### ПЛАЗМОН-ПОЛЯРИТОН НА ГРАНИЦЕ РАЗДЕЛА ОДНООСНЫЙ КРИСТАЛЛ–МЕТАЛЛ: ОРИЕНТАЦИИ КРИСТАЛЛА, ДОПУСКАЮЩИЕ РАСПРОСТРАНЕНИЕ ВОЛНЫ

В. И. Альшиц\*, В. Н. Любимов

<sup>а</sup> Институт кристаллографии им. А. В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ «Курчатовский институт» 119333, Москва, Россия

> Поступила в редакцию 16 сентября 2024 г., после переработки 17 октября 2024 г. Принята к публикации 18 октября 2024 г.

Теоретически проанализированы условия существования плазмон-поляритонов на границе раздела одноосного кристалла произвольной ориентации и изотропного металла. Доказано, что при не слишком большой диэлектрической проницаемости  $|\varepsilon_m|$  металла и достаточно низкой анизотропии кристалла для распространения этой волны нет никаких геометрических запретов. Ограничения возникают, когда значение  $|\varepsilon_m|$  превышает определенные пороги, которые в явном виде найдены для оптически положительных и отрицательных кристаллов. Запретные зоны для ориентаций оптической оси с ограничены контурами делокализации поляритонов в кристалле. Найдено их расположение на единичной сфере  $c^2 = 1$ . Граничные конусы ориентации оптических осей в положительных и отрицательных кристаллах различаются: в первом случае они окружают нормаль к сагиттальной плоскости, а во втором — нормаль к интерфейсу.

**DOI:** 10.31857/S004445102502004X

#### 1. ВВЕДЕНИЕ

Локализованные электромагнитные волны оптического диапазона, распространяющиеся в твердых телах вдоль их поверхностей и границ раздела, поляритоны в диэлектриках и плазмоны в металлах, широко используются в современной технике, что стимулирует исследования в этой области [1–8]. Поляритоны более ограничены в отношении условий своего существования, чем плазмоны. Например, они запрещены на границе любых двух изотропных диэлектриков с положительными значениями диэлектрической проницаемости  $\varepsilon_{1,2}$ . В таких структурах только так называемые дисперсионные поляритоны могут распространяться вблизи некоторых определенных резонансных частот, когда одна из диэлектрических проницаемостей ( $\varepsilon_1$  или  $\varepsilon_2$ ) становится отрицательной. Однако, как было показано Дьяконовым [9], ситуация радикально меняется, если заменить один из изотропных диэлектриков одноосным кристаллом с оптической осью, параллельной границе раздела, и положительными диэлектрическими проницаемостями  $\varepsilon_o$  и  $\varepsilon_e$  (обыкновенной и необыкновенной компонентами), связанными с диэлектрической проницаемостью є изотропной части структуры, так что  $\varepsilon_o < \varepsilon < \varepsilon_e$ . В этом случае бездисперсионный поляритон может возникать в довольно узком диапазоне направлений распространения. Дальнейшие обобщения работы [9] применительно к произвольной ориентации одноосных кристаллов [10–13] и к симметричным срезам двуосных кристаллов [11, 14, 15] подтвердили как существование волновой ветви Дьяконова, так и весьма узкий диапазон разрешенных направлений распространения такого поляритона. Поэтому неудивительно, что волна Дьяконова была экспериментально обнаружена [16] лишь через 21 год после ее теоретического предсказания.

Отметим, что из результатов работы [17] следует, что на границе двух однородных диэлектриков произвольной анизотропии может существовать не более одного поляритона. Если же диэлектрики являются магнитооптически активными или обладают бианизотропными свойствами, то тогда в заданном направлении могут существовать два поляритона [18]. Отметим также, что в [19] анализировались

ÉE-mail: valshits@mail.ru

общие условия существования поляритонов на границе диэлектрика произвольной анизотропии с изотропным диэлектриком и со сверхпроводником.

Идеальная металлизация поверхности одноосного диэлектрического кристалла (т.е. полное экранирование поляритона в диэлектрике) допускает существование только дисперсионного поляритона, когда одно из значений диэлектрической проницаемости кристалла отрицательно [20]. А при таком идеальном экранировании применительно к изотропному диэлектрику даже дисперсионные поляритоны становятся запрещенными. Однако в случае несовершенного экранирования ситуация становится совершенно иной. Обычная металлизация обеспечивает распространение в металле плазмона, связанного с поляритоном в соседней диэлектрической среде. В случае изотропного диэлектрика нет никаких ограничений для существования такого гибридного локализованного плазмон-поляритона, за исключением поглощения плазмона в нормальном металле, которое может заметно влиять на длину свободного пробега гибридной волны. А в случае кристаллического диэлектрика некоторые его ориентации могут оказаться запрещенными для распространения плазмон-поляритонов. Но в этом случае диапазон их существования оказывается достаточно широким (в отличие от случая поляритона Дьяконова на границе раздела диэлектрик-диэлектрик). В целом из результатов, полученных в [17], следует, что на границе металл-однородный анизотропный диэлектрик может существовать не более одного плазмонполяритона, и, согласно [21], допускается существование двух плазмон-поляритонов при условии, что диэлектрик будет магнитооптически активным или бианизотропным.

Интересно, что еще до работы Дьяконова [9] Марчевский и др. предсказали [22] существование сингулярной волновой моды, распространяющейся вдоль границы кристалла с изотропным диэлектриком. Фактически эта мода представляла собой вырожденную форму волны Дьяконова, возникающую при совпадении двух парциальных волн поляритона в кристалле при некотором направлении распространения. В результате, помимо линейно поляризованной нормальной парциальной моды, появляется сингулярная волна с круговой поляризацией и амплитудой, убывающей по глубине y как  $y \exp(-qy)$ . Такое поведение, известное как поведение Фойгта, напоминает вырожденные сингулярные объемные электромагнитные волны в некоторых специальных неограниченных кристаллах [23-26]. Соответственно, в недавних работах Маккея и др. [27–30] авторы

назвали вырожденную моду [22] волной Дьяконова – Фойгта. В этих исследованиях был разработан формализм, позволяющий рассматривать как волны Дьяконова, так и волны Дьяконова – Фойгта (в том числе плазмон-поляритонного происхождения) с общих позиций для различных структур, включая одноосные и двуосные кристаллы симметричной ориентации.

Несмотря на отмеченные выше ограничения условий существования анизотропных плазмонполяритонов, они обеспечивают важное новое качество — возможность управлять их свойствами. Выбором волновой геометрии (ориентации среза кристалла) можно, например, регулировать длину свободного пробега плазмон-поляритона [31–33]. Оптимизировать способ возбуждения плазмона в металле можно также путем наклонного падения поляритона на границу раздела в кристалле под углом полного внутреннего отражения [34-37]. В этом случае параметры ориентации можно подобрать таким образом, чтобы исключить отраженную волну в кристалле. Тогда возникает стационарный режим, когда энергия накачки поляритона компенсирует энергию, диссипированную плазмоном в металле, что устраняет проблему малой длины свободного пробега. Другой причиной рассмотрения анизотропных особенностей является изучение волн Дьяконова – Фойгта [27–30], которые не существуют в изотропных средах.

