_{form}$  для  $\mathrm{Ni}_{int}$  и  $\mathrm{Ni}_{sub}$  существенно уменьшается при добавлении в кристалл  $\mathrm{V_O}$  (см. таблицу). Это однозначно указывает на то, что в реальных структурах  $\mathrm{Ni}$  преимущественно локализуется вблизи  $\mathrm{V_O}$ . Отрицательные значения  $E_{form}(\mathrm{Ni}_{sub})$  вблизи  $\mathrm{V_O}$  для любых значений  $\mu(\mathrm{O})$  свидетельствуют об энергетической выгодности замещения  $\mathrm{Hf}$  на  $\mathrm{Ni}$ . Это объясняется тем, пара электронов от  $\mathrm{V_O}$ , которые заполняют глубокий уровень в запрещенной зоне  $\mathrm{HfO_2}$ , уходит на пустые состояния вблизи потолка валентной зоны, появляющиеся в результате такого замещения. Таким образом, в случае  $\mathrm{Ni}_{sub}$   $\mathrm{V_O}$  дважды положительно заряжена  $(\mathrm{V_O^{+2}})$ , тогда как в случае  $\mathrm{Ni}_{int}$   $\mathrm{V_O}$  нейтральна.


Наличие Ni в кристалле как в междоузельной позиции, так и в позиции замещения уменьшает энергию формирования 1-5 кислородных вакансий, причем с ростом числа вакансий влияние Ni уменьшается (рис. 1). При этом все VO находятся вблизи атома Ni: среднее расстояние от Ni до положения удаленного атома О около 2 А. Данные утверждения справедливы и для ситуации наличия в системе двух дырок (q = +2). В данном случае расчеты осуществлялись только в O-rich пределе и при положении  $E_F$  посередине запрещенной зоны: другие случаи значений  $\mu(O)$  и  $E_F$  качественно не меняют полученные зависимости, влияя только на абсолютные значения. Как можно видеть, в случае  $Ni_{sub} E_{form}(V_O)$  близка к 0 (в случае O-poore предела  $E_{form}(V_O) < 0$ ). Это указывает на возможность самопроизвольной генерации VO за счет выталкивания атома из узла решетки в междоузлие. Ана-



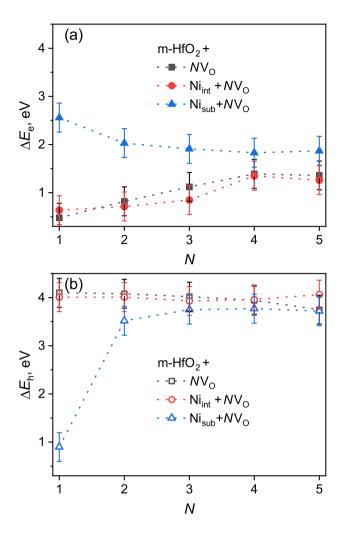
**Рис. 1.** Значения  $E_{form}$  1-й, 2-й, 3-й, 4-й и 5-й V $_{\rm O}$  в суперячейках HfO $_{\rm 2}$ , HfO $_{\rm 2}$  + Ni $_{int}$  и HfO $_{\rm 2}$  + Ni $_{sub}$  с зарядом q=0 (a) и q=+2 (b). Нейтральные (c,d) и заряженные (e,f) суперячейки HfO $_{\rm 2}$  + Ni $_{int}$  (c,e) и HfO $_{\rm 2}$  + Ni $_{sub}$  (d,f) с обозначением оптимального положения пяти V $_{\rm O}$ . Hf — серый цвет, O — голубой, Ni — оранжевый, V $_{\rm O}$ — черный

логичное поведение было продемонстрировано ранее для случая  $\mathrm{HfO}_2$ , легированного La [37]. Для нейтральных систем  $E_{form}(\mathrm{V_O})$  вблизи  $\mathrm{Ni}_{sub}$  незначительно меньше, чем вблизи  $\mathrm{Ni}_{int}$  (за исключением первой вакансии, которая в случае  $\mathrm{Ni}_{sub}$  является  $\mathrm{V_O^{+2}}$ ). Для систем с избыточным положительным зарядом, напротив,  $E_{form}$  заметно меньше для  $\mathrm{V_O}$  вблизи  $\mathrm{Ni}_{int}$ . Таким образом, присутствие  $\mathrm{Ni}$  в матрице  $\mathrm{HfO_2}$  облегчает генерацию не только вакансий кислорода, но и поливакансий, причем вблизи атома  $\mathrm{Ni}$ .

