ПРОГНОЗИРОВАНИЕ ИНТЕРФЕЙСНЫХ ПЛОСКОСТЕЙ И ДЕФОРМАЦИЙ РЕШЕТКИ В СИСТЕМЕ Fe₃Si//α-FeSi₂//Si ДЛЯ РОСТА АНИЗОТРОПНЫХ МАГНИТНЫХ НАНОСТРУКТУР

М. А. Высотин^{а,b*}, И. А. Тарасов^а, Н. В. Лутошкина^с, А. С. Федоров^{а,b},

С. Н. Варнаков^а, С. Г. Овчинников^{а,b}

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

^b Сибирский федеральный университет 660041, Красноярск, Россия

^с Сибирский университет науки и технологий 660037, Красноярск, Россия

Поступила в редакцию 5 марта 2025 г., после переработки 5 марта 2025 г. Принята к публикации 31 марта 2025 г.

Интерфейсные плоскости и ориентационные соотношения между ферромагнитным силицидом Fe₃Si и кремнием были спрогнозированы в рамках кристалло-геометрического подхода. Показана возможность образования атомарно гладкого интерфейса между Fe₃Si и подложками Si(001) и Si(111), а также α -FeSi₂(001). На основе анализа ориентационных соотношений в системе Fe₃Si/ α -FeSi₂//Si предложен способ выращивания отдельно стоящих нанокристаллов Fe₃Si на подложках Si(001) и Si(111) с помощью нанокристаллов α -FeSi₂ в качестве буферного слоя. В зависимости от типа подложки и параметров роста буферного слоя кристаллическая решетка нанокристаллов Fe₃Si, выращенных в подобной тройной системе, может претерпевать понижение симметрии с кубической до тетрагональной и далее, до орторомбической, со сжатием вдоль направлений [110] на 3.93 % или 5.31 %. Полученные результаты указывают на возможность создания ансамблей ферромагнитных наночастиц с управляемыми магнитными свойствами, которые могут использоваться для систем хранения данных высокой плотности, спинтроники и магнитных датчиков.

DOI: 10.31857/S0044451025070090

1. ВВЕДЕНИЕ

Нанокристаллические магнитные материалы все больше привлекают внимание ученых и инженеров благодаря возможности изучать нетривиальные магнитные явления и большому потенциалу применения в различных сферах. Такие функциональные материалы в первую очередь востребованы для увеличения плотности хранения в энергонезависимых носителях, основанных на принципе магнитной записи [1]. В частности, для преодоления ограничений, связанных с доменными границами, предлагается использование ансамблей физически разделенных ферромагнитных нанокристаллов, например, нано-

Среди магнитных материалов особо выделяются нанокристаллы железа и его силицида Fe_3Si , которые не содержат в своем составе редкоземельных и

кристаллов тетрагональной фазы FePt, размеры которых могут составлять всего 3 нм [2]. При этом для чтения данных с массивов такой плотности требуется существенная миниатюризация считывающей головки, что тоже может решаться с помощью нанокристаллов магнитомягких материалов. Также существенный интерес вызывают тонкие пленки, содержащие суперпарамагнитные нанокристаллы, которые могут применяться в магнитных туннельных переходах и в устройствах на их основе [3–5], магнитной памяти [6] и сенсорике [7,8].

^{*} E-mail: mav@iph.krasn.ru

драгоценных элементов и, следовательно, более перспективны с точки зрения дешевизны и экологичности производства. Ферромагнитный силицид Fe₃Si в последние годы находится в центре внимания исследователей как перспективный материал для спинтроники благодаря высокой спиновой поляризации, низкой магнитокристаллической анизотропии и высокой температуре Кюри (~ 840 K) [9–11]. При этом известно, что величиной магнитной анизотропии можно управлять за счет влияния подложки, а также размера и огранки самих нанокристаллов [9, 11–14]. Кроме того, стоит особо выделить такое преимущество силицида Fe₃Si, как совместимость с технологиями кремниевой микроэлектроники.