Конечно, теоретическое описание анизотропного плазмон-поляритона утрачивает привычную простоту и компактность. Дисперсионное уравнение становится громоздким и комплексным. Например, формально приходится иметь дело с двумя уравнениями (от действительной и мнимой частей) с одним вещественным неизвестным параметром, т.е. задача выглядит переопределенной. К счастью, существуют теоремы [38, 39], утверждающие, что эти два уравнения должны иметь одни и те же корни. И все же авторы часто предпочитают рассматривать такие симметричные ориентации, которые непосредственно приводят к вещественным дисперсионным уравнениям [27-33,40-43]. Особой популярностью пользуется геометрия Дьяконова с оптической осью в плоскости интерфейса. В частности, в недавней статье Голеницкого [43] рассмотрены условия существования электромагнитных волн в подобных структурах при различных сочетаниях знаков трех параметров  $\varepsilon_o$ ,  $\varepsilon_e$  и  $\varepsilon$  для двух вариантов, когда кристалл является либо диэлектриком (как у Дьяконова), либо металлом.

Недавно мы нашли [44] явную вещественную и компактную форму общего дисперсионного уравнения, описывающего плазмон-поляритон на произвольно ориентированной границе раздела между одноосным диэлектрическим кристаллом и изотропным металлом. Кроме того, в [44] также развит эффективный итерационный метод аналитического анализа этого уравнения. Ниже мы сделаем следующий шаг после работы [44], базируясь на полученном там дисперсионном уравнении. Будет проведен точный аналитический анализ с определением геометрических зон существования плазмон-поляритонов среди всех ориентаций границы раздела и любых направлений распространения. При этом, в отличие от [43], мы будем рассматривать только традиционный случай диэлектрического кристалла с положительными параметрами  $\varepsilon_{o,e} > 0$  и изотропного металла с отрицательной диэлектрической проницаемостью  $\varepsilon = \varepsilon_m < 0.$  Зато в нашем анализе оптическая ось выйдет из плоскости границы, составляя с ней произвольный угол, а области существования будут определяться не в плоскости, а на единичной сфере направлений.

В разд. 2 проблема будет сформулирована в математических терминах. Затем в разд. 3 мы установим зону существования мод Дьяконова – Фойгта в общем наборе произвольных ориентаций границ раздела кристалл-металл и направлений распространения волн. В разд. 4 будут описаны все волновые геометрии, допускающие распространение плазмон-поляритонов в положительных ( $\varepsilon_e > \varepsilon_o$ ) и отрицательных ( $\varepsilon_e < \varepsilon_o$ ) одноосных кристаллах. Наконец, в заключительном разд. 5 подводятся итоги статьи.

#### 2. ГЕОМЕТРИЯ РАСПРОСТРАНЕНИЯ И ОСНОВНЫЕ ПАРАМЕТРЫ

Исследуемый в данной работе плазмонполяритон представляет собой собственную электромагнитную волну, локализованную на границе раздела одноосного кристалла произвольной ориентации и изотропного металла, являющуюся гибридом поляритона в кристалле и плазмона в металле. Кристалл будет характеризоваться положительными значениями диэлектрической проницаемости  $\varepsilon_o$ и  $\varepsilon_e$ , а металл — диэлектрической проницаемостью  $\varepsilon_m < 0$  и магнитной проницаемостью  $\mu_m = 1$ .

Рассматриваемая геометрия распространения волн представлена на рис. 1, где основные направления определены следующим образом. Ось *у* 



Рис. 1. Волновая геометрия распространения в координатной системе

направлена вдоль единичной нормали **n** к произвольно ориентированной границе раздела так, что область y > 0 принадлежит кристаллу, а y < 0 — металлу. Ось x выбрана вдоль единичного вектора **m**, задающего направление распространения волны. Ориентация оптической оси кристалла вдоль единичного вектора **c** определяется сферическими координатами: она составляет угол  $\theta$  с плоскостью границы раздела, а ее проекция на интерфейс составляет угол  $\varphi$  с осью x. Векторы **n** и **m** определяют сагиттальную плоскость с единичной нормалью  $\mathbf{t} = \mathbf{m} \times \mathbf{n}$ .

В этих обозначениях волновое поле плазмонполяритона имеет вид

$$\begin{pmatrix} \mathbf{H}(\mathbf{r},t) \\ \mathbf{E}(\mathbf{r},t) \end{pmatrix} = \begin{pmatrix} \mathbf{H}(y) \\ \mathbf{E}(y) \end{pmatrix} e^{ik_0(nx-ct)},$$

$$\begin{pmatrix} \mathbf{H}(y) \\ \mathbf{E}(y) \end{pmatrix} = \begin{cases} C_o \begin{pmatrix} \mathbf{H}_o \\ \mathbf{E}_o \end{pmatrix} e^{-k_0 n q_o y} + \\ + C_e \begin{pmatrix} \mathbf{H}_e \\ \mathbf{E}_e \end{pmatrix} e^{k_0 n (-q_e + ip_e) y}, \ y > 0; \\ \begin{bmatrix} C^{TM} \begin{pmatrix} \mathbf{H}_m^{TM} \\ \mathbf{E}_m^{TM} \end{pmatrix} + \\ + C^{TE} \begin{pmatrix} \mathbf{H}_m^{TE} \\ \mathbf{E}_m^{TE} \end{pmatrix} \end{bmatrix} e^{k_0 n q_m y}, \ y < 0.$$

$$(1)$$

Здесь **H** и **E** — магнитная и электрическая составляющие волнового поля,  $\mathbf{r} = (x, y, z)$  — радиусвектор точки наблюдения, t — время, c — скорость света в вакууме, n — неизвестный фактор рефракции, который предполагается найти,  $k_0 = \omega/c$  и  $\omega$  — частота волны. Парциальные волны в суперпозиции (1) как в кристалле, обыкновенная (о) и необыкновенная (е), так и в металле, ТМ и ТЕ компоненты, организованы так, что каждая из них удовлетворяет уравнениям Максвелла в соответствующих средах. В результате параметры локализации в (1) можно выразить в виде [44]

$$q_o = \sqrt{1-s}, \ q_e = \sqrt{\left(\frac{B}{A} - s\right)\frac{\varepsilon_e}{\varepsilon_o A}},$$

$$q_m = \sqrt{1 - \frac{\varepsilon_m}{\varepsilon_o}s}.$$
(2)

Здесь

$$A = 1 + c_{\mathbf{n}}^2 \Delta_o, \ B = 1 - c_{\mathbf{t}}^2 \Delta_e, \ s = \varepsilon_o/n^2, \qquad (3)$$

где  $c_{\mathbf{n}}$  и  $c_{\mathbf{t}}$  — проекции вектора **с** на направления **n** и **t** (рис. 1), а параметры  $\Delta_o$  и  $\Delta_e$  определяются формулами

$$\Delta_{\alpha} = \frac{\varepsilon_e - \varepsilon_o}{\varepsilon_{\alpha}}, \quad \alpha = o, e. \tag{4}$$

Только необыкновенная парциальная волна в (1) содержит гармоническую составляющую волнового вектора вдоль y, характеризующуюся параметром

$$p_e = -c_{\mathbf{n}}c_{\mathbf{m}}\Delta_o/A.$$

В уравнении (1) параметры поляризации для кристалла  $\mathbf{H}_{o,e}$  и  $\mathbf{E}_{o,e}$ , и для металла  $\mathbf{H}^{TM,TE}$  и  $\mathbf{E}^{TM,TE}$  также непосредственно определяются уравнениями Максвелла. Они хорошо известны (см., например, [44]), и мы не будем приводить их здесь в явном виде. С другой стороны, они, безусловно, участвуют в полном анализе, который должен включать определение скалярных амплитуд Со,е и *С<sup>ТМ, ТЕ</sup>*. Этот анализ, в свою очередь, предполагает использование граничных условий, сводящихся к требованию непрерывности тангенциальных компонент магнитного и электрического полей на границе раздела y = 0. Эти условия приводят к системе четырех однородных линейных уравнений, имеющей нетривиальное решение, только если ее 4 × 4 определитель обращается в нуль. Последнее требование приводит нас к дисперсионному уравнению относительно неизвестного показателя преломления n. Указанная процедура была осуществлена в [44]. В исходном виде это приводит к комплексному и громоздкому дисперсионному уравнению. Однако после ряда алгебраических манипуляций оно свелось

к одному вещественному и довольно компактному уравнению

$$\frac{(\varepsilon_e q_o + \varepsilon_o A q_e)(\varepsilon_m A q_e + \varepsilon_e q_m)}{= c_t^2 (\varepsilon_e - \varepsilon_o)(\varepsilon_e - \varepsilon_m)},$$
(5)

где неизвестный фактор рефракции n «спрятан» в параметрах  $q_o$ ,  $q_e$  и  $q_m$  (2), (3).