 ${
m Ni}_{int}$  в структуре  ${
m HfO}_2$  находится в нейтральном состоянии ( ${
m Ni}^0$ ), тогда как  ${
m Ni}_{sub}$  имеет степень окисления +4. Стабильность столь высокой степени окисления  ${
m Ni}^{4+}$  ранее была продемонстрирована для  ${
m ZrO}_2$  с  ${
m Ni}_{sub}$  ( ${
m ZrO}_2$  и  ${
m HfO}_2$  являются изоструктурными и изовалентными оксидами) и объясняет-

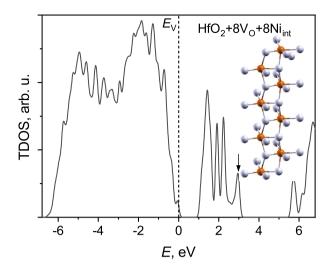


**Рис. 2.** Спектры TDOS:  $HfO_2$  и  $HfO_2+Ni_{int}$  с комплексами  $V_O$  (a), а также  $HfO_2$  и  $HfO_2+Ni_{sub}$  с комплексами  $V_O$  (b). Стрелками указано положение последнего заполненного уровня соответствующих структур. Ноль энергии отвечает положению  $E_v$ . Спектры сглажены функцией Гаусса с  $\sigma = 0.1$  эВ


ся сильным октаэдрическим полем ионов  $O^{2-}$ , значительно усиливающим расщепление d-уровней Ni [38]. Ni $_{int}$  обуславливает формирование в запрещенной зоне HfO $_2$  пяти заполненных уровней, а каждая дополнительная  $V_O$  добавляет еще по одному уровню, о чем свидетельствуют расчетные спектры полной плотности электронных состояний (TDOS) (рис. 2 a). Ni $_{int}$  является диамагнитный дефектом: спин системы в основном состоянии равен нулю. В кристалле с Ni $_{sub}$  без  $V_O$  и с одной  $V_O$  в запрещенной зоне наблюдаются только пустые дефектные уровни, при этом структура имеет отличную от нуля намагниченность: суммарный магнитный момент 4 и  $2 \mu$ Б, соответственно (рис. 2 b). Дефект

ный комплекс с большим числом вакансий кислорода (N>1) является диамагнитным. Спектр TDOS структуры  $Ni_{sub} + 1V_{O}$ , в частности, демонстрирует уход пары локализованных на глубоком уровне электронов от  $V_{\Omega}$  на уровни вблизи  $E_{v}$ . Дальнейшее добавление VO приводит к появлению набора заполненных уровней в запрещенной зоне. Ni<sub>sub</sub> сильнее меняет электронную структуру оксида, чем Ni<sub>int</sub>, что видно по изменению спектра TDOS. Для обоих типов структур  $HfO_2$ :Ni, как и для  $HfO_2$ , характерно то, что увеличение числа VO повышает плотность электронных состояний только в области примерно до  $4 \, \mathrm{sB}$  выше  $E_v$ . Дно зоны проводимости с ростом числа  $V_{\rm O}$  смещается в запрещенную зону не более чем на 0.8 эВ. Таким образом, кристалл HfO<sub>2</sub>:Ni с комплексом VO имеет полупроводниковую запрещенную зону около 1 эВ.

Энергии локализации электрона  $\Delta E_e$ , как и дырки  $\Delta E_h$ , на дефектных комплексах  $\mathrm{Ni}_{int}+N\mathrm{V_O}$  (N=1–5) практически совпадают с таковыми для комплексов  $N\mathrm{V_O}$  (рис. 3). Это указывает на то, что локализация заряда осуществляется на  $\mathrm{V_O}$ , а не  $\mathrm{Ni}$ . Положительные значения  $\Delta E_e$  и  $\Delta E_h$  свидетельствуют о возможной локализации и электронов, и дырок, однако в транспорте заряда могут участвовать только электроны, тогда как для дырок глубина потенциальной ямы слишком велика и, соответственно мала вероятность ионизации таких ловушек. Энергия локализации электрона на  $\mathrm{Ni}_{int}+N\mathrm{V_O}$  (как и на  $N\mathrm{V_O}$ ) увеличивается с ростом N, при этом  $\mathrm{Ni}_{int}+N\mathrm{V_O}$  (как и  $N\mathrm{V_O}$ ) не являются мелкими ловушками.