Однако в описанных в литературе экспериментах Fe₃Si имеет тенденцию к росту в форме не нанокристаллов, а сплошной пленки [10,11,15–17]. Поэтому интересной представляется идея выращивания Fe_3Si на поверхности кристаллов α -FeSi₂, которые будут играть роль буферного слоя, задающего морфологию растущих структур Fe₃Si. Высший силицид α -FeSi₂ образуется при высоких температурах подложки при осаждении атомов металла на поверхность кремния. Низкая смачиваемость поверхности приводит к формированию эндотаксиальных нанокристаллов с различными формами и огранкой, часть которых выдаются над поверхностью, а часть погружена в подложку. Контроль над ориентационными соотношениями и размерами таких нанокристаллов может позволить создавать текстурированную поверхность кремния для последующего формирования ферромагнитных нанокристаллов. Интерфейс Fe₃Si//*α*-FeSi₂ в таком случае может служить инициатором роста определенной ориентации ферромагнитных слоев, невозможной на обычной кремниевой подложке. В дополнение к этому, формируемый гетероинтерфейс становится источником напряжений кристаллической решетки, которые могут использоваться как инструмент направленного изменения электронных и магнитных свойств [18–21]. Конечный малый размер нанокристалла позволяет сохранять такие напряжения, в отличие от случая тонкой пленки, где наведенные механические напряжения снимаются прорастанием дислокаций. В результате этого могли бы быть получены структуры Fe₃Si со значительной магнитной анизотропией [12], величиной которой можно будет управлять [22] с помощью параметров синтеза буферного слоя: размер и форма нанокристаллов α -FeSi₂ будут влиять на анизотропию формы, а ориентационные соотношения растущей фазы с подложкой — на анизотропную деформацию решетки.

В данной работе изучаются возможные ориентационные соотношения и интерфейсные плоскости при росте ферромагнитного силицида Fe₃Si на кремниевых подложках и на островках буферного слоя α -FeSi₂. Для этого применяется кристаллогеометрический подход к прогнозированию гетероинтерфейсов между данными фазами, который был ранее успешно применен к системе высших силицидов железа и кремния [23]. Результаты показывают наиболее вероятные ориентации растущих нанокристаллов силицидов железа, величины сжатия и растяжения их кристаллических решеток.

2. МЕТОДИКА ПРОГНОЗИРОВАНИЯ ИНТЕРФЕЙСОВ

Предлагаемая методика использует систематическую комбинацию двух кристаллогеометрических методов: наложение ячеек рядк-ряду (edge-to-edge matching) [24], чтобы найти возможные ориентационные соотношения и интерфейсные плоскости, и последующую максимизацию доли близко-совпадающих узлов (near-coincidence sites, NCS) [25] для прогнозирования относительного положения решеток фаз на границе раздела и для сравнения различных интерфейсов между собой.

Соответственно, наибольшая вероятность образования будет у тех гетероинтерфейсов, которые имеют наибольшее отношение числа близкосовпадающих узлов к полному числу узлов в интерфейсной области. Данное отношение обозначено далее как R и изменяется от 0 до 1. Близко-совпадающими узлами здесь считаются пары узлов, относящиеся к одному химическому элементу и находящиеся на расстоянии не более 0.47 Å, что соответствует 20 % длины связи Si–Si. Второстепенную роль при этом играет степень сжатия/растяжения растущей пленки для совмещения с подложкой, которая здесь представлена величиной деформации интерфейса

$$\widetilde{\varepsilon} = \frac{1}{2}\sqrt{\varepsilon_{xx}^2 + \varepsilon_{yy}^2 + \varepsilon_{xx}\varepsilon_{yy} + \varepsilon_{xy}^2},$$

где $\varepsilon_{\alpha\beta}$ — компоненты тензора деформации в плоскости.

