КОГЕРЕНТНЫЕ РЕЗОНАНСЫ ЭЛЕКТРОМАГНИТНО-ИНДУЦИРОВАННОЙ ПРОЗРАЧНОСТИ В СПЕКТРАХ ПОГЛОЩЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ЛИНЕЙНОЙ ПОЛЯРИЗАЦИИ ПРИ МАГНИТНОМ СКАНИРОВАНИИ В АТОМАХ С ВЫРОЖДЕННОЙ СТРУКТУРОЙ УРОВНЕЙ

А. А. Черненко*

Институт физики полупроводников Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

Поступила в редакцию 10 марта 2025 г., после переработки 12 мая 2025 г. Принята к публикации 12 мая 2025 г.

Аналитически и численно исследуются спектры резонансов поглощения линейно поляризованной электромагнитной волны произвольной интенсивности при магнитном сканировании на вырожденных переходах атомов с полными моментами уровней J = 1 - J = 1, J = 2 - J = 1 и J = 1 - J = 2. Показано, что в спектрах резонансов поглощения при магнитном сканировании вблизи нулевого магнитного поля на указанных переходах атомов формируются когерентные структуры — резонансов электромагнитно-индуцированной прозрачности (ЭИП). Исследованы зависимости параметров резонансов ЭИП от характеристик и типов атомных переходов, величины магнитного поля и интенсивности электромагнитной волны. Определены вклады процессов, формирующих спектры резонансов ЭИП. Показано, что основной вклад в формирование резонансов ЭИП вносит эффект когерентности магнитных подуровней нижнего и верхнего состояний переходов, индуцируемый полем волны линейной поляризации. Установлено, что наиболее узкие резонансы ЭИП с шириной, определяемой константой релаксации нижнего уровня Γ_n , формируются на вырожденных переходах, содержащих Λ -схемы.

Статья представлена в рамках публикации материалов конференции «Физика ультрахолодных атомов» (ФУХА-2024), Новосибирск, декабрь 2024 г.

DOI: 10.31857/S0044451025070041

1. ВВЕДЕНИЕ

Исследования резонансного взаимодействия вырожденных атомных переходов со световыми полями ведутся уже длительное время. Интерес к ним обусловлен многообразием физических процессов, протекающих в данных системах, в том числе эффекты интерференции атомных состояний, приводящие к узким резонансным структурам в исследуемых спектрах (см. [1]). Отметим, что возникновение когерентности атомных состояний при двухфотонных переходах впервые было обнаружено еще в опытах с некогерентными источниками излучения [2]. С созданием лазеров и развитием методов нелинейной лазерной спектроскопии область исследований нелинейных и когерентных явлений значительно расширилась. В настоящее время интерес к теме поддерживается благодаря развитию новых экспериментальных методик, включая и такие непростые, как исследования холодных атомов. При этом резонансы, обусловленные когерентностью атомных состояний при действии лазерных полей, получили названия резонансов электромагнитно-индуцированной прозрачности (ЭИП) и электромагнитно-индуцированной абсорб-

^{*} E-mail: chernen@isp.nsc.ru

ции (ЭИА). Возникнув в исследованиях нелинейных оптических явлений при взаимодействии лазерного излучения с газовыми средами, сфера приложения этих эффектов распространилась на многие другие системы, предполагающие практические приложения. При этом многие из обнаруженных ранее явлений были «переоткрыты» и переименованы в работах по ЭИП и ЭИА. На это, как и на заблуждения при интерпретации ряда результатов тех времен, было указано во Введение к работе [3].

Важным примером когерентных явлений на вырожденных переходах с основного состояния атомов являются резонансы ЭИП [4], обусловленные эффектом когерентного пленения населенностей уровней (КПН) [5,6], а также обнаруженные в [7] резонансы противоположного знака – резонансы ЭИА, за возникновение которых, согласно [8], ответственен эффект спонтанного переноса магнитной когерентности (МК) уровней из возбужденного состояния атома в основное, впервые рассмотренный в [9].

Однако в дальнейших исследованиях показано, что обнаруженные аномалии резонансов ЭИА [10, 11] могут объясняться за счет других процессов, таких как оптическая накачка и КПН [10], столкновения [12], МК- и когерентные биения населенностей уровней в поле двух частот, а также нелинейный интерференционный эффект (НИЭФ) [13–16]. При этом при формировании вида резонанса оказываются важны значения полных моментов уровней переходов и степень их открытости, взаимное направление поляризаций и величины интенсивностей ЭМ-полей [17-20]. Так, согласно [14], в системе двух уровней узкая структура резонанса в поле двух однонаправленных волн вследствие когерентных биений населенностей уровней на открытом переходе проявляется в виде резонанса ЭИП, а на закрытом переходе — в виде резонанса ЭИА. В случае переходов с моментом уровней J = 1/2 и J = 1 узкие структуры формируются в А-схемах перехода в виде резонанса ЭИП [17–19]. При этом основной вклад вносит МК уровней нижнего состояния, а вклад спонтанного переноса МК мал и проявляется в виде добавки. Причем на переходе с J = 1 при параллельных поляризациях полей резонанс ЭИП формируется когерентными биениями населенностей уровней [14], а при ортогональных поляризациях – вкладом НИЭФ [15]. Такой же механизм образования резонансов ЭИП наблюдается на переходах типа $J \to J$ и $J \to J - 1$ (J > 1), поскольку на этих переходах спектры резонансов формируются также в открытых Л-схемах.

В случае переходов $J \rightarrow J+1$ [18–20] спектры резонансов формируются, в основном, в V-схемах перехода, образуемых подуровнями с максимальным магнитным числом M. В V-схемах вид структур зависит от степени открытости перехода: на закрытом переходе структуры проявляется в виде резонанса ЭИА, а на открытых переходах – в виде резонанса ЭИП. Вклад эффекта переноса МК на данных переходах мал и не влияет на вид резонанса. При этом действие интенсивного пробного поля может менять тип резонанса (из ЭИП в ЭИА и наоборот) [18].

Отметим, что основные закономерности формирования резонансов ЭИП и ЭИА получены при резонансном взаимодействии полей двух волн с вырожденными атомными переходами и численном решении задачи [17,19,20]. Недавно в работе [21] показано, что узкие резонансы ЭИП образуются в спектре поглощения одной ЭМ-волны линейной поляризации при магнитном сканировании в простых атомах Λ - и V-типов. При этом контраст резонанса ЭИП в атоме Λ -типа достигал 100%, а его ширина определялась константой релаксации нижнего уровня. Причиной образования резонансов ЭИП являлась индуцируемая полем ЭМ-волны МК уровней нижнего (в Λ -типе), либо верхнего (в V-типе) состояний атомов.

В связи с этим представляет интерес рассмотрение процессов формирования резонансов поглощения в поле бегущей ЭМ-волны линейной поляризации в более сложных атомах, в частности, на переходах между состояниями атомов с полными моментами J = 1 - J = 1, J = 2 - J = 1 и J = 1 - J = 2. В данных атомах спектр резонансного поглощения ЭМ-волны будет определяться вкладами как некогерентного эффекта насыщения населенностей уровней, так и когерентных эффектов, таких как эффект МК, индуцируемый полем волны линейной поляризации на уровнях нижнего и верхнего состояний, и эффект переноса МК с уровней верхнего состояния на уровни нижнего. Специфика указанных переходов позволяет получить аналитические решения задачи в квадратурах для перехода J = 1 - J = 1, а численные решения для более сложных переходов позволяют выделить вклады каждого процесса как в населенности уровней, так и в форму резонансов поглощения при магнитном сканировании. Кроме того, результаты решений позволят определить условия применимости приближений метода пробного поля при исследовании нелинейных явлений в атомах со сложной структурой уровней.

2. ФОРМЫ ЛИНИИ ПОГЛОЩЕНИЯ ЭМ-ВОЛНЫ ЛИНЕЙНОЙ ПОЛЯРИЗАЦИИ В АТОМАХ С ВЫРОЖДЕННОЙ СТРУКТУРОЙ УРОВНЕЙ ПРИ МАГНИТНОМ СКАНИРОВАНИИ

Рассмотрим задачу о резонансном взаимодействии бегущей монохроматической линейно поляризованной ЭМ-волны произвольной интенсивности с переходами между вырожденными по магнитному квантовому числу состояниями атомов с полными моментами J=1-J=1, J=1-J=2 и J=2-J=1. При этом атомы Λ - и V-типов будут проявляться как частные случаи перехода J=1-J=1. Предполагается, что атомная среда помещена в магнитное поле с напряженностью **H** (вектор **H** направлен вдоль вектора **k** ЭМ-волны), величина которого может меняться. Атомы полагаем неподвижными, а среда считается оптически тонкой.