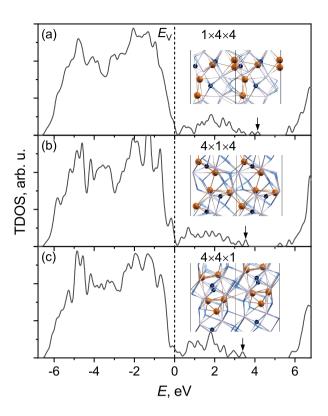

Комплексы  $Ni_{sub} + NV_O$  (N=1–5) являются заметно более глубокими ловушками для электрона, чем  $Ni_{int} + NV_O$  и  $NV_O$ . Для дырки дефектные комплексы  $Ni_{sub} + NV_O$  при N>1 также являются глубокими ловушками. Случай  $Ni_{sub} + 1V_O$  выделяется тем, что тут  $V_O$  имеет заряд +2, и дырка добавляется на обусловленный Ni уровень вблизи  $E_v$ . Таким образом, в транспорте заряда способны участвовать только комплексы  $Ni_{sub} + 1V_O$ , и этот транспорт дырочный, а энергия ловушки около 1 эВ.

Поскольку все расчеты проводились единообразно, то относительная точность расчетов  $\Delta E_e$  и  $\Delta E_h$  достаточно высока для получения надежных качественных результатов. Однако абсолютные значения включают в себя систематические ошибки метода, связанные с произволом выбора обменнокорреляционного функционала и псевдопотенциалов, а также с отсутствием учета разницы в энергии между вкладами от компенсирующего фонового заряда для дефектных и бездефектных суперячеек.



**Рис. 3.** Значения энергии локализации носителей заряда из объема  $HfO_2$  на дефектный комплекс  $NV_{\rm O}$  (черные символы),  $Ni_{int}+NV_{\rm O}$  (красные символы) и  $Ni_{sub}+NV_{\rm O}$  (синие символы): (a) для электрона, (b) для дырки. Разброс значений  $\pm 0.3$  эВ обусловлен систематической ошибкой метода

Величина абсолютной ошибки составляет не более  $0.3\,\mathrm{pB}$ , судя по анализу соответствующей литературы, и эта величина меньше, чем полученные значения  $\Delta E_e$  и  $\Delta E_h$  (рис. 3). Более того, основываясь на факте, что  $V_O$  в  $HfO_2$  является ловушкой с энергией около  $1\,\mathrm{pB}$  [25, 26], можно ожидать, что рассчитанные значения  $\Delta E_e$  получены заниженными. Таким образом, согласно проведенным расчетам, дефектные комплексы  $\mathrm{Ni}_{int}+N\mathrm{V}_O$  и  $\mathrm{Ni}_{sub}+N\mathrm{V}_O$  (N=1-5) не являются мелкими ловушками, ответственными за транспорт заряда в мемристорных структурах на основе  $\mathrm{Ni}/\mathrm{HfO}_2$ . Единственным возможным кандидатом на роль мелкой ловушки может выступать  $\mathrm{Ni}_{int}$  без  $\mathrm{V}_O$ , для которого получено  $\Delta E_e = -0.2\,\mathrm{pB}$ ,




**Рис. 4.** Спектры TDOS  $HfO_2$  с цепочкой из 8-ми  $V_O$  и 8-ми  $Ni_{int}$ . На вставке представлен фрагмент рассчитываемой 192-атомной суперячейки из атомов Ni и ближайших к ним Hf

при условии, что систематическая недооценка метода составляет 0.2–0.3 эВ. Данная гипотеза нуждается в проверке с привлечением более точных расчетных подходов.

В качестве возможной структуры филамента была рассмотрена линейная цепочка из 8 вакансий кислорода в 192-атомной суперячейке HfO<sub>2</sub>, в которую последовательно добавлялись от одной до 8 междоузельных атомов Ni в оптимальные по энергии позиции. Дефектный комплекс  $Ni_{int} + V_O$  в суперячейке формирует непрерывную цепочку из атомов металла –2Hf–Ni–, как можно видеть на вставке на рис. 4. Однако расчетный спектр TDOS данной структуры демонстрирует запрещенную зону шириной около 2 эВ. Следовательно, проводимость такой одномерной цепочки из атомов металла не является металлической. Поэтому транспорт в такой цепочке может быть рассмотрен как Марковские прыжки между состояниями локализованных носителей заряда на дефектах в диэлектрике для коротких цепочек [39] либо в рамках уравнения непрерывности для длинных цепочек дефектов в диэлектрике [40].