Подробное описание расчетных моделей и используемых параметров представлено в работе [23]. В качестве входных данных использовались кристаллические ячейки кремния ($Fd\overline{3}m$, a = 5.4307 Å) и силицидов Fe₃Si ($Fm\overline{3}m$, a = 5.653 Å) и α -FeSi₂ (P4/mmm, a = 2.684 Å, c = 5.128 Å).

Таблица. Наиболее вероятные ориентационные соотношения и интерфейсы при росте Fe₃Si на кремнии, α -FeSi₂ на кремнии и Fe₃Si на α -FeSi₂. Приведены только интерфейсы с низкоиндексными плоскостями подложки, номера в первой колонке указывают на порядок этих интерфейсов в списке среди всех плоскостей

№	R	(hkl)	(hkl)	[uvw]	[uvw]	$\widetilde{\varepsilon}, \%$
${ m Fe_3Si}\ { m Si}$						
		$\mathrm{Fe}_{3}\mathrm{Si}$	Si	$\mathrm{Fe}_3\mathrm{Si}$	Si	
1	0.75	(001)	(001)	$[1\overline{1}0]$	$[1\overline{1}0]$	3.41
2	0.75	(111)	(111)	$[1\overline{1}0]$	$[1\overline{1}0]$	3.41
28	0.40	(111)	(001)	$[1\overline{1}0]$	$[1\overline{1}0]$	4.79
33	0.39	(011)	(011)	[100]	[100]	3.41
α -FeSi ₂ Si						
		α -FeSi ₂	Si	α -FeSi ₂	Si	
1	0.90	(112)	(111)	$[0\overline{2}1]$	$[1\overline{1}0]$	2.15
4	0.75	(001)	(001)	$[2\overline{2}0]$	$[1\overline{1}0]$	0.64
5	0.75	(112)	(111)	$[2\overline{2}0]$	$[1\overline{1}0]$	2.15
6	0.75	(100)	(001)	$[02\overline{1}]$	$[1\overline{1}0]$	2.98
24	0.50	(112)	(110)	$[2\overline{2}0]$	$[1\overline{1}0]$	7.41
$\mathrm{Fe_3Si} \parallel \alpha - \mathrm{FeSi_2}$						
		${\rm Fe_3Si}$	α -FeSi ₂	${\rm Fe_3Si}$	α -FeSi ₂	
1	1.00	(001)	(001)	$[1\overline{1}0]$	$[2\overline{2}0]$	4.37
12	0.52	(001)	(011)	[100]	[200]	2.18
17	0.46	(221)	(001)	$[1\overline{1}0]$	$[2\overline{2}0]$	4.37
22	0.41	(001)	(010)	[100]	[200]	2.26
28	0.38	(331)	(001)	$[1\overline{1}0]$	$[2\overline{2}0]$	3.88

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В первую очередь были определены наиболее выгодные интерфейсы, которые может образовывать ферромагнитный силицид с кремниевыми подложками Si(001), Si(110) и Si(111). Соответствующие ориентационные соотношения, параллельные кристаллографические векторы (с плотной атомной упаковкой), доли близко-совпадающих узлов R и величины деформации интерфейсов $\tilde{\epsilon}$ представлены в таблице.

Первые два интерфейса, соответствующие подложкам Si(001) и Si(111), имеют высокую долю близко-совпадающих узлов R = 0.75, что указывает на возможность роста качественных эпитаксиальных пленок Fe₃Si на этих подложках. Используемая методика прогнозирования интерфейсов позволяет также смоделировать атомную структуру межфазной границы. Полученные таким образом структуры Fe₃Si(001) ||Si(001) и Fe₃Si(111)||Si(111) представ-

Рис. 1. Атомная структура интерфейса Fe₃Si(001)||Si(001). Бежевые шарики обозначают атомы кремния, синие — железа, зеленые — близко-совпадающие узлы, фиолетовые — несовпадающий узел одной фазы в междоузлии другой