Рассмотрение задачи проведем в системе координат с осью квантования Z вдоль направления вектора к. В этой системе координат в рассматриваемых атомах в ЭМ-поле линейной поляризации разрешены переходы между уровнями с изменением магнитного квантового числа $\Delta M = \pm 1$ и индуцируются процессы, показанные на рис. 1 для переходов J = 1 - J = 1 и J = 1 - J = 2. В случае перехода J = 2 - J = 1 расположение магнитных подуровней обратно переходу J = 1 - J = 2, а индуцируемые процессы такие же. Согласно рис. 1, на переходе J = 1 - J = 1 образуются Λ - и V-, а на переходе J = 1 - J = 2 - V- и W-подсистемы, связанные между собой спонтанными процессами. В случае перехода J = 2 - J = 1 формируются три Λ -подсистемы. На данных переходах поле линейной поляризации, наряду с изменением населенностей магнитных подуровней разных состояний, индуцирует когерентность (интерференцию) между подуровнями каждого состояния (через двуквантовые переходы с изменением магнитного числа $\Delta M = \pm 2$), называемую магнитной когерентностью уровней. Причем МК с уровней верхнего состояния, как и их населенности, могут переноситься на нижнее состояние при спонтанных переходах с изменением магнитного числа $\Delta M = 0, \pm 1$. При решении задачи исходим из кинетических уравнений для матрицы плотности атома в модели релаксационных констант [15, 22]. В этом случае динамика диагональных ρ_i и недиагональных ρ_{ik} элементов матрицы плотности в поле ЭМволны описывается следующей системой уравнений:

$$\frac{d\rho_i}{dt} + \Gamma_i \rho_i = Q_i + \sum_k A_{ki} \rho_k - 2 \operatorname{Re}\left(i \sum_j V_{ij} \rho_{ji}\right), \quad (1)$$

$$\frac{d\rho_{ik}}{dt} + (\Gamma_{ik} + i\omega_{ik})\rho_{ik} = -i[V,\rho]_{ik} + R_{ik}^{(2)}.$$
 (2)

В уравнениях (1), (2) оператор полной производной $d/dt = \partial/\partial t + v\nabla$, Γ_i — константы релаксации уровней (для уровней верхнего состояния $\Gamma_i = \Gamma_m$, а для уровней нижнего состояния $\Gamma_i = \Gamma_n$), Γ_{ik} — полуширины линий переходов, Q_i — скорости возбуждения уровней в отсутствие ЭМ-поля,

$$\mathbf{V} = \mathbf{G} \exp(-i(\omega t - \mathbf{k} \cdot \mathbf{r})) + \text{H.c.}$$

— оператор взаимодействия атома с ЭМ-полем, где $\mathbf{G} = \mathbf{d} \cdot \mathbf{E}/2\hbar$, \mathbf{d} — оператор обобщенного дипольного момента, \mathbf{E} — вектор напряженности ЭМ-поля, ω — частота, \mathbf{k} — волновой вектор ЭМ-волны. Слагаемое $\sum_k A_{ki}\rho_k$ в системе уравнений (1) определяет спонтанный распад подуровней верхнего состояния m на подуровни нижнего состояния n (скорость данного процесса A_{mn}), оно присутствует только в уравнении для населенностей нижних подуровней. В уравнении (2) слагаемое $R_{ik}^{(2)}$ определяет спонтанный перенос МК с подуровней верхнего состояния m на подуровни нижнего состояния n.

При рассмотрении индуцируемых полем процессов важна величина $a_0 = A_{mn}/\Gamma_m$ ($a_0 \le 1$), называемая параметром ветвления излучения с верхнего состояния. На закрытых переходах $a_0 = 1$, а на открытых переходах параметр $a_0 < 1$. Величина $1 - a_0$ определяет долю частиц, уходящих при спонтанном распаде верхнего состояния m на прочие нижележащие состояния.

Решения для недиагональных элементов матрицы плотности в поле бегущей ЭМ-волны, согласно [14–21], представимы в виде

$$\rho_{ik} = R_{ik} \exp(-i(\omega t - \mathbf{k} \cdot \mathbf{r})) + \text{H.c.}$$

Тогда из уравнений (1), (2) в стационарном случае для неподвижных атомов получаем следующие системы уравнений для элементов матрицы плотности:

$$\Gamma_n \rho_i = Q_i + \sum_k A_{ki} \rho_k + 2 \operatorname{Re}(i \sum_k G_{ik} R_{ki}), \quad (3)$$

$$\Gamma_m \rho_k = Q_k + 2 \operatorname{Re}(i \sum_i G_{ki} R_{ik}), \quad (\Gamma_{mn} - i \Omega_{ik}) R_{ik} =$$

$$= -i G_{ik} (\rho_i - \rho_k) + i \sum (G_{il} r_{lk} - r_{ij} G_{jk}), \quad (4)$$

$$= -iG_{ik}(\rho_i - \rho_k) + i\sum_{l,j} (G_{il}r_{lk} - r_{ij}G_{jk}), \quad (4)$$

$$(\Gamma_{ij} + i\omega_{ij})r_{ij} = i(G_{ik}R_{kj} - G_{kj}R_{ki}^*) + \delta r_{ij}.$$
 (5)

Рис. 1. Схемы процессов в ЭМ-поле линейной поляризации на переходах J = 1 - J = 1 (a) и J = 1 - J = 2 (б): сплошные линии — индуцируемые ЭМ-полем переходы между магнитными подуровнями; пунктирные линии — индуцируемая ЭМ-полем когерентность магнитных подуровней и ее перенос с подуровней верхнего состояния m на подуровни нижнего состояния n; штриховые линии — спонтанный распад магнитных подуровней верхнего состояния m на подуровни нижнего состояния n и прочие нижележащие уровни $(1 - a_0 -$ доля этого процесса)

Здесь индексы *i* и *k*, *j* и *l* обозначают подуровни разных состояний, а индексы *i* и *j*, *l* и *k* обозначают подуровни одного состояния. Далее в вычислениях полагаем значения индексов нижнего состояния 1–3, а верхнего состояния — 4–6 (на переходе J = 1 - J = 1, рис. 1 *a*), либо 4–8 (на переходе J = 1 - J = 2, рис. 1 *b*).

В системе уравнений (3)–(5) ρ_i , ρ_k определяют населенности магнитных подуровней разных состояний, R_{ik} — коэффициенты поляризаций атомов на оптически разрешенных переходах, Γ_{mn} однородная полуширина перехода, $\Omega_{ik} = \omega - \omega_{ik}$ — отстройки частоты ЭМ-поля от частот ω_{ik} переходов между подуровнями верхнего *т* и нижнего *п* состояний (в отсутствие расщеплений уровней $\Omega_{ik} = \Omega_0 = \omega - \omega_{mn}$, где ω_{mn} — частоты нерасщепленных переходов), r_{ii} — коэффициенты поляризаций атомов на оптически запрещенных переходах, которые определяют индуцируемую ЭМ-полем МК подуровней нижнего либо верхнего состояния, Ω_{ii} — частоты переходов между этими подуровнями, $\Gamma_{ij} = \Gamma_m$ или $\Gamma_{ij} = \Gamma_n$ – константы релаксации МК подуровней верхнего или нижнего состояний. Слагаемые δr_{ik} в (5) описывают спонтанный перенос МК с подуровней верхнего состояния на подуровни нижнего состояния. Скорости данного процесса определяются следующим образом: $A_r^{64} = -A_{mn}/2$ (на переходе J = 1 - J = 1 [15]); $A_{r42}^{86} = 0.3A_{mn}$, $A_{r31}^{86} = A_{r53}^{86} \approx 0.245 A_{mn}$ (на переходе J = 2 - J = 1[23]); $A_r^{83} = A_r^{46} = A_{mn}/\sqrt{6}, A_r^{75} = A_{mn}/2$ (на переходе J = 1 - J = 2 [23]).

Отметим, что на переходе J = 1 - J = 2 при переносе вклады МК, индуцируемой ЭМ-полем между подуровнями $M = \pm 2$ и M = 0 верхнего состояния, в МК подуровней нижнего состояния оказываются разных знаков (действуют в противофазе).

