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1. INTRODUCTION

We consider two types of integrable field theories
on 1+1 dimensional space-time. The first one is the
Landau – Lifshitz model [1], describing behaviour of the
magnetization vector S(t, x) = (S1, S2, S3) in the one-
dimensional model of ferromagnet:

∂tS = S× Sxx + S× J(S) , Sxx = ∂2xS , (1.1)

where J(S) = (J1S1, J2S2, J3S3) with some constants
J1, J2, J3 describing the anisotropy. Here t ∈ R is the
time variable, and x is the space variable. We assume x
be a coordinate on a unit circle, and all the fields in this
paper are periodic ψ(t, x) = ψ(t, x + 2π). We also im-
ply that all the fields are C-valued. Integrability of this
model was proved in [2,3] through the classical inverse
scattering method [4–7]. In particular, it was shown
that the equation (1.1) is represented in the for of the
Zakharov – Shabat equation (or, the Lax equation, or
the zero curvature condition):

∂tU(z)− k∂xV (z) + [U(z), V (z)] = 0 , ∀z , (1.2)

where U(z), V (z) ∈ Mat2 are 2 × 2 matrices, z is a
complex valued spectral parameter and k ∈ R is a
parameter.

* E-mail: kantemir.atalikov@yandex.ru
** E-mail: zotov@mi-ras.ru

The second model is the field generalization of
2-body elliptic Calogero – Moser system [8–10]. At
the level of classical finite-dimensional mechanics the
2-body system is described by the Hamiltonian

HCM =
p2

2
− c2

8
℘(q) (1.3)

and the canonical Poisson bracket {p, q} = 1 between
the momentum p and the position of particle1) q. In
(1.3) c ∈ C is a coupling constant and ℘(q) is the ellip-
tic Weierstrass ℘-function. It is an elliptic version for
the inverse square function. All necessary definition of
elliptic functions are given in the Appendix. In the field
theory the Hamiltonian takes the form [8–10]

H2dCM =
1

2

∮
dx

(
p2
(
1− k2q2x

c2

)
+

+
(3k2q2x − c2)

4
℘(q)− k4q2xx

4(c2 − k2q2x)

)
, (1.4)

where c is the coupling constant and ζ(u) the elliptic
Weierstrass ζ-function, see Appendix. In this model we
deal with the canonical fields p(x) and q(x) on a unit
circle:

{p(x), q(y)} = δ(x− y).

1) In fact, there is a pair of particles. The Hamiltonian (1.3)
is written in the center of mass frame, so that q = q1 − q2. For
this reason the normalization of the Hamiltonian slightly differs
in 2-body case compared to N-body case.
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It was explained in [9, 10] and then computed in
[11] that the Landau – Lifshitz model is gauge equiva-
lent to the field Calogero – Moser system. This means
that there exists a matrix G(z) ∈ Mat2, which re-
lates U -matrices of both models through the gauge
transformation:

ULL(z) = G(z)U 2dCM(z)G−1(z) + kGx(z)G
−1(z) .

(1.5)

The matrix G(z) depends on dynamical variables. It is
a continuous version of the IRF-Vertex transformation
introduced by R.J. Baxter [12] for the quantum statis-
tical models. In this treatment the Landau – Lifshitz
model is of the vertex type, while the Calogero – Moser
system is on the IRF (interacting round a face) side.

Purpose of the paper. In this paper we generalize
the above results to the higher rank models. The glN
Calogero – Moser model [13–16] in classical mechanics
is described by N -body Hamiltonian

HCM =
N∑

i=1

p2i
2

− c2
N∑

i>j

℘(qi − qj) , (1.6)

Its field generalization was proposed in [17] using re-
duction from matrix KP equations, and the integrabil-
ity was proved in [18] through the classical r-matrix
structure. We describe this model in detail in Sect. 3.
The higher rank generalization if the Landau – Lifshitz
model was derived in [19] through the associative Yang-
Baxter equation. It is also described in Sect. 3. Two
models are related by the gauge transformation as given
in (1.5). The matrix of the corresponding gauge trans-
formation is a continuous version of the IRF-Vertex
transformation for Belavin’s R-matrix found in [20].
Moreover, in [18] the continuous version of the IRF-
Vertex transformation was performed at the level of
classical r-matrix structures for both field theories.
Main purpose of this paper is to finish description of
the gauge equivalence by evaluating explicit change of
variables relating both integrable field theories. Similar
results for the rational and trigonometric models were
obtained in our previous papers [11, 21].