лены на рис. 1 и 2 соответственно. В обоих случаях совмещение решеток происходит по одинаковому сценарию: атомы кремния в Fe₃Si имеют кубическое окружение (образованное восемью связями Si-Fe), из которого можно получить тетрагональное окружение атома Si (как в решетке кремния, с четырьмя связями Si-Si) удалением каждой второй связи. Совпадающие узлы кремния в интерфейсной области образуют переходный вариант с четырьмя связями Si-Fe и двумя, в случае Si(001), или тремя, в случае Si(111), связями Si-Si, что должно составлять стабильную структуру с учетом амфотерного характера кремния как химического элемента. При этом узлы железа из силицида в интерфейсном регионе не накладываются на узлы решетки кремния, а попадают в междоузлия. Формально данные узлы не дают вклада в рассчитываемую долю близкосовпадающих узлов R, но энергия такого интерфейса должна быть ниже, чем в случае, когда несовпадающие узлы из решеток разных фаз накладываются друг на друга.

В экспериментальных работах имеются сведения об эпитаксиальном росте Fe₃Si именно на этих двух типах кремниевых подложек, при этом для пленок Fe₃Si//Si(111) характерен более высокий структурный порядок [9–11], чем для Fe₃Si//Si(001) [17]. Следует отметить, что в реальных образцах тонких пле-

Рис. 2. Атомная структура интерфейса Fe₃Si(111)||Si(111). Бежевые шарики обозначают атомы кремния, синие — железа, зеленые — близко-совпадающие узлы, фиолетовые — несовпадающий узел одной фазы в междоузлии другой

нок Fe₃Si степень химического упорядочения типа D0₃ может варьироваться непрерывно вплоть до полного беспорядка по типу A2, тем самым уменьшая плотность близко-совпадающих узлов на интерфейсе. При этом такое перемешивание будет приводить к большему вкладу энтропийной составляющей в полную энергию интерфейса, что позволяет учитывать при расчете параметра R совпадения по типу Fe–Si, а не только Si–Si. В таком случае интерфейс Fe₃Si(111) ||Si(111) будет иметь максимальную величину плотности совпадающих узлов R = 1. В случае Fe₃Si(001) ||Si(001) полное совпадение наблюдаться не может.

Для интерфейсов с кремниевой плоскостью (011) наиболее выгодным оказывается интерфейс $Fe_3Si(011)||Si(011)$, занимающий позицию № 33 среди всех вариантов. Для этого интерфейса вариант построения, аналогичный описанным ранее, не дает высокой плотности близко-совпадающих узлов кремния, и величина R оказывается почти в два раза меньше. Исходя из этого, можно предположить, что эпитаксиальный рост пленок ферромагнитного силицида с образованием атомарно-тонкого интерфейса с подложкой Si(011) маловероятен. В имеющихся в литературе одиночных сообщениях по синтезу ферромагнитного силицида на

 α -FeSi₂

Рис. 3. Атомная структура интерфейса Fe₃Si(001) α-FeSi₂(001). Бежевые шарики обозначают атомы кремния, синие — железа, зеленые — близко-совпадающие узлы

поверхности Si(011) получаемые пленки имеют поликристаллический, высокотекстурированный, но не эпитаксиальный характер [16].

Более выгодным представляется рост ферромагнитной фазы Fe_3Si на плоскостях силицида α -FeSi₂. Для этой пары кристаллических решеток имеется интерфейс с R = 1.00, т. е. с идеальным совпадением по узлам (рис. 3). Такое идеальное совмещение кристаллических решеток двух силицидов возможно благодаря наличию атомных плоскостей, содержащих только атомы железа в квадратной решетке в плоскостях $Fe_3Si\{100\}$ и α -FeSi₂{001}. Следующие по величине *R* интерфейсы, с долями совпадающих узлов до 0.75, получаются при совмещении кубической кремниевой подрешетки альфа-силицида с кремниевой подрешеткой Fe₃Si. Наибольшее значение R в интерфейсах, где отсутствует совмещение кубических подрешеток, составляет 0.38 — структура такого интерфейса представлена на рис. 4.