Далее подробнее остановимся на переходе J = 1 - J = 1, поскольку на нем возможны простые аналитические решения, в том числе и для атомов с переходами Λ - и V-типов. В случае переходов J = 1 - J = 2 и J = 2 - J = 1 аналитические решения более сложные, для них приведем численные решения.

В случае перехода J = 1 - J = 1 из уравнений (3)–(5) в приближении без учета процесса переноса МК (вклад данного процесса значительно меньше остальных, см. ниже) выражения для поляризаций R_{ik} в Λ - и V-схемах перехода имеют вид

$$R_{ik} = \frac{1}{\Gamma_{mn} - i\Omega_{ik} + \frac{|G_{il}|^2}{\Gamma_{lk} + i\omega_{lk}}} \times \left[(\rho_i - \rho_k) - \frac{(\rho_i - \rho_l) |G_{il}|^2}{(\Gamma_{lk} + i\omega_{lk})(\Gamma_{mn} + i\Omega_{il})} \right], \quad (6)$$

где индексы *i* и *k* означают подуровни разных состояний, а индексы *l* и *k* — подуровни одного состояния, ρ_i, ρ_k — населенности подуровней перехода, определяемые из решения системы уравнений (3)–(5).

Формы линий поглощения ЭМ-волны линейной поляризации на исследуемых переходах при частотном или магнитном сканировании определяются через работу ЭМ-поля как [15]

$$\frac{\alpha_s(\Omega,\omega_H)}{\alpha_0} = -\Gamma_{mn} \left\langle \operatorname{Re}\left(i\frac{\sum_{i,k} R_{ik}G_{ki}}{|G|^2}\right) \right\rangle, \quad (7)$$

где $\alpha_0 = 4\pi\omega_{mn}d^2/c\hbar\Gamma_{mn}$ — сечение резонансного поглощения, а R_{ik} — коэффициенты поляризаций на

разрешенных переходах атома в виде решения (6). На переходе J = 1 - J = 1 форма линии поглощения в указанном приближении может быть представлена в виде суммы вкладов Λ - и V-схем перехода как

$$\frac{\alpha_{s\Lambda}(\Omega,\omega_H)}{\alpha_0} = -\Gamma_m \operatorname{Re}\left\{\sum_{k,l} \left(\frac{1}{\Gamma_{mn} - i\Omega_{5k} + \frac{|G_{5l}|^2}{\Gamma_n + i\omega_{lk}}} \left[(\rho_5 - \rho_k) - \frac{(\rho_5 - \rho_l)|G_{5l}|^2}{(\Gamma_n + i\omega_{lk})(\Gamma_{mn} + i\Omega_{5l})}\right]\right)\right\},\tag{8}$$

$$\frac{\alpha_{sV}(\Omega,\omega_H)}{\alpha_0} = -\Gamma_m \operatorname{Re}\left\{\sum_{k,l} \left(\frac{1}{\Gamma_{mn} - i\Omega_{k2} + \frac{|G_{l2}|^2}{\Gamma_m + i\omega_{kl}}} \left[(\rho_k - \rho_2) - \frac{(\rho_l - \rho_2)|G_{l2}|^2}{(\Gamma_m + i\omega_{kl})(\Gamma_{mn} + i\Omega_{l2})}\right]\right)\right\}.$$
(9)

Полагаем далее значения частот расщеплений ω_{lk} подуровней нижнего и верхнего состояний как Δ_{down} и Δ_{up} . Тогда отстройки частоты поля от частот расщепленных переходов (рис. 1 *a*) имеют вид $\Omega_{5k} = \Omega_0 \pm \Delta_{down}/2$ (в Λ -схеме) и $\Omega_{k2} = \Omega_0 \pm \Delta_{up}/2$ (в V-схеме), где $\Omega_0 = \omega - \omega_{52}$ — отстройка частоты поля от частоты нерасщепленного перехода. Кроме того, на переходе J = 1 - J = 1 имеем равенства вероятностей спонтанного распада и параметров взаимодействия по каждому каналу перехода: $A_{ik} = A$, $|G_{ik}|^2 = |G|^2$, и, как следствие, равенства разностей населенностей: $\rho_5 - \rho_3 = \rho_5 - \rho_1$ и $\rho_4 - \rho_2 = \rho_6 - \rho_2$. В этом случае формы линий поглощения (8), (9) при магнитном сканировании (при $\Omega_0 = 0$) и любых значениях интенсивности ЭМ-поля и расщеплениях уровней имеют следующий вид.

В Λ -схеме:

$$\frac{\alpha_{s\Lambda}(\Delta_{down})}{\alpha_0} = -2\Gamma_m(\rho_5 - \rho_1) \left\{ \frac{\Gamma_{1\Lambda}}{\Gamma_{1\Lambda}^2 + \Omega_{1\Lambda}^2} - \operatorname{Re}\left[\frac{|G^2|}{(\Gamma_{1\Lambda} - i\Omega_{1\Lambda})(\Gamma_n + i\Delta_{down})(\Gamma_{mn} - i\Delta_{down}/2)}\right] \right\}, \quad (10)$$

$$\Gamma_{1\Lambda} = \Gamma_{mn} \left[1 + \frac{|G|^2 \Gamma_n}{\Gamma_{mn}(\Gamma_n^2 + \Delta_{down}^2)} \right] = \Gamma_{mn} \left[1 + \frac{\kappa_\Lambda \Gamma_n^2}{2(\Gamma_n^2 + \Delta_{down}^2)} \right], \tag{11}$$
$$\Omega_{1\Lambda} = \frac{\Delta_{down}}{2} \left[1 + \frac{2|G|^2}{\Gamma_n^2 + \Delta_{down}^2} \right] = \frac{\Delta_{down}}{2} \left[1 + \frac{\kappa_\Lambda \Gamma_{mn} \Gamma_n}{\Gamma_n^2 + \Delta_{down}^2} \right].$$

В V-схеме:

$$\frac{\alpha_{sV}(\Delta_{up})}{\alpha_0} = -2\Gamma_m(\rho_4 - \rho_2) \left\{ \frac{\Gamma_{1V}}{\Gamma_{1V}^2 + \Omega_{1V}^2} - \operatorname{Re}\left[\frac{|G|^2}{(\Gamma_{1V} - i\Omega_{1V})(\Gamma_m - i\Delta_{up})(\Gamma_{mn} + i\Delta_{up}/2)}\right] \right\},$$
(12)

$$\Gamma_{1V} = \Gamma_{mn} \left[1 + \frac{|G|^2 \Gamma_m}{\Gamma_{mn} (\Gamma_m^2 + \Delta_{up}^2)} \right] = \Gamma_{mn} \left[1 + \frac{\kappa_V \Gamma_m^2}{2(\Gamma_m^2 + \Delta_{up}^2)} \right],\tag{13}$$

$$\Omega_{1V} = \frac{\Delta_{up}}{2} \left[1 + \frac{2|G|^2}{\Gamma_m^2 + \Delta_{up}^2} \right] = \frac{\Delta_{up}}{2} \left[1 + \frac{\kappa_V \Gamma_{mn} \Gamma_m}{\Gamma_m^2 + \Delta_{up}^2} \right]$$

Здесь параметры насыщения равны $\kappa_{\Lambda} = 2|G|^2/\Gamma_{mn}\Gamma_n$, $\kappa_{\rm V} = 2|G|^2/\Gamma_{mn}\Gamma_m$, а разности населенностей определяются решениями системы уравнений (3)–(5). В общем виде эти решения, как и выражения для форм линий поглощения из (10)–(13), имеют сложный вид. Поэтому далее основные закономерности в формах линий поглощения рассмотрим при малых интенсивностях ЭМ-поля (при параметрах насыщения $\kappa_{\Lambda,\rm V} \ll 1$). В этом случае в приближении первой нелинейной поправки по ЭМ-полю [15] формы линий поглощения (8), (9) представимы в следующем виде. В Λ -схеме:

$$\frac{\alpha_{s\Lambda}^1(\Omega)}{\alpha_0} = -\Gamma_m \operatorname{Re}\left\{\sum_{k,l} \frac{1}{\Gamma_{mn} - i\Omega_{6k}} \left[1 - \frac{|G_{6l}|^2}{(\Gamma_n + i\omega_{lk})(\Gamma_{mn} - i\Omega_{6k})} \right] \left[(\rho_6^0 - \rho_k^0) - \frac{(\rho_6^0 - \rho_l^0) |G_{6l}|^2}{(\Gamma_n + i\omega_{lk})(\Gamma_{mn} + i\Omega_{6l})} \right] \right\}.$$
(14)

В V-схеме:

$$\frac{\alpha_{sV}^{1}(\Omega)}{\alpha_{0}} = -\Gamma_{m} \operatorname{Re} \left\{ \sum_{k,l} \frac{1}{\Gamma_{mn} - i\Omega_{k2}} \left[1 - \frac{|G_{l2}|^{2}}{(\Gamma_{m} + i\omega_{kl})(\Gamma_{mn} - i\Omega_{k2})} \right] \left[(\rho_{k}^{0} - \rho_{2}^{0}) - \frac{(\rho_{l}^{0} - \rho_{2}^{0})|G_{l2}|^{2}}{(\Gamma_{m} + i\omega_{kl})(\Gamma_{mn} + i\Omega_{l2})} \right] \right\}.$$
(15)

Здесь разности населенностей $\rho_i^0 - \rho_k^0$ определяются приведенными в Приложении решениями системы уравнений (3)–(5) в приближении слабого ЭМ-поля и в пренебрежении вкладом эффекта МК в населенности уровней. Используя эти решения, получаем следующие выражения для вкладов в форму линии поглощения при магнитном сканировании.