### 3. СУЩЕСТВОВАНИЕ ПЛАЗМОН-ПОЛЯРИТОНА ДЬЯКОНОВА – ФОЙГТА

Как пояснялось во Введении, направления распространения волн Дьяконова – Фойгта должны обеспечивать вырождение парциальных волн в кристалле. С точки зрения уравнения (1), необходимый критерий такого вырождения сводится к системе уравнений

$$\begin{cases} q_e = q_o, \\ p_e = 0. \end{cases}$$
(6)

Легко видеть, что второе уравнение в (6) эквивалентно требованию, которое выполняется в двух случаях: когда (i)  $c_{\mathbf{m}} = 0$ , или (ii)  $c_{\mathbf{n}} = 0$ . Рассмотрим их отдельно.

(i) В этом случае оптическая ось с ортогональна направлению распространения **m**, т.е. вектор с принадлежит плоскости {**n**, **t**}. На рис. 1 это соответствует фиксированному углу  $\varphi = \pi/2$ . Тогда в (3)  $c_{\mathbf{t}} = \cos\theta$  и  $c_{\mathbf{n}} = \sin\theta$ , что приводит к тождеству  $A/B = \varepsilon_e/\varepsilon_o$ . Подставив это тождество и выражения (2) для  $q_{e,o}$  в первое уравнение (6), находим соотношение

$$s = -\mathrm{tg}^2\theta. \tag{7}$$

Можно видеть, что полученное уравнение (7) противоречиво: в левой части величина  $s = \varepsilon_o/n^2$  (3) в наших условиях строго положительна и не может равняться такой правой части. Таким образом, первая ориентация ( $c_{\mathbf{m}} = 0$ ) не приводит к моде Дьяконова – Фойгта. Тогда остается единственная геометрия для этой волны:  $c_{\mathbf{n}} = 0$ .

(ii) Этот случай относится к дьяконовской геометрии границы раздела, параллельной оптической оси кристалла. Детальная теория моды Дьяконова – Фойгта для этой геометрии изложена в [28] (см. также [44]). Формальный анализ нашей системы (6) приводит к соотношениям A = 1,  $s = \cos^2 \varphi$ , которые вместе с дисперсионным уравнением (5) задают особую ориентацию оптической оси **с**, характеризуемую углом вырождения [28,44]

$$\varphi_{deg} = \operatorname{ctg}^{-1} \left( 2\sqrt{\frac{\varepsilon_o(|\varepsilon_m| + \varepsilon_e)(|\varepsilon_m| - \varepsilon_o)}{(\varepsilon_o + \varepsilon_e)^2((|\varepsilon_m| + \varepsilon_o))}} \right).$$
(8)

Это значение является действительным до тех пор, пока  $|\varepsilon_m| \ge \varepsilon_o$ , что выполняется практически всегда (в типичных случаях:  $|\varepsilon_m| \gg \varepsilon_o$ ). Таким образом, можно констатировать, что волна Дьяконова – Фойгта ориентации (8) может оказаться запрещенной только в исключительных случаях (практически вместе с плазмоном).

### 4. АНАЛИЗ СУЩЕСТВОВАНИЯ ПЛАЗМОН-ПОЛЯРИТОНА

## 4.1. Критерии существования плазмон-поляритона

В этом разделе мы рассмотрим общую проблему существования плазмон-поляритонов для произвольных ориентаций границы раздела и направления распространения. Формально область существования физических решений дисперсионного уравнения (5) ограничена направлениями ( $\theta, \varphi$ ) оптической оси с, которые обеспечивают вещественные и неотрицательные значения параметров qo, qe и qm. Конечно, при  $\varepsilon_m < 0$ , что всегда имеет место в металлах, и при s > 0 (3) автоматически получаем  $q_m > 0$  из (2). Таким образом, геометрические ограничения существования плазмон-поляритона могут быть обусловлены только сменой знака подкоренных выражений параметров локализации qo или qe (2), т. е. критериями границ существования являются уравнения  $q_o = 0$  и  $q_e = 0$ .

Однако следует помнить и о другом важном физическом ограничении распространения волн, связанном с затуханием плазмонов в металле (поглощение поляритонов в кристалле на несколько порядков слабее). Волну можно считать волной только до тех пор, пока ее длина свободного пробега L остается намного больше длины волны  $\lambda$ . Длину пробега Lудобно оценивать в виде [32]

$$L = \frac{1}{\delta} = \frac{P_{cr} + P_m}{\dot{D}_m},\tag{9}$$

где  $\delta$  — коэффициент затухания,  $P_{cr} + P_m$  — интегральный поток энергии волны в обеих средах,  $\dot{D}_m$  — диссипация энергии в единицу времени в металле. Поглощение плазмона принято описывать, вводя мнимую добавку в диэлектрическую проницаемость металла  $\varepsilon_m = \varepsilon_m' + i \varepsilon_m''.$ Согласно [45], параметр  $\varepsilon''_m > 0$  относительно слабо зависит от частоты, оставаясь порядка единицы в широком интервале длин волн (как и параметры  $\varepsilon_{o,e}$  в кристалле). А вещественная часть  $\varepsilon'_m$ , напротив, резко увеличивается (по модулю) с ростом длины волны. В этих терминах требуемое соотношение  $L \gg \lambda$  эквивалентно условию  $|\varepsilon_m'|\gg \varepsilon_m''.$ Обычно это происходит вблизи инфракрасных частот [45], где плазмон становится сильно локализованным. Это обеспечивает в (9) столь малый знаменатель, что затуханием можно пренебречь. Ниже будет предполагаться, что условия такого пренебрежения выполнены выбором ограниченного спектрального интервала, где величина  $|\varepsilon'_m|$  достаточно велика.

Теперь можно вернуться к геометрическим ограничениям распространения плазмон-поляритона. Как было показано выше, границы запрещенных зон для плазмон-поляритонов должны определяться линиями решений, отвечающих объемным обыкновенным (q<sub>o</sub> = 0) или необыкновенным  $(q_e = 0)$  парциальным компонентам поляритона в кристалле. С другой стороны, следует отметить, что эта делокализация вблизи границы должна обеспечивать неограниченный рост числителя в (9),  $P_{cr} \to \infty$ , и соответственно формальное увеличение  $L \rightarrow \infty$ . Разумеется, эти бесконечности являются следствием нашего модельного полубесконечного кристалла с нулевым затуханием. Очевидно, что возвращение к более реальным характеристикам нашей системы устранит эти бессмысленные бесконечности, но не существенное увеличение длины свободного пробега L [33]. Это, в свою очередь, должно расширить упомянутые выше спектральные ограничения в сторону меньших длин волн.