Таким образом, можно прогнозировать, что рост фазы Fe₃Si на α -FeSi₂ возможен, а наиболее благоприятной для роста плоскостью оказывается (001). Соответственно, следует проанализировать возможность формирования нанокристаллов α -FeSi₂ со свободной поверхностью такой ориентации.

В таблице приведены интерфейсы для системы α -FeSi₂//Si, предсказанные ранее в работе [23].

Рис. 4. Атомная структура интерфейса $Fe_3Si(001)\parallel$ α -FeSi₂(011). Бежевые шарики обозначают атомы кремния, синие — железа, зеленые — близко-совпадающие узлы, красные — близкое расположение несовпадающих узлов

Первый интерфейс, имеющий наиболее высокую долю близко-совпадающих узлов R = 0.90, намного превышает по этому параметру все остальные интерфейсы не только для α -FeSi₂//Si, но и для других силицидов, растущих на кремнии. Поскольку высокие значения R указывают на низкие величины удельной энергии межфазной границы, предполагается, что образование интерфейса α -FeSi₂(112)||Si(111) настолько выгодно, что заставляет нанокристаллы силицида врастать в глубь кремниевой подложки (001) [19, 26, 27]. При этом, по данным квантово-химических расчетов, наиболее выгодными свободными поверхностями *α*-FeSi₂ являются плоскости (001) и (100) [28]. В результате этих тенденций к врастанию в глубь подложки и к огранке по плоскостям (001) и (100) силицид α -FeSi₂ в обычных условиях не образует плоских сплошных пленок, а растет в виде отдельно стоящих нанокристаллов [29]. Также могут образовываться другие интерфейсы, включая α -FeSi₂(001)//Si(001), однако их доля близко-совпадающих узлов R намного ниже.

Таким образом, теоретические и экспериментальные свидетельства указывают на то, что при росте α -FeSi₂ на чистом кремнии будут образовываться отдельные нанокристаллы, большинство из которых содержат поверхность (001), которая может служить площадкой для эпитаксиального роста Fe₃Si(001). В первую очередь, это нанокристаллы с плоским интерфейсом с подложкой Si(111) и нанокристаллы *α*-FeSi₂, врастающие в подложку Si(001) (рис. 5). И в том, и в другом случае последующее осаждение атомов железа и кремния в соотношении 3:1 при низких температурах (300 K < T < 450 K) будет приводить к росту стехиометричной фазы Fe₃Si на ограниченных в размерах гранях α -FeSi₂(001), а на чистой поверхности кремниевой подложки за счет диффузии атомов Si будет образовываться более богатая кремнием фаза. Более того, фаза α -FeSi₂ является наиболее богатой кремнием и высокотемпературной фазой среди силицидов, вследствие чего пленки α -FeSi $_2//Si$ не претерпевают фазовых переходов при отжиге, в отличие от β -FeSi₂ — другого высшего силицида, или Fe₃Si, который вступает в реакцию с подложкой и превращается в парамагнитные FeSi и FeSi₂. Таким образом, использование такого буферного слоя позволяет вырастить массив ограниченных в размерах нанокристаллов ферромагнитного силицида Fe₃Si.

Кроме этого, в зависимости от режима роста буферного слоя α -FeSi₂ разными будут и механические напряжения, вызываемые рассогласованием решеток на интерфейсах, а также ориентации плоскостей Fe₃Si, что будет сказываться на анизотропии магнитных свойств получаемых пленок ферромагнитного силицида. Величины деформаций решеток Fe₃Si могут быть рассчитаны на основе спрогнозированных выше ориентационных соотношений.