В Λ -схеме:

$$\frac{\alpha_{s\Lambda}^1(\Delta_{down})}{\alpha_0} = -\Delta N \frac{2\Gamma_m}{\Gamma_{mn}} \frac{\Gamma_{mn}^2}{\Gamma_{mn}^2 + \Delta_{down}^2/4} \left[1 - \frac{\kappa_\Lambda \Gamma_n^2 \Gamma_{mn}^2}{(\Gamma_n^2 + \Delta_{down}^2)(\Gamma_{mn}^2 + \Delta_{down}^2/4)} \right] \left[1 - \frac{\Gamma_m - 3A + 2\Gamma_n}{\Gamma_m} \frac{\kappa_\Lambda \Gamma_{mn}^2}{\Gamma_{mn}^2 + \Delta_{down}^2/4} \right]. \tag{16}$$

В V-схеме:

$$\frac{\alpha_{sV}^1(\Delta_{up})}{\alpha_0} = -\Delta N \frac{2\Gamma_m}{\Gamma_{mn}} \frac{\Gamma_{mn}^2}{\Gamma_{mn}^2 + \Delta_{up}^2/4} \left[1 - \frac{\kappa_V \Gamma_m^2 \Gamma_{mn}^2}{(\Gamma_m^2 + \Delta_{up}^2)(\Gamma_{mn}^2 + \Delta_{up}^2/4)} \right] \left[1 - \frac{2\Gamma_m - 2A + \Gamma_n}{\Gamma_m} \frac{\kappa_V \Gamma_{mn}^2}{\Gamma_{mn}^2 + \Delta_{up}^2/4} \right].$$
(17)

Из выражений (16), (17) следует, что вклады Λ и V-схем представляются в виде пиков поглощения лоренцевой формы с полушириной $2\Gamma_{mn}$, амплитуды которых содержат структуры вблизи нулевого расщепления уровней. При этом вид и параметры структур зависят от релаксационных констант перехода и параметров насыщения ЭМ-поля. В Λ -схеме при соотношении констант релаксации $\Gamma_n << \Gamma_m$ и малых расщеплениях уровней $2\Gamma_{mn} >> \Delta_{down} \sim \Gamma_n$ форма и параметры структуры определяются из (16) как

$$\frac{\alpha_{s\Lambda}^{10}(\Delta_{down})}{\alpha_0} \approx -\Delta N \frac{2\Gamma_m}{\Gamma_{mn}} \left(1 - \frac{\Gamma_m - 3A + 2\Gamma_n}{\Gamma_m} \kappa_\Lambda \right) \times \left[1 - \frac{\kappa_\Lambda \Gamma_n^2}{\Gamma_n^2 + \Delta_{down}^2} \right].$$
(18)

В этом случае структура проявляется в виде провала лоренцевой формы (ответственен множитель в квадратных скобках) с полушириной нижнего уровня Γ_n и с линейно зависимой от параметра κ_{Λ} (при $\kappa_{\Lambda} < 1$) амплитудой

$$S_\Lambda \approx 1 - \frac{2\Gamma_m - 3A + 2\Gamma_n}{\Gamma_m} \kappa_\Lambda$$

При этом амплитуда провала также зависит от степени открытости перехода (значения параметра a_0). На закрытом переходе $(a_0 = 1)$

$$S_{\Lambda} \approx 1 - \left(0.5 + \frac{2\Gamma_n}{\Gamma_m}\right) \kappa_{\Lambda},$$

а на полностью открытом переходе ($a_0 = 0$)

$$S_{\Lambda} \approx 1 - \left(2 + \frac{2\Gamma_n}{\Gamma_m}\right) \kappa_{\Lambda}.$$

Таким образом, на открытом переходе величина поглощения в центре линии с ростом параметра κ_{Λ} уменьшается быстрее, чем на закрытом переходе (следствие ухода поглощающих частиц на третьи уровни).

Положение максимума в форме резонанса находится из соотношения (16) решением кубического уравнения и зависит от значения параметра κ_{Λ} как

$$\frac{\Delta_{down}^{max}}{\Gamma_n} \approx \sqrt{\frac{2\Gamma_{mn}}{\Gamma_n}}\sqrt{\kappa_{\Lambda}} - 1.$$
(19)

При расщеплениях $\Gamma_n \ll \Delta_{down} \lesssim \Gamma_{mn}$ вклад Λ -схемы определяется из (16) крылом лоренциана пиковой формы как

$$\frac{\alpha_{s\Lambda}^{10}(\Delta_{down})}{\alpha_0} \approx -\Delta N \frac{2\Gamma_m}{\Gamma_{mn}} \frac{\Gamma_{mn}^2}{\Gamma_{mn}^2 + \Delta_{down}^2/4} \times \\ \times \left[1 - \frac{\Gamma_m - 3A + 2\Gamma_n}{\Gamma_m} \frac{\kappa_\Lambda \Gamma_{mn}^2}{(\Gamma_{mn}^2 + \Delta_{down}^2/4)} \right]. \quad (20)$$

Здесь зависимость величины поглощения от значения параметра κ_{Λ} иная, чем при малых расщеплениях уровней. На закрытом переходе амплитуда крыла линии определяется множителем $S_{\Lambda} = 1 + (0.5 - 2\Gamma_n/\Gamma_m)\beta\kappa_{\Lambda}$, а на полностью открытом переходе — $S_{\Lambda} = 1 - (1 + 2\Gamma_n/\Gamma_m)\beta\kappa_{\Lambda}$, где $\beta \sim 1$. Отсюда на закрытом переходе с ростом значения κ_{Λ} происходит рост, а на открытом — уменьшение амплитуды крыла линии по линейному закону. Смена знака изменения амплитуды крыла линии по линейному закону. Смена знака изменения амплитуды крыла линии происходит при параметре ветвления $a_0 \approx 2(1 + 2\Gamma_n/\Gamma_m)/3$. Данный факт обусловлен особенностями кинетики населенностей магнитных подуровней перехода J = 1 - J = 1 в ЭМ-поле линейной поляризации при изменении степени открытости перехода [24].

В V-схеме вклад при расщеплениях уровней $\Delta_{up} < \Gamma_{mn}$ определяется из (17) как

$$\frac{\alpha_{sV}^{10}(\Delta_{up})}{\alpha_0} = -\Delta N \frac{2\Gamma_m}{\Gamma_{mn}} \times \left[(1 - 2\gamma_{mn}\kappa_\Lambda) - (1 - 4\gamma_{mn}\kappa_\Lambda) \frac{\Delta_{up}^2}{4\Gamma_{mn}^2} \right], \quad (21)$$

где $\gamma_{mn} = 1 - 0.5a_0 + \Gamma_n/\Gamma_m$. Значение γ_{mn} изменяется линейно с параметром a_0 от $\gamma_{mn} = 1/2 + \Gamma_n/\Gamma_m$ (при $a_0 = 1$) до $\gamma_{mn} = 1 + \Gamma_n/\Gamma_m$ (при $a_0 = 0$). Величина вклада (21) определяется разностью двух слагаемых, значения которых зависят от соотношения констант релаксации уровней и параметра насыщения. Первое слагаемое определяет амплитуду пика поглощения при нулевом расщеплении уровней. Амплитуда пика уменьшается линейно с ростом значения κ_{Λ} . Причем при фиксированном значении κ_{Λ} на закрытом переходе уменьшение амплитуды пика меньше, чем на открытых переходах. При этом отношение амплитуд вкладов Λ - и V-схем при нулевом расщеплении уровней изменяется линейно с параметром κ_{Λ} : $\kappa_{\Lambda} \propto (1 + a_0 \kappa_{\Lambda})$.