При переходе оптической оси **с** через границу делокализации в запрещенную зону подкоренные выражения в (2) для  $q_o$  или  $q_e$  становятся отрицательными, что эквивалентно чисто вещественным проекциям соответствующих волновых векторов на ось y в (1), т. е. отводу энергии от интерфейса. Поляритон становится вытекающей модой, описываемой мнимой добавкой к параметру *s*:

$$s = s' - is''.$$

Эта добавка s'' > 0 обеспечивает бездиссипативное затухание при распространении плазмонполяритона вдоль границы раздела. Существенно, что величина s'' быстро возрастает при дальнейшем удалении **с** от границы в запрещенной зоне, что резко ограничивает длину свободного пробега этой



Рис. 2. Проекции границ запретных зон на плоскости (m, n) (a) и (t, n) (b) для положительных кристаллов киновари (1) и каломели (2, 3), контактирующих с золотом при  $\lambda_{vac} = 1.1$  (1, 3) и 0.75 (2) мкм. Сплошные линии отвечают точному уравнению (11), а штриховые — аппроксимации (19)

вытекающей моды. Таким образом, эта мода имеет физический смысл только в очень узком слое, примыкающем к границе со стороны запрещенной зоны [41].

# 4.2. Случай оптически положительных кристаллов

Начнем с границы  $q_e = 0$ . В этом случае из (2) получаем

$$s = \frac{B}{A}, \quad q_o = \sqrt{1 - \frac{B}{A}}, \quad q_m = \sqrt{1 - \frac{\varepsilon_m}{\varepsilon_o} \frac{B}{A}}.$$
 (10)

Понятно, что с учетом (3) и (4) параметры (10) не могут быть реализованы в оптически отрицательных кристаллах ( $\varepsilon_e < \varepsilon_o$ ), где автоматически выполняется неравенство  $B \ge A$ . В этом случае параметр  $q_o$  будет мнимым при любых ориентациях **с**, кроме одной: **с**||**m**, т. е.  $c_{\mathbf{n}} = 0$ ,  $c_{\mathbf{t}} = 0$ , и, соответственно, A = B = 1 и  $q_o = 0$ . Однако такая объемная волна не может существовать: это строго доказано в [44].

Таким образом, искомая граница может реализоваться только в положительных кристаллах при  $\varepsilon_e > \varepsilon_o$ . После подстановки из (10) в дисперсионное уравнение (5) получим

$$c_{\mathbf{t}}^{2}\Delta_{e}\left(1+\frac{|\varepsilon_{m}|}{\varepsilon_{e}}\right)-\sqrt{\left(1-\frac{B}{A}\right)\left(1+\frac{B}{A}\frac{|\varepsilon_{m}|}{\varepsilon_{o}}\right)}=0.$$
(11)

Это уравнение определяет линию делокализации  $q_e = 0$  на сфере  $\mathbf{c}^2 = 1$ . С учетом (3) она выражается через проекции  $c_{\mathbf{n}}^2$  и  $c_{\mathbf{t}}^2$ , а значит, и через  $c_{\mathbf{m}}^2 = 1 - c_{\mathbf{n}}^2 - c_{\mathbf{t}}^2$ . Поэтому плоскости ( $\mathbf{m}, \mathbf{n}$ ), ( $\mathbf{t}, \mathbf{m}$ ) и ( $\mathbf{n}, \mathbf{t}$ ) (рис. 1) являются плоскостями симметрии этой замкнутой линии, и она размножается отражениями в этих плоскостях.

На рис. 2 показаны проекции границы (11) на плоскости ( $\mathbf{m}, \mathbf{n}$ ) и ( $\mathbf{n}, \mathbf{t}$ ) для кристаллов каломели (Hg<sub>2</sub>Cl<sub>2</sub>) [46] и киновари (HgS) [47], контактирующих с золотом [45] при длине волны в вакууме  $\lambda_{vac} = 0.75$  мкм ( $\varepsilon_m = -20.148$ ) и 1.1 мкм ( $\varepsilon_m = -52.388$ ). Материальные константы кристаллов  $\varepsilon_o$  и  $\varepsilon_e$  приведены в табл. 1. Каждый граничный контур очерчивает запрещенную зону для оптической оси  $\mathbf{c}$ , где решения для плазмон-поляритонов не возникают. Очертания замкнутых границ видны только в проекциях на плоскость ( $\mathbf{m}, \mathbf{n}$ ). Две другие проекции на плоскости ( $\mathbf{n}, \mathbf{t}$ ) и ( $\mathbf{t}, \mathbf{m}$ ) (последняя не показана) из-за указанной симметрии выглядят в профиль незамкнутыми линиями.

На рис. 3 схематически изображена обсуждаемая запретная зона на сфере  $\mathbf{c}^2 = 1$  вокруг нормали  $\mathbf{t}$  к сагиттальной плоскости. Размеры зоны приближенно относятся к кристаллу каломели при  $\lambda_{vac} = 0,75$ мкм [46]. Как видно из рис. 2 и 3, граница запрещенных ориентаций  $q_e(\mathbf{c}) = 0$  образована конусом направлений оптической оси  $\mathbf{c}$ , окружающим нормаль  $\mathbf{t}$ . Подчеркнем, что сам этот конус не принад-

| Crystal                                 | $\varepsilon_o$ | $\varepsilon_e$ | $c_{\mathbf{m}}^{max}$ | a     | $c_{\mathbf{n}}^{max}$ | b | $c_{\mathbf{t}}^{max}$ | $\sqrt{1-b^2}$ | $c_{\mathbf{t}}^{min}$ | $\sqrt{1-a^2}$ |
|-----------------------------------------|-----------------|-----------------|------------------------|-------|------------------------|---|------------------------|----------------|------------------------|----------------|
| Cinnabar                                |                 |                 |                        |       |                        |   |                        |                |                        |                |
| $(\mathrm{HgS})$                        | 7.291           | 8.919           | 0.419                  | 0.410 | 0.327                  |   | 0.945                  |                | 0.908                  | 0.912          |
| $\lambda_{vac} = 1.1 \ \mu \mathrm{m}$  |                 |                 |                        |       |                        |   |                        |                |                        |                |
| Calomel                                 |                 |                 |                        |       |                        |   |                        |                |                        |                |
| $(\mathrm{Hg}_{2}\mathrm{Cl}_{2})$      | 3.771           | 6.566           | 0.565                  | 0.537 | 0.490                  |   | 0.872                  |                | 0.825                  | 0.843          |
| $\lambda_{vac} = 0.75 \ \mu \mathrm{m}$ |                 |                 |                        |       |                        |   |                        |                |                        |                |
| Calomel                                 |                 |                 |                        |       |                        |   |                        |                |                        |                |
| $(\mathrm{Hg}_{2}\mathrm{Cl}_{2})$      | 3.66            | 6.35            | 0.799                  | 0.736 | 0.703                  | 3 | 0                      | .711           | 0.602                  | 0.677          |
| $\lambda_{vac} = 1.1 \ \mu \mathrm{m}$  |                 |                 |                        |       |                        |   |                        |                |                        |                |

Таблица 1. Материальные параметры и характеристики размеров (12), (13) и (20) запретных зон для положительных кристаллов на рис. 2 и 3

лежит к запретной зоне: он лишь указывает на ориентации  $\mathbf{c}$ , при которых необыкновенные компоненты поляритонов являются объемными.