Для начала рассмотрим базовый случай, когда Fe₃Si растет на чистой кремниевой подложке, с которым далее будут сравниваться тройные системы Fe₃Si//α-FeSi₂//Si. Межфазная граница Fe₃Si с кремнием строится при совмещении кубических решеток (интерфейсы №№1, 2, 33 из таблицы), и деформация решетки растущей фазы происходит изотропно в плоскости интерфейса и составляет 3.93 % сжатия. Стоит заметить, что в перпендикулярном направлении решетка Fe₃Si может релаксировать и растягиваться на величину, пропорциональную коэффициенту Пуассона.

При росте нанокристаллов α -FeSi₂ на Si(111) их кристаллическая решетка будет растягиваться в плоскости (112), причем растяжение будет анизотропным вследствие изначальной анизотропии самой фазы α -FeSi₂: вдоль плотноупакованного направления [110] силицид растягивается на 1.17%, а вдоль перпендикулярного ему [111] — на 4.25%. В

Рис. 5. Схематическое изображение возможных тройных структур Fe₃Si//α-FeSi₂//Si с ростом нанокристаллов Fe₃Si на подложках Si(111) (*a*) и Si(001) (*б*,*в*). Рост Fe₃Si на гранях α-FeSi₂, отличных от (001), с образованием менее выгодных интерфейсов не изображен для удобства

направлении, перпендикулярном плоскости, решетка силицида также может релаксировать.

Далее мы исходим из предположения, что при росте зародыша ферромагнитной фазы Fe₃Si на грани (001) нанокристалла α -FeSi₂ параметры решетки зародыша будут подстраиваться под параметры решетки α -FeSi₂. При этом возможны два варианта: либо нанокристалл α -FeSi₂ достаточно большой и напряжения на интерфейсе скомпенсированы путем образования дислокаций или межзеренных границ, либо нанокристалл слишком мал и напряжения от интерфейса распространяются по всей решетке и передаются на свободную грань (001), на которой предполагается рост Fe₃Si. В первом случае величина сжатия решетки Fe₃Si не зависит от типа кремниевой подложки и ориентации нанокристалла α -FeSi₂ на ней и составит 5.31 %, т. е. больше, чем на просто кремниевой подложке, что должно отразиться на величине магнитокристаллической анизотропии. В случае, когда напряжение от интерфейса α -FeSi₂ с кремнием передается на решетку нанокристалла Fe₃Si, растущего на гранях нанокристалла (001), величина и анизотропия деформации ферромагнитного силицида может быть разной в зависимости от типа кремниевой подложки и того, как на ней растет α -FeSi₂.

Для Si(111) растяжение решетки силицида на интерфейсе α -FeSi₂(112)||Si(111) передается на грань (001) только вдоль направления [110], в перпендикулярном направлении решетка α -FeSi₂ будет релаксировать. Поэтому нанокристаллы Fe₃Si, растущие на этой грани (см. рис. 5 *a*), окажутся сжаты на 3.93 % в направлении [110] и на 5.31 % в направлении [110]. При этом плоскость Fe₃Si(001) окажется под углом 53.5° к поверхности подложки Si(111).

Для Si(001), в первую очередь, предполагается врастание нанокристалла *α*-FeSi₂ в глубь подложки (см. рис. 5 в) и образование интерфейса Поэтому α -FeSi₂(112)||Si(111). кристаллические решетки α -FeSi₂ и, следовательно, Fe₃Si будут деформироваться так же, как и в предыдущем случае. Однако ориентация интерфейсной плоскости Fe₃Si(001) будет другой, так как параллельная ей грань α -FeSi₂(001) может быть ориентирована относительно одного из трех симметричных направлений, лежащих в плоскости Si(111), по которой происходит врастание нанокристалла дисилицида. Таким образом, растущий интерфейс $Fe_3Si(001) \| \alpha$ -FeSi₂(001) может оказаться под углами 71.7° и 47.2° к поверхности подложки Si(001).