Вклад второго слагаемого определяет вид резонанса в V-схеме при расщеплении уровней. На закрытом переходе при параметрах насыщения $\kappa_{\Lambda} < 0.5 \ (\kappa_{V} < \Gamma_{n}/2\Gamma_{m})$ резонанс вблизи нулевого расщепления будет иметь пиковую форму, а при $\kappa_{\Lambda} > 0.5 \ (\kappa_{V} > \Gamma_{n}/2\Gamma_{m})$ резонанс будет проявляться в виде провала. В случае открытых переходов провал в форме резонанса возникает при меньших значениях параметра κ_{Λ} из-за зависимости γ_{mn} от параметра ветвления a_{0} . Такое поведение резонанса поглощения при малых расщеплениях уровней наблюдается в приведенных ниже расчетах для V-типа и для перехода J = 1 - J = 2, где основной вклад в форму резонанса вносят V-схемы. При больших расщеплениях уровней, $\Delta_{down,up} > \Gamma_{mn}$, вклады обеих схем перехода одинаковы и представимы в виде лоренцианов с полушириной линии Γ_{mn} :

$$\frac{\alpha_{s\Lambda,sV}^{1}(\Delta_{down,up})}{\alpha_{0}} \approx -\Delta N \frac{2\Gamma_{m}}{\Gamma_{mn}} \frac{\Gamma_{mn}^{2}}{\Gamma_{mn}^{2} + \Delta_{down,up}^{2}/4}.$$
(22)

Отметим характер зависимостей параметров структур магнитного резонанса на переходе J = 1 - J = 1 от соотношения констант релаксации уровней Γ_n и Γ_m . В рассматриваемом приближении рост значения Γ_n (в диапазоне $\Gamma_n \leq \Gamma_m$) при фиксированной величине Γ_m приводит к росту как ширины всего контура (из-за роста величины Γ_{mn}), так и ширин провалов в Λ - и V-схемах при малых расщеплениях уровней. При этом происходит уменьшение амплитуды всего контура линии поглощения (через отношение Γ_m/Γ_{mn} в формулах (18)–(22)).

В заключение анализа рассмотрим особенности форм линий поглощения при магнитном сканировании на закрытых переходах в атомах Λ- и V-типов при произвольной интенсивности ЭМ-поля. В этом случае из соотношений (10) и (12) без учета вклада МК уровней в их населенность, с помощью выражений для разностей населенностей уровней (31) и (32) из Приложения, формы линий поглощения можно определить следующим образом.

В Λ -схеме:

$$\frac{\alpha_{s\Lambda0}^{1}(\Delta_{down})}{\alpha_{0}} = -\Delta N \frac{2\Gamma_{m}}{\Gamma_{mn}} \frac{\Gamma_{mn}^{2}}{\Gamma_{s\Lambda}^{2} + \Delta_{down}^{2}/4} \times \left[1 - \frac{\kappa_{\Lambda}\Gamma_{n}^{2}\Gamma_{mn}^{2}}{(\Gamma_{n}^{2} + \Delta_{down}^{2})(\Gamma_{mn}^{2} + \Delta_{down}^{2}/4)}\right], \quad (23)$$

где

$$\Gamma_{s\Lambda}^2 = \Gamma_{mn}^2 \left(1 + 2\kappa_\Lambda \frac{\Gamma_n}{\Gamma_m} \right)$$

В V-схеме:

$$\frac{\alpha_{sV0}^{1}(\Delta_{up})}{\alpha_{0}} = -\Delta N \frac{2\Gamma_{m}}{\Gamma_{mn}} \frac{\Gamma_{mn}^{2}}{\Gamma_{sV}^{2} + \Delta_{up}^{2}/4} \times \left[1 - \frac{\kappa_{V}\Gamma_{m}^{2}\Gamma_{mn}^{2}}{(\Gamma_{m}^{2} + \Delta_{up}^{2})(\Gamma_{mn}^{2} + \Delta_{up}^{2}/4)}\right], \quad (24)$$

где

$$\Gamma_{sV}^2 = \Gamma_{mn}^2 (1 + \kappa_V).$$

Сравнение выражений (23), (24) и (16), (17) показывает, что формы линий поглощения в атомах Аи V-типов подобны формам вкладов А- и V-схем в

Рис. 2. Формы линий поглощения при магнитном сканировании в атомах с переходами Λ -типа (*a*) и V-типа (*б*) при $a_0 = 1, \Gamma_n/\Gamma_m = 0.1, \Gamma_{mn} = 5.5\Gamma_n$. $a - \kappa_{\Lambda} = 0.01 (1), 0.05 (2), 0.1 (3), 0.3 (4), 0.5 (5); 6 - \kappa_{V} = 0.01 (1), 0.1 (2), 0.5 (3), 1 (4), 5 (5). Пунктирные линии — полное решение, сплошные линии — решение без учета вклада МК$

атоме с переходом J = 1 - J = 1, имеются лишь небольшие количественные различия в амплитудах провалов при малых расщеплениях ($\Delta_{down} \sim \Gamma_n$, $\Delta_{up} < \Gamma_{mn}$) и в амплитудах пиков при больших ($\Delta_{down,up} \sim \Gamma_{mn}$) расщеплениях уровней. При этом выражения (23), (24) позволяют определить характер зависимостей ширин линий поглощения (по корневому закону) от интенсивности (параметров насыщения $\kappa_{\Lambda,V}$) ЭМ-поля на рассматриваемых переходах.

3. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ РАСЧЕТОВ ФОРМЫ ЛИНИИ ПОГЛОЩЕНИЯ ЭМ-ВОЛНЫ ЛИНЕЙНОЙ ПОЛЯРИЗАЦИИ ПРИ МАГНИТНОМ СКАНИРОВАНИИ В АТОМАХ С ВЫРОЖДЕННОЙ СТРУКТУРОЙ УРОВНЕЙ

Численные исследования спектров поглощения ЭМ-волны линейной поляризации и формирующих их процессов при магнитном сканировании проводились на основе выражения (7) и численных решений систем уравнений (3)-(5) либо аналитических решений (18)-(24) при вариации параметров насыщения ЭМ-поля в диапазоне значений $\kappa_{\Lambda,V}=0.01-5$, соотношений констант релаксации уровней $\Gamma_n/\Gamma_m = 0.01 - 0.1$ и величины расщепления уровней магнитным полем $\Delta_{down,up}/\Gamma_n=0-50$ на переходах закрытого $(a_0=1)$ и открытого $(a_0=0.8-0.5)$ типов. Результаты этих исследований показали качественную схожесть спектров поглощения и одинаковый характер процессов, формирующих эти спектры на рассматриваемых переходах закрытого и открытого типов, имеются лишь небольшие количественные различия в амплитудах и контрастах структур спектров. Поэтому далее на рисунках представлены результаты для переходов закрытого типа.

3.1. Формы линий поглощения при магнитном сканировании в атомах с переходами Λ-, V- и J = 1 - J = 1-типов

Формы линий поглощения ЭМ-волны линейной поляризации при магнитном сканировании в атомах с переходами Λ - и V-типов показаны на рис. 2. При малых интенсивностях ЭМ-поля (при параметрах насыщения $\kappa_{\Lambda} < 0.01$ в Λ -типе (рис. 2 *a*) и $\kappa_{V} \leq 0.1$ в V-типе (рис. 2 *b*)) линии поглощения проявляются в виде пика лоренцевой формы с полушириной $2\Gamma_{mn}$ и максимумом в нулевом магнитном поле (кривые 1). С ростом интенсивности ЭМ-волны амплитуды пиков уменьшаются, а в их форме вблизи нулевого магнитного поля образуются провалы, амплитуды и ширины которых зависят от констант релаксации уровней, типа перехода, степени его открытости и интенсивности (параметра насыщения) ЭМ-волны.