Рис. 3. Замкнутый контур  $q_e(\mathbf{c}) = 0$  вокруг тонированной запретной зоны на единичной сфере  $\mathbf{c}^2 = 1$  ( $c_\mathbf{t} \ge 0$ ), где решений для плазмон-поляритона нет: приближенная схема для кристалла Hg<sub>2</sub>Cl<sub>2</sub> при  $\lambda_{vac} = 0.75$  мкм. Штриховые линии не пересекаются, потому что контур не плоский (рис. 2 b)

Показанная на рис. 3 тонированная область, относящаяся к передней стороне сферы  $c_t \ge 0$ , заведомо сосуществует с симметрично эквивалентной областью вокруг -t, не содержащей никакой новой информации. Рассматриваемый контур «квазипараллелен» сагиттальной плоскости  $(\mathbf{m}, \mathbf{n})$  в том смысле, что вдоль него вариации третьей координаты  $c_{\mathbf{t}}$  весьма малы (см. рис. 2 *b*).

Запретную зону удобно характеризовать вертикальными  $(2c_{\mathbf{n}}^{max})$  и горизонтальными  $(2c_{\mathbf{m}}^{max})$  размерами и пределами,  $c_{\mathbf{t}}^{min}$  и  $c_{\mathbf{t}}^{max}$ , изменения координаты  $c_{\mathbf{t}}$  (см. обозначения на рис. 3). Их можно выразить в явном виде из уравнения (11) подстановкой туда  $c_{\mathbf{m}} = 0$  (для пары  $c_{\mathbf{n}}^{max}$  и  $c_{\mathbf{t}}^{max}$ ) и  $c_{\mathbf{n}} = 0$ (для пары  $c_{\mathbf{m}}^{max}$  и  $c_{\mathbf{t}}^{min}$ ). Результаты анализа даются точными соотношениями

$$c_{\mathbf{m}} = 0, \quad (c_{\mathbf{n}}^{max})^{2} + (c_{\mathbf{t}}^{max})^{2} = 1,$$

$$c_{\mathbf{n}}^{max} = \sqrt{1 - \frac{1}{\sqrt{r_{e}\Delta_{e}}}}, \quad c_{\mathbf{t}}^{max} = \frac{1}{(r_{e}\Delta_{e})^{1/4}};$$

$$c_{\mathbf{n}} = 0, \quad (c_{\mathbf{m}}^{max})^{2} + (c_{\mathbf{t}}^{min})^{2} = 1,$$

$$c_{\mathbf{m}}^{max} = \sqrt{\frac{r_{e}^{2} - r_{e}/\Delta_{e}}{r_{e}^{2} - 1 + r_{o}}},$$

$$c_{\mathbf{t}}^{min} = \sqrt{\frac{r_{o}/\Delta_{e}}{r_{e}^{2} - 1 + r_{o}}},$$
(13)

где

$$r_{o,e} = \frac{|\varepsilon_m|}{\varepsilon_{o,e}} + 1. \tag{14}$$

Как видно из уравнений (12), (13), уменьшение параметра  $|\varepsilon_m|$  для одного и того же кристалла приводит к уменьшению размера запрещенной зоны, как это происходит для кристалла каломели при изменении длины волны от 1.1 до 0.75 мкм. На рис. 2 контур границы для каломели с переходом  $3 \rightarrow 2$ не только уменьшается в размерах, но и приобретает элипсовидную форму, как для киновари (1). Это подводит нас к другому аспекту проблемы. Покажем, что уменьшение размера зоны позволяет существенно упростить точное уравнение (11), приводя контур к форме эллипса. Ситуацию облегчает тот факт, что уравнение (11) содержит не параметры  $c_{\mathbf{m}}$  и  $c_{\mathbf{n}}$ , а их квадраты, умноженные на довольно малые параметры  $\Delta_{o,e}$ . В таком приближении будут опущены очень малые члены ~  $(\Delta_{o,e}c_{\mathbf{m},\mathbf{n}}^2)^2 \ll 1$ , что оставляет вполне оптимистические ожидания относительно результатов. С этой точностью, можно оценить основной параметр B/A в подкоренном выражении (11) в виде

$$\frac{B}{A} \approx \Delta_e c_{\mathbf{m}}^2 + \frac{\varepsilon_o}{\varepsilon_e}.$$
(15)

С учетом (15), получаем в том же приближении:

$$1 - \frac{B}{A} = \Delta_e (1 - c_{\mathbf{m}}^2),$$
  

$$1 + \frac{B}{A} \frac{|\varepsilon_m|}{\varepsilon_o} = 1 + \frac{|\varepsilon_m|}{\varepsilon_e} (1 + \Delta_o c_{\mathbf{m}}^2).$$
(16)

Подстановка соотношений (16) в (11), вместе с тождествами

$$\frac{|\varepsilon_m|\Delta_e}{\varepsilon_o r_e} = \Delta_o \left(1 - \frac{1}{r_e}\right) = \frac{r_o}{r_e} - 1, \quad (17)$$

трансформирует уравнение контура в форму

$$c_{\mathbf{n}}^{2} + c_{\mathbf{m}}^{2} \left\{ 1 - \frac{1}{\sqrt{r_{e}\Delta_{e}}} \left( 1 - \frac{r_{o}}{2r_{e}} \right) \right\} = 1 - \frac{1}{\sqrt{r_{e}\Delta_{e}}}, \quad (18)$$

которая описывает эллипс в плоскости  $c_{\mathbf{m}}, c_{\mathbf{n}}$ , каноническая форма которого имеет вид

$$\frac{c_{\mathbf{m}}^2}{a^2} + \frac{c_{\mathbf{n}}^2}{b^2} = 1.$$
 (19)

Здесь a и b — полуоси эллипса, горизонтальная (a) и вертикальная (b). Сопоставление (19) с (18) дает

$$a^{2} = \frac{1}{1 + \frac{r_{o}/r_{e}}{2(\sqrt{r_{e}\Delta_{e}} - 1)}}, \quad b^{2} = 1 - \frac{1}{\sqrt{r_{e}\Delta_{e}}}.$$
 (20)

Найденные приближенные значения для полуосей *a* и *b* имеют тот же смысл, что и точные параметры  $c_{\mathbf{m}}^{max}$  и  $c_{\mathbf{n}}^{max}$  (см. (12), (13) и рис. 2). Сравнивая (12) и (20), можно видеть, что наша аппроксимация дала вертикальную полуось *b* тождественно равную точному значению:  $b = c_{\mathbf{n}}^{max}$ . Однако полуось *a* (20) не совпадает с точной,  $c_{\mathbf{m}}^{max}$ . Согласно табл. 1, для трех примеров (киноварь и каломель на двух длинах волн) величина *a* оказывается меньше, Плазмон-поляритон на границе раздела...

чем  $c_{\mathbf{m}}^{max}$  с различиями, увеличивающимися с ростом величины  $c_{\mathbf{m}}^{max}$ : 2% для HgS, 5% для Hg<sub>2</sub>Cl<sub>2</sub> (0.75 мкм), и 8% для Hg<sub>2</sub>Cl<sub>2</sub> (1.1 мкм).