Для подложки Si(001) в определенных случаях [29] также возможен рост нанокристаллов α -FeSi₂(001) (см. рис. 5 δ). При выращивании Fe₃Si на таких нанокристаллах параметры решетки кремния «передаются» через буферный слой, и сжатие решетки ферромагнитного силицида будет изотропным в плоскости и составит 3.93 %, так же как и в простой пленке Fe₃Si(001) ||Si(001). В этом случае плоскость Fe₃Si(001) будет параллельна плоскости подложки. Кроме этого, в случае реализации интерфейса № 6 α -FeSi₂(100) ||Si(001) нанокристаллы Fe₃Si будут расти на боковых гранях (001) кристаллов α -FeSi₂ и при этом испытывать

сжатие на 5.31% в направлении Fe₃Si[001] и 3.93% в направлении Fe₃Si[010]. Плоскость Fe₃Si(001) также окажется параллельна плоскости подложки.

Как мы видим, решетка ферромагнитного силицида Fe₃Si, выращенного на буферном слое с нанокристаллами α -FeSi₂, окажется сжата на 3.93 % в направлении [110], на 5.31 % в направлении [110] и будет свободно релаксировать в направлении [001]. Такое понижение симметрии с кубической до орторомбической должно изменить величины магнитокристаллической анизотропии и коэрцитивной силы. При этом ориентация легкой оси (или легкой плоскости) будет различной для пленок, выращенных на Si(001) и Si(111). Таким образом, использование системы Fe₃Si// α -FeSi₂//Si дает дополнительную возможность управления магнитными свойствами.

4. ЗАКЛЮЧЕНИЕ

Проведенный анализ ориентационных соотношений и интерфейсных плоскостей в системе $Fe_3Si//\alpha$ -FeSi₂//Si показывает ее перспективность для получения ансамблей ферромагнитных наночастиц, которые могут использоваться для различных применений. Особенностями тройной системы $Fe_3Si//\alpha$ - $FeSi_2//Si$ являются предполагаемая меньшая интерфейсная энергия, контролируемое ограничение латеральных размеров нанокристаллов Fe₃Si и большая термическая стабильность вследствие более высоких барьеров диффузии при обмене кремнием и железом между подложкой и Fe₃Si через слой стабильного высшего силицида α -FeSi₂. При этом пленки кубического ферромагнитного силицида Fe₃Si, выращенные на нанокристаллах α -FeSi₂, будут приобретать анизотропные искажения кристаллической решетки (3.93-5.31% в зависимости от направления) и, как следствие, различные магнитные свойства, определяемые не только типом кремниевой подложки, но и параметрами роста буферного слоя.

Благодарности. Исследование выполнены при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта № 20-42-240012.

ЛИТЕРАТУРА

 N. A. Frey and S. Sun, in *Inorganic Nanoparticles*, ed. by C. Altavilla and E. Ciliberto, CRC Press, London (2017), p. 33.