В случае перехода Λ -типа (рис. 2 *a*) провалы проявляются при параметрах насыщения $\kappa_{\Lambda} \geq 0.01$. При этом форма резонанса при соотношении констант релаксации $\Gamma_n/\Gamma_m < 1$ и параметрах насыщения $\kappa_{\Lambda} \leq 0.1$ (кривые 1–3) хорошо описывается выражением (23), и при расщеплениях нижних уровней $\Delta_{down} \lesssim \Gamma_n$ представима вблизи центра линии в виде

$$\frac{\alpha_{s\Lambda0}^1(\Delta_{down})}{\alpha_0} = -\Delta N \frac{2\Gamma_m}{\Gamma_{mn}} \left[1 - \frac{\kappa_\Lambda \Gamma_n^2}{\Gamma_n^2 + \Delta_{down}^2} \right], \quad (25)$$

т. е. образуется провал с полушириной Γ_n , амплитуда и контраст которого с ростом величины κ_{Λ} растут по линейному закону. При расщеплениях уровней $\Gamma_n < \Delta_{down} \sim \Gamma_{mn}$ форма резонанса определяется как

$$\frac{\alpha_{s\Lambda0}^{1}(\Delta_{down})}{\alpha_{0}} \approx -\Delta N \frac{2\Gamma_{m}\Gamma_{mn}}{\Gamma_{s\Lambda}^{2} + \Delta_{down}^{2}/4} \times \\ \times \left[1 - \frac{\kappa_{\Lambda}\Gamma_{n}^{2}\Gamma_{mn}^{2}}{\Delta_{down}^{2}(\Gamma_{mn}^{2} + \Delta_{down}^{2}/4)}\right]. \quad (26)$$

В этом случае резонанс имеет пиковый вид, ширина которого с ростом параметра κ_{Λ} растет по корневому, а амплитуда уменьшается по линейному законам. Положение максимума пика резонанса зависит от значения параметра κ_{Λ} и определяется выражением (19).

На рис. 2 а видно, что при параметрах насыщения $\kappa_{\Lambda} > 0.1$ имеются различия аналитических решений (23) (сплошные кривые 4, 5) и численных решений (пунктирные кривые 4, 5), что свидетельствует о существенном вкладе эффекта МК в кинетику населенностей уровней и в форму магнитного резонанса. Причем значительная разница наблюдается в значениях амплитуды, ширины и контраста узкого провала. Так, при изменении величины κ_{Λ} в интервале $\kappa_{\Lambda} = 0.1 - 0.3$ происходит уменьшение амплитуды и контраста провала примерно в 2 раза, а его ширина возрастает более, чем в 2 раза (кривая 4). При этом изменения в пиковой части резонанса за счет вклада эффекта МК незначительные и проявляются в небольшом уменьшение амплитуды пика и сдвиге его максимума в сторону больших значений расщеплений уровней.

В случае перехода V-типа (рис. 2*б*) провал в центре линии магнитного резонанса возникает при более интенсивном ЭМ-поле (при параметрах $\kappa_{\rm V} > 0.1$). При этом амплитуда и контраст провала значительно меньше, а его ширина значительно больше, чем у провала в случае перехода А-типа. Здесь влияние эффекта МК уровней на форму магнитного резонанса проявляется при значениях параметра $\kappa_{\rm V} > 0.3$ (кривые 3–5). При этом действие эффекта МК уровней приводит при параметрах насыщения $0.3 \le \kappa_V \le 1$ (кривые 3, 4) к уменьшению амплитуды провала и, особенно, его контраста, но слабо влияет на крыло линии. При параметрах насыщения $\kappa_V > 1$ вклад МК уровней проявляется в спектре всего резонанса (кривая 5): здесь эффект МК влияет как на амплитуду и ширину провала при расщеплениях уровней $\Delta_{up} < \Gamma_{mn}$, так и на структуры крыла линии при расщеплениях $\Delta_{up} > \Gamma_{mn}$.

Важно отметить, что учет вклада эффекта МК уровней в их населенность препятствует возникновению аномалий в формах магнитных резонансов, возникающих в приближениях, не учитывающих вклада этого эффекта (рис. 2 a, 6; кривые 5).

Формы линий поглощения ЭМ-волны линейной поляризации при магнитном сканировании в атоме на переходе J = 1 - J = 1 при разных интенсивностях (параметрах насыщения $\kappa_{\rm V}$) показаны на рис. 3. В этом случае формы линий поглощения образуется суммой вкладов Л- и V-схем перехода, причем, согласно рис. 3 б, основной вклад вносит Лсхема. Именно в ней из-за перераспределения населенности нижних магнитных подуровней при действии ЭМ-поля в пользу подуровней с $M = \pm 1$ формируются все характерные особенности магнитного резонанса: узкий контрастный провал с полушириной Γ_n , возникающий вблизи нулевого расщепления уровней при параметрах насыщения $\kappa_{\rm V} \ge 0.01$, и широкий пик поглощения при расщеплениях уровней $\Delta_{down} > \Gamma_{mn}$ (пунктирные линии 2–4), как и в случае атома Л-типа (рис. 2 *a*). Вклады V-схемы (штрихпунктирные линии) содержат широкий с малым контрастом провал, проявляющийся в пиковой форме вклада вблизи нулевого расщепления уровней при параметрах насыщения $\kappa_V > 0, 1.$ С ростом интенсивности (параметра насыщения $\kappa_{\rm V}$) ЭМ-поля доля вклада V-схемы, согласно рис. 3 б, уменьшается и практически не влияет на структуры магнитного резонанса, формируемые в Л-схеме.

Вклады процессов, формирующих структуры магнитного резонанса на переходе J = 1 - J = 1, показаны на рис. 3 а. Как и в простых атомах Л- и V-типов, физической причиной образования провалов с полушириной нижнего, либо верхнего уровня в форме магнитного резонанса является МК, индуцируемая ЭМ-полем линейной поляризации между магнитными подуровнями нижнего либо верхнего состояний атома. При этом добавки за счет вклада эффекта МК в населенности уровней приводят также к уменьшению амплитуды провала и его контраста вблизи центра линии и изменяют форму крыла магнитного резонанса. Особенно это проявляется при параметрах насыщения $\kappa_{\rm V} \geq 0.5$ (рис. 3 a, кривые 3-5). Кроме этого, на данном переходе, в отличие от простых атомов А- и V-типов, при формировании спектра магнитного резонанса проявляется также вклад эффекта переноса МК с уровней верхнего состояния на уровни нижнего состояния. Согласно рис. 3 а, вклад переноса МК в условиях расчетов увеличивает амплитуду провала в области малых расщеплений уровней ($\Delta_{down} \lesssim \Gamma_n$) и ампли-

Рис. 3. Формы линий поглощения при магнитном сканировании в атоме с переходом J = 1 - J = 1 при $a_0 = 1$, $\Gamma_n/\Gamma_m = 0.1$, $\Gamma_{mn} = 5.5\Gamma_n$, $\Delta_{down} = \Delta_{up}$; $\kappa_V = 0.01$ (1), 0.1 (2), 0.5 (3), 1 (4), 5 (5). a — сплошные линии соответствуют решению с учетом вкладов МК уровней, пунктиры — полное решение (учет вкладов МК и ее переноса), штрихпунктиры решение без учета вкладов МК и ее переноса; δ — сплошные линии обозначают суммарный контур, пунктиры — вклад Λ -схемы, штрихпунктиры — вклад V-схемы

туду пика (при расщеплениях $\Delta_{down} \sim \Gamma_{mn}$). Однако величина этого вклада мала, его максимальное значение менее 20% от вклада эффекта МК в населенность уровней.