The paper is organized as follows. In the next Sec-
tion we recall main results for gl2 models from [22]. The
pair of models in the higher rank case are described in
Sect. 3. In Sect. 4 we calculate explicit change of vari-
ables and argue that is provides the Poisson map be-
tween the models. Definitions and properties of elliptic
functions are given in the Appendix.

2. AN OVERVIEW OF 2-BODY CASE

Here we briefly recall the result of [22]. Namely , we
describe the field analogue of 2-body Calogero – Moser
model and represent it in the form of the Landau – Lif-
shitz magnet.

Classical mechanics. The 2-body Calogero – Moser
model is described by the Hamiltonian (1.3). Equations
of motion take the form

ṗ =
c2

8
℘′(q), q̇ = p . (2.1)

They are represented in the Lax form

L̇CM(z) ≡ {HCM, LCM(z)} = [LCM(z),MCM(z)]
(2.2)

with the Lax pair

LCM(z) =


 p

c

2
φ(−z, q)

c

2
φ(−z,−q) −p


 ,

MCM(z) =
1

4

(
0 cf(−z, q)

cf(−z,−q) 0

)
,

(2.3)

where the functions φ and f are given in the Appendix
in (A.1) and (A.6) respectively.

1+1 field theory. In this case the momentum and
coordinate become fields on a unit circle S1, and the
canonical Poisson bracket turns into

{p(x), q(y)} = δ(x− y) . (2.4)

Equations of motion takes the form:

qt = p

(
1− k2q2x

c2

)
,

pt = −k
2

c2
∂x
(
p2qx

)
− (3k2q2x − c2)

8
℘′(q)+

+
3k2

4
∂x (qx℘(q)) +

k4

4
∂x

(
qxxxν̃ − ν̃xqxx

ν̃3

)
,

(2.5)

where
ν̃ =

√
c2 − k2q2x , c = const , (2.6)

U 2dCM(z) =
1

2




2p− kqxE1(z) ν̃φ(−z, q)

ν̃φ(−z,−q) −2p+ kqxE1(z)


.

(2.7)
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Landau –Lifshitz magnet. By inserting three com-
ponents of S(t, x) into the traceless 2× 2 matrix

S =

3∑

α=1

σαSα

in the Pauli matrices σα basis, the Landau – Lifshitz
equation takes the form

∂tS = [J(S), S]− α0 [S, Sxx] , Sxx = ∂2xS , (2.8)

where J(S) is the linear map describing the anisotropy
in the magnet

J(S) =
3∑

α=1

SαJασα , Jα = −1

2
℘(ωα), (2.9)

and
α0 = k2/(8λ2) (2.10)

is a constant parameter. Here λ ∈ C (also constant) is
an eigenvalue of the matrix S – the norm of the vector
(S1, S2, S3), and k is the constant coefficient behind ∂x.

The Landau – Lifshitz equation (2.8) has the Hamil-
tonian formulation with the Poisson brackets

{Sα(x), Sβ(y)} = −
√
−1εαβγSγ(x)δ(x − y) , (2.11)

and the Hamiltonian

HLL =
1

2

∮
dx
(
tr(SJ(S))− α0tr(S

2
x)
)
. (2.12)

The U -matrix (it is 2 × 2 matrix) entering the Za-
kharov – Shabat equation has the form [2–4,23, 24]:

ULL(z) =

3∑

k=1

Skϕk(z)σk , (2.13)

where

ϕ1(z) = eπızφ
(
z,
τ

2

)
, ϕ2(z) = eπızφ

(
z,

1 + τ

2

)
,

ϕ3(z) = φ

(
z,

1

2

)
.