- K. D. Gilroy, A. Ruditskiy, H.-C. Peng et al., Chem. Rev. 116, 10414 (2016), DOI:10.1021/acs.chemrev.6b00211.
- J. Torrejon, M. Riou, F. A. Araujo et al., Nature 547, 428 (2017), DOI:10.1038/nature23011.
- W. A. Borders, A. Z. Pervaiz, S. Fukami et al., Nature 573, 390 (2019), DOI:10.1038/s41586-019-1557-9.
- L. Schnitzspan, M. Kläui, and G. Jakob, Phys. Rev. Appl. 20, 024002 (2023), DOI:10.1103/PhysRevApplied.20.024002.
- J. J. Nowak, R. P. Robertazzi, J. Z. Sun et al., IEEE Magn. Lett. 7, 1 (2016), DOI:10.1109/LMAG.2016.2539256.
- D. L. Graham, H. Ferreira, J. Bernardo et al., J. Appl. Phys. 91, 7786 (2002), DOI:10.1063/1.1451898.
- R. L. Edelstein, C. R. Tamanaha, P. E. Sheehan et al., Biosens. Bioelectron. 14, 805 (2000), DOI:10.1016/S0956-5663(99)00054-8.
- 9. D. Odkhuu, W. S. Yun, and S. C. Hong, Thin Solid Films **519**, 8218 (2011), DOI:10.1016/j.tsf.2011.03.093
- K. Hamaya, K. Ueda, Y. Kishi et al., Appl. Phys. Lett. 93, 132117 (2008), DOI:10.1063/1.2996581.
- 11. И. А. Яковлев, С. Н. Варнаков, Б. А. Беляев и др., Письма в ЖЭТФ 99, 610 (2014), DOI:10.7868/S0370274X14090082.
- 12. Б. А. Беляев, А. В. Изотов, Письма в ЖЭТФ 103, 44 (2016), DOI:10.1134/S0021364016010033.
- D. Zhang, Y. Xue, D. Tian et al., Appl. Surf. Sci. 506, 144691 (2020), DOI:10.1016/j.apsusc.2019.144691.
- 14. A. Grunin, S. Shevyrtalov, K. Chichay et al., J. Magn. Magn. Mater. 563, 170047 (2022), DOI:10.1016/j.jmmm.2022.170047.
- 15. Н. Г. Барковская, А. И. Грунин, Е. С. Клементьев и др., Поверхность. Рентгеновские, синхротронные и нейтронные исследования 12, 28(2020), DOI:10.31857/s1028096020120092.
- 16. K. Ueda, R. Kizuka, H. Takeuchi et al., Thin Solid Films 515, 8250 (2007), DOI:10.1016/j.tsf.2007.02.052.
- K. Trunov, M. Walterfang, W. Keune et al., Thin Solid Films **516**, 6205 (2008), DOI:10.1016/j.tsf.2007.11.108.
- 18. П. В. Прудников, В. В. Прудников, М. А. Медведева, ЖЭТФ 100, 501 (2014), DOI:10.7868/S0370274X14190060.

- J. K. Tripathi, G. Markovich, and I. Goldfarb, Appl. Phys. Lett. **102**, 251604 (2013), DOI:10.1063/1.4812239.
- J. K. Tripathi, R. Levy, Y. Camus et al., Appl. Surf. Sci. 391, 24 (2017), DOI:10.1016/j.apsusc.2016.02.168.
- 21. J. K. Tripathi, M. Garbrecht, W. D. Kaplan et al., Nanotechnology 23, 495603 (2012), DOI:10.1088/0957-4484/23/49/495603.
- 22. А. В. Минькова, В. В. Прудников, П. В. Прудников, ЖЭТФ 164, 782 (2023), DOI:10.31857/S0044451023110081.
- 23. M. A. Visotin, I. A. Tarasov, A. S. Fedorov et al., Acta Crystallogr. B 76, 469 (2020), DOI:10.1107/S2052520620005727.
- M.-X. Zhang, P. M. Kelly, M. Qian et al., Acta Mater. 53, 3261 (2005), DOI:10.1016/j.actamat.2005.03.030.

- 25. Q. Liang and W. T. Reynolds Jr., Metall. Mater. Trans. A. 29, 2059 (1998), DOI:10.1007/s11661-998-0032-2.
- 26. I. A. Tarasov, I. A. Yakovlev, M. S. Molokeev et al., Mater. Lett. 168, 90 (2016), DOI:10.1016/j.matlet.2016.01.033.
- R. V. Pushkarev, N. I. Fainer, H. Katsui et al., Mater. Des. 137, 422 (2018), DOI:10.1016/j.matdes.2017.10.030.
- 28. M. A. Visotin, I. A. Tarasov, A. S. Fedorov et al., in The Fourth Asian School-Conference on Physics and Technology of Nanostructured Materials (ASCO-NANOMAT 2018) (2018), p. 133.
- 29. I. A. Tarasov, T. E. Smolyarova, I. V. Nemtsev et al., CrystEngComm. 22, 3943 (2020), DOI:10.1039/d0ce00399a.