3.2. Формы линий поглощения при магнитном сканировании в атомах на переходах J = 1 - J = 2 и J = 2 - J = 1

Формы линий поглощения ЭМ-волны линейной поляризации при магнитном сканировании в атомах с переходами J = 2 - J = 1 и J = 1 - J = 2 показаны на рис. 4. На данных переходах формы линии поглощения, как и на переходе J = 1 - J = 1, содержат также на фоне широкого пика поглощения узкий провал вблизи нулевого расщепления уровней, который проявляется при больших, чем на переходе J = 1 - J = 1, параметрах насыщения (при $\kappa_{\rm V} \ge 0.1$). При этом на переходе J = 2 - J = 1(рис. 4 а) амплитуда и контраст провала значительно больше, чем на переходе J = 1 - J = 2(рис. 4δ). Такое различие в параметрах структур магнитного резонанса обусловлено тем, что на переходе J = 2 - J = 1 резонанс формируется в Λ -схемах, и его форма подобна форме резонанса в простой Лсхеме (рис. 2 *a*). В случае перехода J = 1 - J = 2 в силу различия сил осцилляторов между компонентами магнитной структуры основной вклад в резонанс вносят V-схемы, образуемые переходами с магнитных подуровней верхнего состояния с $M = \pm 2$

дах, наряду с эффектом некогерентного насыщения населенностей уровней, также важны добавки, вносимые эффектом МК в населенность уровней (сплошные линии) и эффектом переноса МК с уровней верхнего состояния на уровни нижнего состояния (пунктирные линии). При этом добавки за счет вклада эффекта МК в населенность уровней проявляются при параметрах насыщения $\kappa_{\rm V} > 0.1$ и приводят, как и на переходе J = 1 - J = 1, также к уменьшению амплитуды провалов, формируемых эффектом полевого насыщения населенностей уровней (рис. 4, сплошные кривые 2-5). Причем величины этих добавок в силу указанных выше специфик формирования резонансов максимальны на переходе J = 2 - J = 1 и при параметрах насыщения $\kappa_{\rm V} > 0.5$ существенным образом влияют на параметры провала (рис. 4 а, кривые 3–5). Влияние эффекта переноса МК с уровней верхнего состояния на уровни нижнего состояния на форму резонанса более выражен на переходе J = 1 - J = 2. Здесь вклад эффекта также проявляется при малых расщеплениях уровней $\Delta_{down} \sim (2-5)\Gamma_n$ и приводит, в отличие от перехода J = 1 - J = 1, к уменьшению амплитуды провала (рис. 4 б, пунктирные кривые 2-4). Максимальный вклад эффекта переноса МК реализуется при параметрах насыщения $\kappa_{\rm V} = 0.3$ -

(рис. 1 б). Поэтому здесь контраст узкой структу-

ры меньше, а формы резонанса подобны резонан-

су в простой V-схеме (рис. 2 *б*). При этом при формировании спектров резонансов на данных перехо-

Рис. 4. Формы линий поглощения при магнитном сканировании в атомах с переходами J = 2 - J = 1 (a) и J = 1 - J = 2(б) при $a_0 = 1$, $\Gamma_n/\Gamma_m = 0.1$, $\Gamma_{mn} = 5.5\Gamma_n$, $\Delta_{down} = \Delta_{up}$; $\kappa_s = 0.01$ (1), 0.1 (2), 0.5 (3), 1 (4), 5 (5). Сплошные линии — решение с учетом эффекта МК уровней, пунктиры — полное решение (вклады МК и ее переноса), штрихпунктиры — решение без учета эффектов МК

0.5 и составляет примерно 30 % от вклада эффекта МК в населенность уровней. С дальнейшим ростом значения $\kappa_{\rm V}$ величина вклада переноса МК уменьшается (кривая 5). В случае перехода J=2-J=1 влияние вклада переноса МК на форму магнитного резонанса почти на порядок меньше, чем на переходе J=1-J=2.

Отметим характер влияния степени открытости (значения параметра a_0) рассматриваемых переходов на величину вкладов эффектов МК и ее переноса на форму магнитных резонансов. Расчеты показывают, что максимальный вклад данных эффектов достигается на закрытых типах переходов. Увеличение открытости переходов (уменьшение параметра а₀) приводит к уменьшению вкладов этих эффектов вследствие уменьшения числа взаимодействующих с ЭМ-полем частиц из-за их ухода на третьи уровни (рис. 1) и, соответственно, к уменьшению амплитуды и контраста провалов, а также амплитуды пиков в форме резонансов (в соответствии с разд. 2 статьи). Причем более чувствительны к величине параметра *a*₀ оказываются эффект переноса МК и переход J = 1 - J = 2.

Важно также отметить, что вклады эффектов МК и ее переноса в формы резонансов поглощения ЭМ-волны линейной поляризации вблизи их центров линий на рассматриваемых переходах имеют знакопеременные интерференционного типа зависимости от величины расщепления уровней. Такое поведение вкладов эффектов МК является следствием когерентности формирующих резонансы процессов.

4. ЗАКЛЮЧЕНИЕ

Таким образом, представленные результаты аналитических и численных исследований резонансного взаимодействия линейно поляризованной ЭМволны с атомами, имеющими вырожденную структуру уровней, демонстрируют формирование в спектре поглощения при магнитном сканировании вблизи нулевого расщепления уровней узких структур — резонансов электромагитно-индуцированной прозрачности. Показано, что параметры резонансов ЭИП зависят от значений констант релаксации и полных моментов уровней, степени открытости переходов и интенсивности (параметров насыщения) ЭМ-поля. При этом наиболее узкие и контрастные резонансы ЭИП с шириной, определяемой константой релаксации нижнего состояния, образуются в атомах, содержащих переходы Л-типа (между состояниями с полными моментами J = 1 - J = 0, J = 1 - J = 1, J = 2 - J = 1). B атомах, содержащих переходы V-типа (переходы между состояниями с моментами J = 0 - J = 1, J = 1 - J = 2), контраст резонансов значительно меньше, а их ширины определяются константой релаксации верхнего состояния. При этом контраст резонансов ЭИП максимален на закрытых типах переходов, с увеличением открытости переходов контраст резонансов уменьшается.

Установлено, что основной физической причиной образования резонансов ЭИП в атомах с вырожденной структурой уровней является МК, индуцированная ЭМ-полем линейной поляризации на переходах между магнитными подуровнями нижнего и верхнего состояний атома, и эти резонансы носят когерентный характер. Вклад процесса переноса МК с уровней верхнего состояния на уровни нижнего состояния мал, проявляется при малых расщеплениях уровней и более выражен в атомах, содержащих переходы V-типа. При этом влияние эффекта МК уровней на форму магнитного резонанса в силу нелинейного (по интенсивности) характера взаимодействия ЭМ-поля с переходами атомов зависит также нелинейным образом от интенсивности ЭМ-поля через эффект насыщения населенностей уровней. Причем вклад индуцированной полем МК уровней в их населенность в оптимальных условиях может составлять примерно 50% от значений населенностей, рассчитанных без учета вклада эффекта МК, и приводить к изменениям величины поглощения в центре линии магнитного резонанса до 75-100 %. При этом более критичными оказываются переходы, содержащие А-схемы, поскольку в них проявление эффекта МК в населенностях уровней и спектрах поглощения обнаруживается при значительно меньших интенсивностях ЭМ-поля и меньших расщеплениях уровней, чем в случае переходов, содержащих V-схемы. Именно поэтому на переходах J = 1 - J = 1 и J = 2 - J = 1 наблюдается более узкие и контрастные резонансы ЭИП, чем на переходе J = 1 - J = 2. Данные обстоятельства определяют также более жесткие ограничения на интенсивность ЭМ-поля и область применимости метода пробного поля [15,22] при исследовании нелинейных явлений в вырожденных атомных системах, содержащих Лсхемы переходов.

Следует отметить, что представленные результаты получены для неподвижных атомов. В случае движущихся атомов с максвелловским распределением по скоростям на допплеровом контуре линии поглощения на частоте ЭМ-поля при магнитном сканировании также возникают резонансы ЭИП, обусловленные эффектом МК уровней. Как и для неподвижных атомов, параметры резонансов ЭИП зависят от значений констант релаксации уровней и их полных моментов, степени открытости атомного перехода и интенсивности ЭМ-поля. При этом узкие с шириной нижнего уровня резонансы ЭИП формируются также на вырожденных переходах атомов, содержащих Λ -схемы.

В заключении отметим, что узкий резонанс, возникающий в спектре поглощения бегущей ЭМволны линейной поляризации при магнитном сканировании в атомах, содержащих переходы Λ-типа, может представлять интерес для ряда практических приложений, в частности, для измерения слабых магнитных полей.

Финансирование. Работа выполнена в рамках госзадания ИФП СО РАН (проект № FWGW-2021-0012).

приложение

Решения системы уравнений (3)–(5) в случае магнитного сканирования (при $\Omega_0 = 0$) для разностей населенностей магнитных подуровней на переходе J = 1 = J = 1 в приближении без вклада эффекта МК подуровней в их населенности при равенстве параметров взаимодействия и вероятностей перехода по каждому каналу ($|G_{ik}|^2 = |G|^2$, $A_{ik} = A_{mn}/2 = A$) следующие.