Gauge equivalence. The gauge transformation
(1.5) with the matrix

G(z) =
1

ρ
×

×




θ00(z + q | 2τ)ν̃ −θ00(q − z | 2τ) (c+ kqx)

−θ10(z + q | 2τ)ν̃ θ10(q − z | 2τ) (c+ kqx)


 ,

(2.14)

where ν̃ is from (2.6) and

ρ =
√
ν̃(c+ kqx)ϑ(z)ϑ(q) , (2.15)

leads to the following change of variables:

S1(p, q, c) =
(
p− c

2

k2qxx
c2 − k2q2x

)θ01(0)
ϑ′(0)

θ01(q)

ϑ(q)
+

+
c

2

θ201(0)

θ00(0)θ10(0)

θ00(q)θ10(q)

ϑ2(q)
,

S2(p, q, c) =
(
p− c

2

k2qxx
c2 − k2q2x

)√−1θ00(0)

ϑ′(0)

θ00(q)

ϑ(q)
+

+
c

2

√
−1θ200(0)

θ10(0)θ01(0)

θ10(q)θ01(q)

ϑ2(q)
, (2.16)

S3(p, q, c) =
(
p− c

2

k2qxx
c2 − k2q2x

)θ10(0)
ϑ′(0)

θ10(q)

ϑ(q)
+

+
c

2

θ210(0)

θ00(0)θ01(0)

θ00(q)θ01(q)

ϑ2(q)
.

In the above formulae the notations (A.5) are used.

3. N -BODY CASE: DESCRIPTION OF MODELS

3.1. Field analogue of N-body elliptic

Calogero – Moser model

Hamiltonian and equations of motion. The N -
body Calogero – Moser model in classical mechanics is
described by the Hamiltonian (1.6). Its field general-
ization was derived in [17]. The Hamiltonian takes the
form

H2dCM =

∮
dxH2dCM(x) (3.1)

with the density2)

H2dCM(x)=

N∑

i=1

p2i (c−kqix)−
1

Nc

(
N∑

i=1

pi (c−kqix)
)2

−

−
N∑

i=1

k4q2ixx
4 (c− kqix)

+
k3

2

N∑

i6=j

(
qixqjxx−qjxqixx

)
ζ(qi−qj)−

−1

2

N∑

i6=j

(
(c−kqix)2 (c− kqjx)+(c−kqix) (c−kqjx)2 −

−ck2 (qix − qjx)
2
)
℘ (qi − qj) . (3.2)

2) In the limit to the finite-dimensional mechanics all the fields
become independent of x. This corresponds to the limit k → 0.
In this limit H2dCM(x) → 2cHCM.
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Together with the canonical Poisson structure

{qi(x), pj(y)} = δ(x − y) ,

{qi(x), qj(y)} = {pi(x), pj(y)} = 0
(3.3)

it provides equations of motion

q̇i = 2pi (c− kqix)−
2

Nc

N∑

l=1

pl (c− kqlx) (c− kqix)

(3.4)

and

ṗi = −2kpipix + k∂x

( k3qixxx
2 (c− kqix)

+
k4q2ixx

4 (c− kqix)
2+

+
2

Nc

N∑

l=1

pipl(c−kqlx)
)
+2

N∑

j:j 6=i

(
k3qjxxxζ (qi−qj)−

−3k2(c−kqjx) qjxx℘ (qi−qj)+(c−kqjx)3 ℘′ (qi−qj)
)
.

(3.5)

U–V pair. The equations of motion (3.5) are repre-
sented in the Zakharov – Shabat form (1.2) with N×N
matrices U 2dCM(z) and V 2dCM(z). The entries of the
matrices are as follows:

U 2dCM

ij (z)=δij

(
− pi+

1

N

N∑

k=1

pk−α2
iE1(z)−

kαix

αi

)
−

− (1− δij)α
2
jφ (qj − qi, z)