Установлено, что не только вакансиям кислорода выгодно кластеризоваться вблизи  $\mathrm{Ni}_{int}$ , но и для нескольких (от 1 до 3)  $\mathrm{Ni}_{int}$  энергетически предпочтительнее находиться вблизи  $\mathrm{V_O}$ . В связи с этим была рассчитана атомная и электронная структура  $\mathrm{HfO_2}$  с комплексами из  $\mathrm{V_O}$  и  $\mathrm{Ni}_{int}$ , причем с оптимальным по полной энергии положением  $\mathrm{Ni}_{int}$ . Расчеты осуществлялись для трех форм 192-атомных суперячеек, полученных трансляцией



**Рис. 5.** Спектры TDOS для суперячеек  $HfO_2$ , полученных различной трансляцией примитивной ячейки, содержащих по  $3\ V_O$  и  $5\ Ni_{int}$ : (a)  $1\times4\times4$ , (b)  $4\times1\times4$ , (c)  $4\times4\times1$ . На вставках соответствующие фрагменты суперячейки дважды транслированные: Ni — оранжевый цвет,  $V_O$  — черный

 $1 \times 4 \times 4$ ,  $4 \times 1 \times 4$  и  $4 \times 4 \times 1$  примитивной ячейки с целью формирования непрерывной Ni цепочки вдоль короткого края суперячейки. Установлено, что непрерывная цепочка из близко расположенных друг к другу Ni<sub>int</sub> получается в дефектных комплексах из трех V<sub>O</sub> и пяти Ni<sub>int</sub> в суперячейках с трансляциями  $1 \times 4 \times 4$  и  $4 \times 1 \times 4$  (рис. 5). Однако даже для такой модели филамента, представляющего собой непрерывную цепочку атомов Ni, в спектре плотности электронных состояний наблюдается запрещенная зона 1–2 эВ. Такая цепочка из Ni также не обладает металлической проводимостью. Однако такая цепочка может выступать в роли проводящего филамента, если взять в расчет высказанное выше предположение, что Ni<sub>int</sub> может выступать в роли мелкой ловушки.

## 4. ЗАКЛЮЧЕНИЕ

В настоящей работе с помощью моделирования в рамках  $T\Phi\Pi$  показано, что в  $HfO_2$  дефекты внедрения и замещения Ni образуют комплексы

с вакансиями кислорода: Ni облегчает формирование нескольких близко расположенных VO, тогда как сами V<sub>O</sub> - нескольких Ni<sub>int</sub>. Увеличение числа вакансий в дефектных комплексах приводит к уменьшению ширины запрещенной зоны до ~ 1 эВ. Показано, что локализация носителей заряда в комплексах  $Ni_{int} + NV_{O}$  осуществляется на вакансиях, т.е.  $Ni_{int}$  в таких комплексах непосредственно в транспорте заряда не участвует. В случае  $Ni_{sub}$ в транспорте может участвовать только комплекс  $Ni_{sub} + 1V_{O}$ , причем это дырочный транспорт. Показано, что  $Ni_{int} + NV_O$  и  $Ni_{sub} + NV_O$  (N = 1-5) не формируют мелких ловушек, ответственных за транспорт заряда в мемристорах. Однако высказано предположение, требующее подтверждения, что мелкими ловушками для электронов являются изолированные атомы Ni<sub>int</sub>. Филаментарные дефектные структуры в виде комплексов из нескольких  $Ni_{int}$  и  $V_O$ , которые образуют непрерывные цепочки из атомов металла (Ni-Hf и Ni-Ni), могут являться проводящими каналами, однако с неметаллическим типом проводимости. Важно отметь, что этот результат относится к модельному объекту, тогда как объемные дефектные комплексы толщиной порядка 1 нм, характерные для филаментов в реальных RRAM-элементах, в данной работе не исследовались. Таким образом, согласно выполненным модельным расчетам, основная роль Ni в объеме HfO<sub>2</sub> состоит в облегчении генерации вакансий кислорода и их кластеризации, тогда как Ni слабо влияет на транспорт заряда по этим вакансиям, незначительно снижая энергию ловушки для электронов.

**Благодарности.** Квантово-химическое моделирование осуществлялось на вычислительном кластере ИВЦ НГУ.

Финансирование. Работа выполнена при поддержке Российского научного фонда, грант № 24-19-00650.

# ЛИТЕРАТУРА

- M. Hellenbrand, I. Teck, and J. L. MacManus-Driscoll, MRS Communications 14, 1099 (2024).
- И. В. Бойло, К. Л. Метлов, ЖЭТФ 168, 569 (2025)
   I. V. Boylo and K. L. Metlov, JETP 141 (2025)
- D. Ielmini and G. Pedretti, Chem. Rev. 125, 5584 (2025).
- Z. Wang, H. Wu, G. W. Burr et al., Nat. Rev. Mat. 5, 173 (2020).