В Λ -схеме:

$$\rho_{5}-\rho_{1}=\rho_{5}-\rho_{3}=\Delta N \left[1-2\kappa_{\Lambda}\frac{\Gamma_{mn}^{2}}{\Gamma_{s\Lambda1}^{2}+\Delta_{down}^{2}/4}\right]\times$$

$$\times \left\{1-\frac{\kappa_{\Lambda}\Gamma_{n}\Gamma_{mn}^{2}}{D} \left[\frac{\Gamma_{m}-2A}{\Gamma_{s\Lambda1}^{2}+\Delta_{down}^{2}/4}-\frac{A\delta_{2}}{\Gamma_{s\Lambda0}^{2}+\Delta_{down}^{2}/4}\right]\times\right.$$

$$\times \left[1+\kappa_{\Lambda}\frac{\Gamma_{m}}{\Gamma_{n}}\frac{\Gamma_{mn}^{2}}{\Gamma_{mn}^{2}+\Delta_{down}^{2}/4}\right]\right\}, \quad (27)$$

где $\Gamma_{s\Lambda 1}^2 = \Gamma_{mn}^2 (1 + 2\kappa_{\Lambda}), \ \Gamma_{s\Lambda 0}^2 = \Gamma_{mn}^2 (1 + \kappa_{\Lambda}), \ \kappa_{\Lambda} = G^2 / \Gamma_{mn} \Gamma_n,$

$$D = \Gamma_n^2 \Biggl\{ 1 + 2 \frac{\Gamma_m - A}{\Gamma_n} \frac{\kappa_\Lambda \Gamma_{mn}^2}{\Gamma_{s\Lambda 1}^2 + \Delta_{down}^2/4} \times \\ \times \Biggl[1 + \frac{\kappa_\Lambda \Gamma_{mn}^2}{\Gamma_{mn}^2 + \Delta_{down}^2/4} \frac{\Gamma_m (\Gamma_m + 2\Gamma_n - 2A)}{2\Gamma_n (\Gamma_m - A)} \Biggr] \Biggr\},$$
$$\delta_2 = \frac{1}{1 + 2(1 - A/\Gamma_m)\kappa_\Lambda \frac{\Gamma_{mn}^2}{\Gamma_{sv}^2 + \Delta_{down}^2/4}}.$$

B V-cxeme:

$$\rho_4 - \rho_2 = \rho_6 - \rho_2 = \Delta N \left(1 - \frac{\kappa_V \Gamma_{mn}^2}{\Gamma_{sV}^2 + \Delta_{up}^2/4} \right) \times \\ \times \left[1 - \frac{2(\Gamma_m - A)}{\Gamma_m} \frac{\kappa_\Lambda \Gamma_{mn}^2}{\Gamma_{sV1}^2 + \Delta_{up}^2/4} \right], \quad (28)$$

где

$$\begin{split} \Gamma_{sv}^2 &= \Gamma_{mn}^2(1+\kappa_{\rm V}),\\ \Gamma_{sv1}^2 &= \Gamma_{mn}^2\left[1+(1+2(1-A/\Gamma_m)\kappa_{\Lambda}\right]\\ \kappa_{\rm V} &= 2G^2/\Gamma_{mn}\Gamma_m, \end{split}$$

 ΔN — разность населенностей между верхними и нижними подуровнями в отсутствие ЭМ-поля.

В первом нелинейном по ЭМ-полю приближении (при $\kappa_{\Lambda}, \kappa_{V} < 1$) имеем следующие выражения.

В Λ -схеме:

$$\rho_5^0 - \rho_1^0 = \rho_5^0 - \rho_3^0 \approx \\ \approx \Delta N \left[1 - \frac{(\Gamma_m - 3A + 2\Gamma_n)}{\Gamma_m} \frac{\kappa_\Lambda \Gamma_{mn}^2}{(\Gamma_{mn}^2 + \Delta_{down}^2/4)} \right].$$
(29)

В V-схеме:

$$\rho_4^0 - \rho_2^0 = \rho_6^0 - \rho_2^0 \approx \\ \approx \Delta N \left[1 - \frac{2\Gamma_m - 2A + \Gamma_n}{\Gamma_m} \frac{\kappa_V \Gamma_{mn}^2}{\Gamma_{mn}^2 + \Delta_{up}^2/4} \right]. \quad (30)$$

В случае атомов с переходами A- или V-типов разности населенностей при произвольной интенсивности ЭМ-поля определяются из системы уравнений (3)–(5) следующим образом.

В Λ -схеме:

$$\rho_5^0 - \rho_1^0 = = \Delta N \left[1 - \frac{(\Gamma_m - 2A + 2\Gamma_n)}{\Gamma_m} \frac{\kappa_\Lambda \Gamma_{mn}^2}{(\Gamma_{s1}^2 + \Delta_{down}^2/4)} \right].$$
(31)

В V-схеме:

$$\rho_4^0 - \rho_2^0 \approx \\ \approx \Delta N \left[1 - \frac{2\Gamma_m - 2A + \Gamma_n}{\Gamma_m} \frac{\kappa_\Lambda \Gamma_{mn}^2}{(\Gamma_s^2 + \Delta_{up}^2/4)} \right]. \quad (32)$$

Здесь

$$\Gamma_s^2 = \Gamma_{mn}^2 (1 + \kappa_{\rm V}), \quad \Gamma_{s1}^2 = \Gamma_{mn}^2 (1 + 2\kappa_{\rm V}).$$

Отметим, что в слабом ЭМ-поле (при $\kappa_{\Lambda,V} < 1$) решение (30) для разностей населенностей в V-схеме перехода J = 1 - J = 1 совпадает с решением для атома V-типа, а в Λ -схеме есть отличие от решения для атома Λ -типа в коэффициенте при втором слагаемом выражения (29).

ЛИТЕРАТУРА

- 1. Е. Б. Александров, УФН 107, 595 (1972).
- W. E. Bell and A. L. Bloom, Phys. Rev. Lett. 6, 280 (1961).
- Э. Г. Сапрыкин, А. А. Черненко, А. М. Шалагин, ЖЭТФ 146, 229 (2014).

- 4. G. Alzetta, A. Gozzini, L. Moi et al., Nouvo Cim. 36B, 5 (1976).
- E. Arrimondo and G. Orriols, Lett. Nouvo Cim. 17, 333 (1976).
- В. С. Смирнов, А. М. Тумайкин, В. И. Юдин, ЖЭТФ 95, 1613 (1989).
- F. M. Akulshin, S. Barreiro, and A. Lesama, Phys. Rev. A 57, 2996 (1998).
- А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, Письма в ЖЭТФ 69, 776 (1999).
- **9**. С.Г. Раутиан, Письма в ЖЭТФ **60**, 462 (1994).
- S. K. Kim, H. S. Moon, K. Kim et. al., Phys. Rev. A 61, 063813 (2003).
- **11**. Д. В. Бражников, А. В. Тайченачев, А. М. Тумайкин и др., Письма в ЖЭТФ **91**, 694 (2010).
- C. Goren, A. D. Wilson-Gordon, M. Rosenbluh et. al., Phys. Rev. A 67, 033807 (2003).
- **13**. Д. В. Лазебный, Д. В. Бражников, А. В. Тайченачев и др., ЖЭТФ **148**, 1068 (2015).
- 14. Э. Г. Сапрыкин, А. А. Черненко, А. М. Шалагин, ЖЭТФ 150, 238 (2016).
- 15. С. Г.Раутиан, Г. И. Смирнов, А. М.Шалагин, Нелинейные резонансы в спектрах атомов и молекул, Наука, Новосибирск (1979), с. 310.
- 16. А. М. Шалагин, Основы нелинейной спектроскопии высокого разрешения, НГУ, Новосибирск (2008).
- 17. Э. Г. Сапрыкин, А. А. Черненко, ЖЭТФ 154, 235 (2018).
- Э. Г. Сапрыкин, А. А. Черненко, Квант. электр. 49, 479 (2019).
- 19. Э. Г. Сапрыкин, А. А. Черненко, Квант. электр.52, 560 (2022).
- 20. A. Chernenko and E. Saprykin, Am. J. Opt. Phot. 8, 51 (2020).
- **21**. Э.Г. Сапрыкин, А.А. Черненко, ЖЭТФ **166**, 460 (2024).
- 22. В. С. Летохов, В. П. Чеботаев, Принципы нелинейной лазерной спектроскопии, Наука, Москва (1975).
- **23**. И. И. Собельман, Введение в теорию атомных спектров, Наука, Москва (1977).
- 24. А. А. Черненко, в сб. Тез. докл. Всерос. Конфер. Енисейская фотоника-2024, (Красноярск, 2024) ИФ СО РАН (2024), т.1, с. 212.