(3.6)

and

V 2dCM

ij (z)=δij

(
−qitE1 (z)−Ncα2

i℘ (z) + m̃0
i −

αit

αi
−

− 1

N

N∑

i=1

m̃0
i

)
−(1−δij)α2

j

(
NcE1(z)φ (−qi + qj , z)−

−Ncφ′ (−qi + qj , Nz)− m̃ijφ (−qi + qj , z)
)
. (3.7)

Here we use notations

α2
i = kqix − c , (3.8)

m̃0
i = p2i +

k2αixx

αi
+ 2κpi −

N∑

k:k 6=i

( (
2α4

k + α2
iα

2
k

)
×

×℘ (qi − qk) + 4kαkαkxζ (qi − qk)
)
, (3.9)

m̃ij = pi + pj + 2κ+
kαix

αi
− kαjx

αj
−

−
N∑

k:k 6=i,j

α2
kη (qi, qk, qj) , (3.10)

η(λ, ν, µ) = ζ(λ − ν) + ζ(ν − µ)− ζ(λ − µ) (3.11)

and

κ = − 1

Nc

N∑

k=1

pk (c− kqkx) . (3.12)

3.2. Higher rank Landau – Lifshitz model

Notations. Introduce the special matrix basis in
Mat(N,C):

Ta = Ta1a2 = exp
(πı
N
a1a2

)
Qa1Λa2 ,

a = (a1, a2) ∈ ZN × ZN , ZN = Z/NZ ,

(Q)kl = δkl exp(
2πı

N
k) ,

(Λ)kl = δk−l+1=0 mod N , k, l = 1, .., N .

(3.13)

The basis matrices are numerated by a pair of numbers
(a1, a2), a1, a2 = 0, ..., N − 1 defined modulo N . In
particular, T(0,0) = 1N – identity N ×N matrix. Then

TαTβ = κα,βTα+β , κα,β = exp
(πı
N

(β1α2 − β2α1)
)
.

(3.14)

The basis has the property tr(TαTβ) = Nδα+β,(0,0).
See details in the Appendix of the paper [25]. Below
we use the following set of functions:

ϕa(z, ωa + ~) = exp(2πı
a2z

N
)φ(z, ωa + ~) =

= exp(2πız∂τωa)φ(z, ωa + ~) , a ∈ ZN × ZN ,

(3.15)

where

ωa =
a1 + a2τ

N
, a ∈ ZN × ZN . (3.16)

The classical elliptic Belavin-Drinfeld r-matrix [26]
takes the following simple form:

r12(z) = E1(z)1N ⊗ 1N+

+
∑

a 6=(0,0)

Ta ⊗ T−a exp(2πı
a2z

N
)φ(z,

a1 + a2τ

N
) ,

(3.17)

where the sum over a goes over all a ∈ ZN × ZN ,
a 6= (0, 0). We use this notation in what follows.

Notice that the described above matrix basis repro-
duces (up to signs) the Pauli matrices in the N = 2

case.
The transition between the standard matrix basis

and the basis Ta is performed as follows. Let B be an
arbitrary N × N matrix with entries Bij in the stan-
dard basis and with B(a1,a2) components in the basis
Ta. Then with the short notation e(x) = exp(2πıx) we
have

Ba = B(a1,a2) =
1

N
tr(BT−a) =
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=
1

N
e(−a1a2

2N
)

N∑

k=1

Bk,k+a2 e(−
a1k

N
) (3.18)

and

Bij =





N−1∑

a1=0

B(a1,j−i)e
(a1(i + j)

2N

)
, j ≥ i ,

N−1∑

a1=0

B(a1,j−i+N)e
(a1(i+ j −N)

2N

)
, j < i .