- 5. D. Y. Lu, X. A. Tran, H. Y. Yu et al., in 2013 IEEE 10th International Conference on ASIC (ASICON 2013), Shenzhen, China (2013), p. 1.
- **6.** X. A. Tran, H. Y. Yu, Y. C. Yeo et al., IEEE Electron Device Lett. **32**, 396 (2011).
- **7**. K. Zhang, K. Sun, F. Wang et al., IEEE Electron Device Lett. **36**, 1018 (2015).
- 8. X. A. Tran, W. Zhu, W. J. Liu et al., IEEE Transactions on Electron Devices 60, 391 (2012).
- 9. M. B. Gonzalez, J. Martin-Martinez, M. Maestro et al., IEEE Transactions on Electron Devices 63, 3116 (2016).
- A. Rodriguez-Fernandez, S. Aldana, F. Campabadal et al., IEEE Transactions on Electron Devices 64, 3159 (2017).
- M. J. Yun, D. Lee, S. Kim et al., Mater. Character. 182, 111578 (2021).
- **12**. X. P. Wang, Z. Fang, Z. X. Chen et al., IEEE Electron Device Lett. **34**, 508 (2013).
- **13**. K. L. Lin, T. H. Hou, J. Shieh et al., J. App. Phys. **109**, 084104 (2011).
- J. J. Huang, Y. M. Tseng, C. W. Hsu, and T. H. Hou, IEEE Electron Device Lett. 32, 1427 (2011).
- K. Lahbacha, F. Zayer, H. Belgacem et al., IEEE Open J. Nanotechnol. 2, 111 (2021).
- **16**. F. Zayer, K. Lahbacha, W. Dghais et al., in 2019 IEEE 23rd Workshop on Signal and Power Integrity (SPI), Chambéry, France (2019), p. 1.
- 17. Z. Fakhreddine, K. Lahbacha, A. Melnikov et al., IEEE Transactions on Electron Devices 68, 88 (2020).
- X. Wu, S. Mei, M. Bosman et al., Advan. Electronic Mater. 1, 1500130 (2015).
- Y. Yin Chen, G. Pourtois, C. Adelmann et al., Appl. Phys. Lett. 100, 113513 (2012).
- M. B. Gonzalez, J. M. Rafí, O. Beldarrain et al., IEEE Transactions on Device and Mater. Reliability 14, 769 (2014).
- 21. H. H. Le, W. C. Hong, J. W. Du et al., in 2020 4th IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Penang, Malaysia (2020), p. 1.
- V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mater. Res. Express 6, 076411 (2019).

- M. B. Gonzalez, J. Martin-Martinez, M. Maestro et al., IEEE Transactions on Electron Devices 63, 3116 (2016).
- 24. В. А. Воронковский, А. К. Герасимова, В. III. Алиев, Письма в ЖЭТФ 117, 550 (2023) [V. A. Voronkovskii, А. K. Gerasimova, and V. Sh. Aliev, JETP Lett. 117, 546 (2023)].
- **25**. V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, Physics Reports **613**, 1 (2016).
- A. Kumar, S. Mondal, and K. S. R. Koteswara Rao, J. Appl. Phys. 135, 045305 (2024).
- E. A. Khera, H. Ullah, M. Imran et al., Surface Rev. Lett. 28, 2150039 (2021).
- E. A. Khera, H. Ullah, M. Imran et al., Optik 212, 164677 (2020).
- R. Sharma, S. A. Dar, and A. K. Mishra, J. Alloys and Compounds 791, 983 (2019).
- K. Zhong, G. Xu, J. M. Zhang et al., Mater. Chem. Phys. 174, 41 (2016).
- I. Carnimeo, F. Affinito, S. Baroni et al., J. Chem. Theory and Computation 19, 6992 (2023).

- E. Hildebrandt, J. Kurian, and L. Alff, J. Appl. Phys. 112, 114112 (2012).
- **33**. Y. Guo and J. Robertson, Microelectronic Engineering **147**, 339 (2015).
- **34**. D. Munoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, Phys. Rev. B **75**, 205336 (2007).
- D. Duncan, B. Magyari-Köpe, and Y. Nishi, Phys. Rev. Appl. 7, 034020 (2017).
- E. Hildebrandt, M. B. Yazdi, J. Kurian et al., Phys. Rev. B 90, 134426 (2014).
- **37**. T. V. Perevalov and D. R. Islamov, Comp. Mater. Sci. **233**, 112708 (2024).
- **38**. D. H. Douma, L. T. Poaty, A. Lamperti et al., Beilstein J. Nanotechnol. **13**, 975 (2022).
- A. A. Pil'nik, A. A. Chernov, and D. R. Islamov, Sci. Rep. 11, 10163 (2021).
- A. A. Pil'nik, A. A. Chernov, and D. R. Islamov, Sci. Rep. 10, 15759 (2020).