Диапазон изменения координаты  $c_t$  в нашем приближенном описании определяется тем же критерием, что и ранее:

$$c_{\mathbf{m}}^2 + c_{\mathbf{n}}^2 + c_{\mathbf{t}}^2 = 1.$$

Это означает, что следует сравнивать  $c_{\mathbf{t}}^{max}$  с  $\sqrt{1-b^2}$  и  $c_{\mathbf{t}}^{min}$  с  $\sqrt{1-a^2}$ . В первом случае, очевидно, они должны быть тождественно равны (см. табл. 1). Что касается сравнения  $c_{\mathbf{t}}^{min}$  с  $\sqrt{1-a^2}$ , то из табл. 1 видно, что все три приближенных значения  $\sqrt{1-a^2}$  больше, чем  $c_{\mathbf{t}}^{min}$  на 0.4%, 2% и 12% соответственно. При этом приближенные характеристики для первых двух случаев, относящиеся к достаточно малым запретным зонам, стали ближе к точным значениям, тогда как в третьем случае ситуация стала еще хуже.

Таким образом, как видно из рис. 2, по крайней мере в первых двух случаях приближенные графики довольно слабо отличаются от точных, кое-где, почти «в пределах толщины линий». Даже для кристалла каломели при  $\lambda_{vac} = 1.1$  мкм с очень большой запретной зоной, когда и нельзя было ожидать хорошего согласия, результаты оказываются качественно приемлемыми.

Рассмотрим теперь другой аспект проблемы существования границы  $q_e = 0$  в положительных кристаллах. Ключевую роль в размерах запретной зоны и условиях ее существования играет величина  $|\varepsilon_m|$ . Мы уже видели большую разницу свойств системы каломель–золото при двух длинах волн 0.75 и 1.1 мкм, когда диэлектрическая проницаемость  $|\varepsilon_m|$  золота резко различалась, 20.148 и 52.388, соответственно [45]. Действительно, при очень больших  $|\varepsilon_m|$  уравнение (11) дает соотношение

$$c_{\mathbf{t}}^2 \propto 1/\sqrt{|\varepsilon_m|} \to 0.$$
 (21)

Таким образом, в этом пределе запретная зона на рис. З расширилась бы в размерах на всю переднюю полусферу, а линия  $q_e = 0$  совпала бы с «меридианом»  $c_{\mathbf{t}} = 0$  в плоскости ( $\mathbf{m}, \mathbf{n}$ ), что естественно повторяет наш вывод в [20] о том, что распространение бездисперсионного поляритона вдоль границы раздела одноосный кристалл–идеальный металл ( $\varepsilon_m \to -\infty$ ) строго запрещено.

Очевидно, что с уменьшением  $|\varepsilon_m|$  контур границы должен уменьшаться в размерах, сохраняя вектор **t**, проходящим через его центр симметрии (рис. 2 и 3). Однако легко видеть, что при малых  $|\varepsilon_m|$  уравнения (12), (13) теряют смысл. В пределе  $|\varepsilon_m| \to 0$  из (14) имеем соотношение  $r_e = 1$ , которое с учетом (12) дает:  $(c_t^{max})^2 = 1/\sqrt{\Delta_e} > 1$ . Это указывает на существование порогового уровня  $|\varepsilon_m^{th}|$ , ниже которого нет ориентационных ограничений на распространение плазмон-поляритона. При  $\varepsilon_m = \varepsilon_m^{th}$  уравнение  $q_e = 0$  дает объемные решения в точках  $c_t = \pm 1$  на сфере  $c^2 = 1$  на концах векторов  $\pm t$ . При дальнейшем росте величины  $|\varepsilon_m|$  эти решения трансформируются в два симметричных (эквивалентных) контура, окружающих запретные зоны ориентаций оптической оси кристалла. Таким образом, подставляя в (11) значения  $c_t^2 = 1$  и  $c_n^2 = 0$  (когда A = 1 и  $B = \varepsilon_o/\varepsilon_e$ ) можно найти порог  $|\varepsilon_m^{th}|$  и искомый критерий существования запретной зоны:

$$|\varepsilon_m| > |\varepsilon_m^{th}| = \frac{\varepsilon_e \varepsilon_o}{\varepsilon_e - \varepsilon_o}.$$
 (22)

Конечно, тот же порог вытекает из требования вещественности параметров  $c_{\mathbf{m},\mathbf{n}}^{max}$  в (12), (13).

На рис. 4 приведены дисперсионные зависимости пороговых значений  $|\varepsilon_m^{th}|$  для группы из четырех положительных кристаллов с использованием данных для каломели (Hg<sub>2</sub>Cl<sub>2</sub>) из [46] и для 2фурилметакрилового ангидрида (ФМА), карбамида (CO(NH<sub>2</sub>)<sub>2</sub>) и киновари (HgS) из [47]. Слабая дисперсионная чувствительность пороговых значений  $|\varepsilon_m^{th}|$  для всех кристаллов в рассматриваемом диапазоне длин волн  $\lambda_{vac}$  естественно отражает известное аналогичное свойство диэлектрических проницаемостей в кристаллах. Это контрастирует с быстрым ростом модуля  $|\varepsilon_m|$  для золота [45] в том же диапазоне. Точки пересечения функции  $|\varepsilon_m(\lambda_{vac})|$ с кривыми  $|\varepsilon_m^{th}(\lambda_{vac})|$  отвечают местам зарождения запретных зон для рассматриваемых кристаллов.

Из (22) и рис. 4 видно, что уровень порогового значения сильно зависит от анизотропии данного кристалла: чем меньше его анизотропия (т.е. чем ближе  $\varepsilon_o$  к  $\varepsilon_e$ ), тем выше пороговое значение, ниже которого нет геометрических ограничений для существования плазмон-поляритона. Это вполне естественно, поскольку, как уже говорилось, для чисто изотропных диэлектриков нет ни порога, ни геометрических ограничений. На рис. 4 четыре кристалла 1,...,4 образуют набор с монотонно убывающей анизотропией. Соответственно их критические длины волн  $\lambda_{vac},$  отвечающие значениям  $|\varepsilon_m^{th}|,$  смещаются в правую сторону. Так, для каломели граничный контур зарождается при  $\lambda_{vac} \sim 0.6$  мкм ( $|\varepsilon_m^{th}| \approx 9.3$ ) и существенно увеличивается в размерах с ростом  $\lambda_{vac}$  до 1.1 мкм, тогда как для киновари появление контура происходит только при длине волны



Рис. 4. Дисперсионные зависимости пороговых значений  $|\varepsilon_m^{th}|$  (22) для кристаллов Hg<sub>2</sub>Cl<sub>2</sub> (1), FMA (2), CO(NH<sub>2</sub>)<sub>2</sub> (3) и HgS (4) в сравнении с диэлектрической проницаемостью золота  $|\varepsilon_m|$  в диапазоне длин волн  $0.5 < \lambda_{vac} < 1.1$  мкм

 $\sim 1.0$  мкм ( $|\varepsilon_m^{th}| \approx 41.25$ ) и ее рост до 1.1 мкм, естественно, обеспечивает гораздо меньшие размеры запретной зоны, чем для каломели (ср. границы 1 и 3 на рис. 2).