(3.19)

Equations of motion and Hamiltonian formula-

tion. In glN case the Landau – Lifshitz equation (2.8)
is generalized as [19]:

∂tS = 2c[S, J(S)] +
k2

c
[S, Sxx]− 2k[S,E(Sx)] ,

(3.20)

where S = S(t, x) ∈ Mat(N,C) is a matrix of dynam-
ical variables (fields). Here we assume this matrix is
not an arbitrary but the one, which has a special set of
eigenvalues 0, .., 0, c:

Spec(S) = (0, ..., 0, c), tr(S) = c . (3.21)

The latter means that S is a rank one matrix. It satis-
fies the property

S2 = cS . (3.22)

The linear maps J(S) and E(S) entering equation
(3.20) are of the following form:

J(S) =
Nϑ′′′(0)

3ϑ′(0)
1NS(0,0)−

−N
∑

a 6=(0,0)

TaSaE2

(a1 + a2τ

N

)
=

=
Nϑ′′′(0)

3ϑ′(0)
S −N

∑

a 6=(0,0)

TaSa℘
(a1 + a2τ

N

)
(3.23)

and

E(S) = N
∑

a 6=(0,0)

TaSa

(
2πı

a2
N

+ E1

(a1+a2τ
N

))
.

(3.24)

Notice that in the N = 2 case E(S) = 0 for any matrix
S and the original Landau – Lifshitz equation (2.8) is
reproduced.

The equation (3.20) has the Hamiltonian descrip-
tion, that is

∂tS(t, x) = {S(t, x),HLL} (3.25)

with the following Hamiltonian

HLL =

∮
dxHLL(x) , (3.26)

HLL(x) = Nctr(SJ(S))− Nk2

2c
tr (∂xS∂xS)+

+Nktr (∂xSE(S)) (3.27)

and the Poisson brackets

{Sij(x), Skl(y)} =
1

N
(Sil(x)δkj − Skj(x)δil) δ(x− y) .

(3.28)

U–V pair. It is helpful to use the following notation

L(S, z) = tr2

(
r12(z)(1N ⊗ S)

)
= NS0,0E1(z)1N+

+N
∑

a 6=(0,0)

TaSaϕa (z, ωa) , (3.29)

where tr2 is the trace over the second tensor component
and r12(z) is the classical elliptic r-matrix (3.17). The
above expression, in fact, is the Lax matrix of the ellip-
tic Euler – Arnold top [9,10,27,28] in finite-dimensional
classical mechanics. Equations of motion for this model
Ṡ = 2c[S, J(S)] are obtained from (3.20) in the limit
k → 0. It was also explained in [9,10] that the U -matrix
in the field theory case has the same form

ULL(z) = L(S, z) (3.30)

although here we imply S = S(t, x), while in mechanics
S = S(t). For V -matrix we have

V LL(z) = V1(z)− cV2(z) +
Nc2ϑ′′′(0)

3ϑ′(0)
1N , (3.31)

where

V1(z) = −Nc∂zL(S, z) + L(E(S)S, z) (3.32)

and

V2(z) = L (W, z) , W = − k

c2
[S, Sx] . (3.33)

The matrix W is a solution of the equation
−k∂xS = [S,W ].

4. IRF-VERTEX RELATION AND CHANGE OF
VARIABLES

Gauge equivalence. Let us introduce the following
matrix:

G(z) = b(x, t)Ξ(z, q)D−1(q) ∈ Mat(N,C) , (4.1)
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where the matrix Ξ(z) and the diagonal matrix D(q)

are defined as follows:

Ξij(z, q) = θ

[
i/N − 1/2

N/2

]
(z +Nq̄j | Nτ) , (4.2)

q̄j = qj −
1

N

N∑

k=1

qk ,

Dij(q) = δij
∏

k 6=i

ϑ (qi − qk) .

(4.3)

The coefficient function b(x, t) in (4.1) has the form

b(x, t) =

N∏

k<l

ϑ (ql − qk)
1
N

N∏

m=1

(
N (kqm,x − c)

) 1
2N

.

(4.4)

In the above formulae the condition (which is by defi-
nition of q̄j)

N∑

k=1

q̄k = 0 (4.5)

is necessary. The defined above matrix G(z) is (up
to the function b(x, t)) the matrix of the IRF-Vertex
transformation [9, 10, 18, 20].