### 4.3. Случай оптически отрицательных кристаллов

Второй тип границ, определяемый условием  $q_o = 0$ , может быть рассмотрен в полной аналогии с анализом в предыдущем разделе 4.2. Соотношения (2) дают

$$s = 1, \quad q_e = \frac{1}{A} \sqrt{\frac{\varepsilon_e}{\varepsilon_o}} (B - A),$$

$$q_m = \sqrt{1 + \frac{|\varepsilon_m|}{\varepsilon_o}} \equiv \sqrt{r_o}.$$
(23)

Условие вещественности  $q_e$  эквивалентное требованию B > A, очевидно, выполняется только в оптически отрицательных кристаллах — при  $\varepsilon_o > \varepsilon_e$ , когда  $A(c_{\mathbf{n}}^2) \leq 1$ , и  $B(c_{\mathbf{t}}^2) \geq 1$ . Случай реализации A = B = 1 при  $c_{\mathbf{n}} = c_{\mathbf{t}} = 0$  снова относится к несу-

ществующей волне [44]. Подставляя (23) вместе с (3) и  $q_o = 0$  в дисперсионное уравнение (5), получаем

$$c_{\mathbf{n}}^{2} - \frac{\varepsilon_{o}}{|\varepsilon_{m}|}c_{\mathbf{t}}^{2} - \sqrt{K\left(\frac{\varepsilon_{o}}{\varepsilon_{e}}c_{\mathbf{t}}^{2} + c_{\mathbf{n}}^{2}\right)} = 0, \qquad (24)$$

где

$$K = \frac{\varepsilon_o \varepsilon_e}{\varepsilon_m^2} \frac{\varepsilon_o - \varepsilon_m}{\varepsilon_o - \varepsilon_e}.$$
 (25)

Уравнение (24) определяет положение запретной зоны для ориентации оптических осей относительно границы раздела и сагиттальной плоскости. Конечно, формальное решение уравнения (24)  $c_{\mathbf{t}} = c_{\mathbf{n}} = 0$ не должно нас обманывать: в [44] доказано, что оно постороннее. Единственное правильное решение уравнения (24) при  $c_{\mathbf{t}} = 0$  есть  $c_{\mathbf{n}}^2 = K$ . Из (24), (25) видно, что при очень больших  $|\varepsilon_m|$  координата  $c_{\mathbf{n}}^2$  на границе падает как (ср. с (21)):

$$c_{\mathbf{n}}^2 \propto 1/\sqrt{|\varepsilon_m|} \to 0,$$
 (26)

т.е. предельная форма контура совпадает с большим кругом в плоскости интерфейса (m, t). При уменьшении  $|\varepsilon_m|$  контур  $q_o = 0$  смещается вверх, выходя из горизонтальной плоскости и уменьшаясь в размерах, и сохраняет при этом симметрию и положение своего центра на оси **n**. Запрещенная область на сфере $\mathbf{c}^2=1$ схематически показана на рис. 5 для случая кристалла иодата лития с золотом на длине волны  $\lambda_{vac} = 1$  мкм. Количественно проекции такого контура на плоскости  $(\mathbf{m}, \mathbf{n})$  и  $(\mathbf{m}, \mathbf{t})$  показаны на рис. 6 для кристаллов селенида галлия (GaSe) и иодата лития (LiIO<sub>3</sub>) [47], контактирующих с золотом при той же длине волны ( $\varepsilon_m = -41.849$ ) [45]. Видно, что обе границы охватывают направление n, оставаясь «квазипараллельными» плоскости интерфейса, так что их проекции на n на рис. 6 a изменяются в сравнительно узких пределах.

По аналогии с предыдущим анализом положительных кристаллов, основные характеристики размеров запретной зоны (на этот раз,  $c_{\mathbf{m}}^{max}$ ,  $c_{\mathbf{t}}^{max}$  и  $c_{\mathbf{n}}^{max}$ ,  $c_{\mathbf{n}}^{min}$ ) находятся подстановками в (24)  $c_{\mathbf{t}} = 0$ или  $c_{\mathbf{m}} = 0$ . В первом случае получаем

$$(c_{\mathbf{m}}^{max})^{2} + (c_{\mathbf{n}}^{min})^{2} = 1,$$
  

$$c_{\mathbf{m}}^{max} = \sqrt{1 - K}, \quad c_{\mathbf{n}}^{min} = \sqrt{K}.$$
(27)

Во втором случае аналогично имеем

$$c_{\mathbf{t}}^{max} = \sqrt{\frac{Q}{R} \left( 1 - \sqrt{1 - \frac{1 - K}{Q^2}} \right)}, \qquad (28)$$
$$c_{\mathbf{n}}^{max} = \sqrt{1 - (c_{\mathbf{t}}^{max})^2},$$



Рис. 5. Контур  $q_o(\mathbf{c}) = 0$  вокруг тонированной запретной зоны на единичной сфере  $\mathbf{c}^2 = 1$  ориентаций оптической оси: приближенная схема для кристалла LilO<sub>3</sub> при  $\lambda_{vac} = 1$  мкм. На всем меридиане  $c_{\mathbf{t}} = 0$ , включая тонированную область, существует локализованный необыкновенный поляритон в отсутствие обыкновенной парциальной ветви ( $C_o = 0$ )

где

$$R = 1 + \frac{\varepsilon_o}{|\varepsilon_m|}, \quad Q = 1 + \frac{K|\Delta_e|}{2R}.$$
 (29)

В табл. 2 приведены значения размерных характеристик запретных зон для кристаллов GaSe и LiIO<sub>3</sub> (рис. 6), рассчитанные по уравнениям (27), (28). В этом случае для краткости мы не стали снова искать эллипсовидные аппроксимации (19) точных контуров на рис. 6.

Для оптически отрицательных кристаллов, конечно, также есть пороговый уровень величины  $|\varepsilon_m|$ , выше которого существует запретная зона для направлений оптических осей. Точки зарождения такой зоны  $|\varepsilon_m| = |\varepsilon_m^{th}|$  расположены на «полюсах»  $c_{\mathbf{n}} = \pm 1$ . Значение порога находится подстановкой  $c_{\mathbf{n}}^2 = 1$  и  $c_{\mathbf{t}}^2 = 0$  в (24). Это дает уравнение K = 1, которое приводит к критерию существования запретной области для **с** в случае отрицательных кристаллов

$$|\varepsilon_m| > |\varepsilon_m^{th}| = \frac{\varepsilon_e \varepsilon_o}{2(\varepsilon_o - \varepsilon_e)} \left(1 + \sqrt{1 + 4|\Delta_e|}\right). \quad (30)$$

Легко проверить, что это условие, эквивалентное неравенству K < 1, обеспечивает вещественность в соотношениях для параметров  $c_{\mathbf{m},\mathbf{t}}^{max}$ , (27)–(29).

Разумеется, пороговое значение (30), полностью определяемое материальными параметрами кристалла, опять достаточно слабо зависит от длины волны  $\lambda_{vac}$  (в отличие от  $\varepsilon_m$  на рис. 4). Причем в



Рис. 6. Проекции границ запретных зон на плоскости (m, n) (a) и (m, t) (b) для отрицательных кристаллов GaSe (1) и LilO<sub>3</sub> (2) при  $\lambda_{vac} = 1.0$  мкм

Таблица 2. Материальные параметры и характеристики размеров запретных зон для отрицательных кристаллов GaSe и LilO<sub>3</sub> (рис. 6)

| $\begin{array}{l} \text{Crystal} \\ \lambda_{vac} = 1.1\mu\text{m} \end{array}$ | $\varepsilon_o$ | $\varepsilon_e$ | K     | $c_{\mathbf{m}}^{max}$ | $c_{\mathbf{t}}^{max}$ | $c_{\mathbf{n}}^{max}$ | $c_{\mathbf{n}}^{min}$ |
|---------------------------------------------------------------------------------|-----------------|-----------------|-------|------------------------|------------------------|------------------------|------------------------|
| Gallium Selenide<br>(GaSe)                                                      | 7.871           | 6.040           | 0.737 | 0.513                  | 0.328                  | 0.945                  | 0.858                  |
| Lithium Iodate<br>(LiIO <sub>3</sub> )                                          | 3.455           | 2.952           | 0.525 | 0.690                  | 0.491                  | 0.871                  | 0.725                  |

обоих случаях (22) и (30) уровень  $|\varepsilon_m^{th}|$  пропорционален  $|\varepsilon_o - \varepsilon_e|^{-1}$ , т.е. с приближением к изотропии мы снова приходим к исчезновению запретной зоны. Однако, конечно, сравнивая пороги разных кристаллов, следует помнить, что значения  $|\varepsilon_m^{th}|$  в (22) и (30) зависят не только от знаменателя. Для кристаллов из нашего примера на рис. 6 уравнение (30) дает пороги  $|\varepsilon_m^{th}| = 32.30$  для GaSe и 23.29 для LiIO<sub>3</sub>, тогда как в первом случае знаменатель больше.