The reason why we use this matrix is as follows. The
U -matrices for both models have certain quasi-periodic
behaviour in spectral parameter:

U 2dCM(z + 1) = U 2dCM(z) ,

U 2dCM(z + τ) = exp(2πı diag(q1, ..., qN ))U 2dCM(z)×

× exp(−2πı diag(q1, ..., qN )− 2πıc1N+

+2πık∂xdiag(q1, ..., qN ) (4.6)

and

ULL(z + 1) = Q−1ULL(z)Q ,

ULL(z + τ) = Λ−1ULL(z)Λ− 2πıc1N ,

(4.7)

where Q,Λ are the matrices from (3.13). The matrix
G(z) has very special structure. The action by G(z) as
in the gauge transformation

ULL(z) = G(z)U 2dCM(z)G−1(z) + kGx(z)G
−1(z)

(4.8)

maps the quasi-periodic properties (4.6) into (4.7). On
the one hand, the matrix G(z) is degenerated at z = 0:
detG(0) = 0, that is G−1(z) has simple pole at z = 0.

On the other hand, the conjugation of U 2dCM(z) by
G(z) does not provide the second order pole in ULL(z).
Details can be found in [9, 10] for a similar relation at
the level of classical finite-dimensional mechanics. See
also [29], where different aspects of the transformation
matrix G(z) are discussed.

Change of variables. The gauge transformation
(4.8) relates both U -matrices. It allows to compute
explicit change of variables between the models. For
any a = (a1, a2) ∈ ZN × ZN we have

Sa(p, q, c)=
c

N
δa,(0,0)+(−1)a1+a2

eπıa2ωa

N2

(
ϑ (ωα)

ϑ′(0)

)N

×

×
N∑

m=1

(
Pm + c

∑

k:k 6=m

E1(qmk + ωa)
)
×

×
N∏

l:l 6=m

ϕa (qm − ql, ωa) , (4.9)

where ωa is from (3.16) and

Pm = −pm − kαm,x

αm
+

N∑

l:l 6=m

α2
lE1 (qm − ql) =

= −pm − 1

2

k2qm,xx

kqm,x − c
+

N∑

l:l 6=m

(kql,x − c)E1 (qm − ql) .

(4.10)

Using (3.19) one can write the formulae (4.9) in the
standard matrix basis as well.

Poisson map. The statement that the obtained
change of variables provides the Poisson map between
two models means that the canonical Poisson brackets
(3.3) are mapped into the Lie-Poisson brackets (3.28).
Put it differently, the Poisson brackets for Sij(p, q, c)

computed by means of (3.3) should reproduce (3.28).
In fact, this statement was implicitly obtained in

[18]. It was proved that the field analogue of the el-
liptic Calogero – Moser model is described by the non-
ultralocal Maillet type r-matrix structure

{U 2dCM

1 (z, x), U 2dCM

2 (w, y)} =
(
− k∂xr12(z, w|x)+

+[U 2dCM

1 (z,x),r2dCM

12 (z,w|x)]−[U 2dCM

2 (w,y),r2dCM

21 (w,z|x)]
)
×

×δ(x− y)−
(
r2dCM

12 (z, w|x) + r2dCM

21 (w, z|x)
)
kδ′(x− y) ,

(4.11)
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where the classical r-matrix r2dCM

12 (z, w|x) is very sim-
ilar to its finite-dimensional version3). At the same
time the classical r-matrix structure for the Landau –
Lifshitz model is

{ULL

1 (z, x), ULL

2 (w, y)} =
(
[ULL

1 (z, x), rLL

12(z, w|x)]−

−[ULL

2 (w, y), rLL

21(w, z|x)]
)
δ(x− y) , (4.12)

where rLL

12(z, w|x) is the elliptic non-dynamical r-matrix
(3.17). It was shown in [18] that the gauge transforma-
tion (4.8) transforms (4.11) into (4.12). This is exactly
what we need since (3.28) follows from (4.12).

Existence of the classical r-matrix structures for
both models means the Poisson commutativity

{tr(T k(z, 2π)), tr(Tm(w, 2π))} = 0

for the corresponding monodromy matrices

T (z, x) = Pexp

(
1

k

x∫

0

dy U(z, y)

)
. (4.13)

Due to the gauge equivalence the monodromies of both
models are equal to each other. This provides relation
between the Hamiltonians. Exact relation is as follows:

H2dCM(x) = HLL(x)− N2c3ϑ′′′(0)

3ϑ′(0)
. (4.14)

This relation was verified numerically. Its direct proof
will be given elsewhere.
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APPENDIX.
ELLIPTIC FUNCTIONS

We actively use the elliptic Kronecker function:

φ(z, u) =
ϑ′(0)ϑ(z + u)

ϑ(z)ϑ(u)
= φ(u, z) ,

Res
z=0

φ(z, u) = 1 , φ(−z,−u) = −φ(z, u) ,
(A.1)

where ϑ(z) is theta-function:

ϑ(z) = ϑ(z, τ) ≡ −θ
[

1/2

1/2

]
(z| τ) , (A.2)

3) Similar results are also known for the field analogue of the
spin generalization of the Calogero –Moser systems and other 2d
models [30–32].

θ

[
a

b

]
(z| τ) =

∑

j∈Z

exp

(
2πı(j + a)2

τ

2
+

+2πı(j + a)(z + b)

)
, Im(τ) > 0 . (A.3)

By definition, ϑ(z) in (A.2) is the first Jacobi theta
function:

θ1(u|τ) = ϑ(u, τ) = −i
∑

k∈Z

(−1)kq(k+
1
2 )

2

eπi(2k+1)u ,

(A.4)

q = eπiτ .

Relation to the standard Riemann and Jacobi notations
is as follows:

θ

[
1/2

0

]
(z, τ) = θ10(z) = θ2(z) ,

θ

[
0

0

]
(z, τ) = θ00(z) = θ3(z) , (A.5)

θ

[
0

1/2

]
(z, τ) = θ01(z) = θ4(z) .

The derivative f(z, u) = ∂uφ(z, u) is given by

f(z, u) = φ(z, u)(E1(z + u)− E1(u)),

f(−z,−u) = f(z, u)

(A.6)

in terms of the first Eisenstein function:

E1(z) =
ϑ′(z)

ϑ(z)
= ζ(z) +

z

3

ϑ′′′(0)

ϑ′(0)
,

E2(z) = −∂zE1(z) = ℘(z)− ϑ′′′(0)

3ϑ′(0)
,

(A.7)

E1(−z) = −E1(z) , E2(−z) = E2(z) , (A.8)

where ℘(z) and ζ(z) are the Weierstrass functions. The
second order derivative f ′(z, u) = ∂2uφ(z, u) is

f ′(z, u) = φ(z, u)
(
℘(z)− E2

1(z) + 2℘(u)−

−2E1(z)E1(u) + 2E1(z + u)E1(z)
)
=

= 2
(
℘(u)− ρ(z)

)
φ(z, u) + 2E1(z)f(z, u) , (A.9)

where

ρ(z) =
E2

1(z)− ℘(z)

2
. (A.10)
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The defined above functions satisfy the widely known
addition formulae:

φ(z1, u1)φ(z2, u2) = φ(z1, u1 + u2)φ(z2 − z1, u2)+

+φ(z2, u1 + u2)φ(z1 − z2, u1) , (A.11)

φ(z, u1)φ(z, u2) = φ(z, u1 + u2)
(
E1(z) + E1(u1)+

+E1(u2)− E1(z + u1 + u2)
)
, (A.12)

φ(z, u1)f(z, u2)− φ(z, u2)f(z, u1) =

= φ(z, u1 + u2)
(
℘(u1)− ℘(u2)

)
, (A.13)

φ(z, u)φ(z,−u) = ℘(z)− ℘(u) = E2(z)− E2(u) ,
(A.14)

φ(z, u)f(z,−u)− φ(z,−u)f(z, u) = ℘′(u) . (A.15)

Also, the following two identities are useful:

1

2

℘′(z)− ℘′(w)

℘(z)− ℘(w)
= ζ(z + w)− ζ(z)− ζ(w) =

= E1(z + w)− E1(z)− E1(w) (A.16)

and
(
ζ(z + w)− ζ(z)− ζ(w)

)2
= ℘(z) + ℘(w) + ℘(z + w) .

(A.17)
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