Здесь важно также отметить, что не вся тонированная область на рис. 5 вокруг «полюса»  $c_{\mathbf{n}}^2 = 1$ запрещена. Как показано в [42,44], на «меридиане»  $c_{\mathbf{t}} = 0$  существует точное решение дисперсионного уравнения (5):

$$s = \frac{1 - \varepsilon_o \varepsilon_e / \varepsilon_m^2}{A - \varepsilon_e / \varepsilon_m}.$$
(31)

Это решение для плазмон-поляритона остается справедливым на протяжении всего меридиана  $c_t = 0$ , включая даже его часть, пересекающую

тонированную запретную область. Причина такого решения представляется весьма необычной. Волна, описываемая формулой (31), не содержит обыкновенной парциальной компоненты поляритона, т.е. ее скалярная амплитуда в (1) тождественно обращается в нуль,  $C_o = 0$ , когда сагиттальная плоскость параллельна оптической оси ( $c_t = 0$ ). Тем самым тонированная запретная зона делится на две части. При этом на разделяющем «меридиане» делокализации нет, поскольку оставшаяся необыкновенная парциальная волна имеет ненулевой параметр локализации  $q_e \neq 0$ .

#### 5. ЗАКЛЮЧЕНИЕ

1. В данной работе исследованы условия существования плазмон-поляритонных электромагнитных волн, распространяющихся вдоль границы раздела между диэлектрическим одноосным кристаллом и изотропным металлом. Показано, что низкая анизотропия кристалла и не слишком высокая диэлектрическая проницаемость  $|\varepsilon_m|$  металла гарантируют существование плазмон-поляритона при любых ориентациях кристалла. Критерий появления запретной зоны для направлений оптической оси **с** определяется превышением величиной  $|\varepsilon_m|$  определенного порога

$$|\varepsilon_m^{th}| \propto |\varepsilon_e - \varepsilon_o|^{-1},$$

разного для положительных (22) и отрицательных (30) кристаллов. Расположение таких зон на единичной сфере направлений  $\mathbf{c}^2 = 1$  для этих типов кристаллов также различно (рис. 3 и 5). В первом случае запретная зона окружает нормаль  ${f t}$  к сагиттальной плоскости, а во втором — нормаль n к интерфейсу. Соответственно, с уменьшением  $|\varepsilon_m|$  до пороговых уровней  $|\varepsilon_m^{th}|$  запрещенные зоны в таких кристаллах схлопываются до точек на концах ортов  $\pm t$  и  $\pm n$ . Выше порогов границы запретных зон описываются точными уравнениями (11)-(13) (рис. 2 и табл. 1) и (24), (27), (28) (рис. 6 и табл. 2) для положительных и отрицательных кристаллов, соответственно. Эти типы границ отвечают линиям делокализации необыкновенных и обыкновенных парциальных волн.

2. Как показано, благодаря анизотропии диэлектрика, выбором волновой геометрии можно регулировать глубину проникновения поляритона, вплоть до его полной делокализации в кристалле при ориентациях оптической оси, попадающих на границы запрещенных зон. Между тем, как мы видели в разделе 4.1, на этих границах коэффициент поглощения  $\delta$  формально стремится к нулю и, соответственно, длина свободного пробега плазмон-поляритона  $L = 1/\delta$  неограниченно возрастает. Разумеется, упомянутые нули и бесконечности возникают из-за принятых идеализаций нашей модели. Однако для таких ориентаций можно ожидать, что длина свободного пробега L плазмон-поляритона будет существенно увеличиваться. Этот эффект мы обсуждали ранее в [33] для случая плазмон-поляритона в волновой геометрии Дьяконова, т.е. при одной определенной ориентации кристалла, обеспечивающей делокализацию поляритона. Здесь мы прогнозируем аналогичный эффект вблизи границ запретных зон, положения которых выражены в явном виде через материальные параметры, ориентации кристалла и направления распространения волн.

3. Рассмотрение в данной работе проведено без учета затухания волн (даже в металле), т. е. мы опустили мнимую добавку к параметру  $\varepsilon_m$ , хорошо из-

вестную [45] для золота. Причина игнорирования этой добавки основана на нашем анализе, который показал, что учет реалистичных уровней поглощения, допускающих распространение волн с приемлемой длиной свободного пробега  $L \gg \lambda$ , дает лишь небольшие поправки ~ 0, 1 – 1% к найденным нами геометрическим характеристикам изучаемых запретных зон. Обнаруженная практическая нечувствительность границ запрещенных зон к затуханию волны позволила избежать довольно сложных вычислений и громоздких формул.

Благодарности. Авторы признательны А. Н. Даринскому за полезные обсуждения.

Финансирование. Работа проведена в рамках выполнения государственного задания НИЦ «Курчатовский институт».

### ЛИТЕРАТУРА

- Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, ed. by V. M. Agranovich and D. L. Mills, North-Holland, Amsterdam (1982).
- 2. *Electromagnetic Surface Modes*, ed. by A. D. Boardman, Wiley, Chichester (1982).
- A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
- S. A. Maier, *Plasmonics: Fundamentals and* Applications, Springer, New York (2007).
- J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys. 70, 1 (2007).
- O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, Electromagnetics 28, 126 (2008).
- J. A. Polo, Jr., T. G. Mackay, and A. Lakhtakia, *Electromagnetic Surface Waves: A Modern Perspective*, Elsevier, Waltham (2013).
- 8. T. G. Mackay and A. Lakhtakia, *Electromagnetic Anisotropy and Bianisotropy: A Field Guide*, 2nd ed., World Scientific, Singapore (2019).
- М. И. Дьяконов, ЖЭТФ 94, 119 (1988) [Sov. Phys. JETP 67, 714 (1988)].
- Н. С. Аверкиев, М. И. Дьяконов, Опт. и спектр. 68, 1118 (1990) [Opt. Spectrosc. 68, 653 (1990)].

- D. B. Walker, E. N. Glytsis, and T. K. Gaylord, J. Opt. Soc. Am. A 15, 248 (1998).
- А. Н. Даринский, Кристаллография 46, 916 (2001) [Crystallogr. Rep. 46, 842 (2001)].
- В. И. Альшиц, В. Н. Любимов, ФТТ 44, 371 (2002) [Phys. Solid State 44, 386 (2002)].
- В. И. Альшиц, В. Н. Любимов, ФТТ, 44, 1895 (2002) [Phys. Solid State 44, 1988 (2002)].
- 15. E. Cojocaru, J. Opt. Soc. Am. A 32, 782 (2015).
- O. Takayama, L. Crasovan, D. Artigas, and L. Torner, Phys. Rev. Lett. **102**, 043903 (2009).
- A. N. Darinskii and A. L. Shuvalov, Phys. Rev. A 102, 033515 (2020).
- 18. A. N. Darinskii, Phys. Rev. A 103, 033501 (2021).
- 19. A. N. Furs and L. M. Barkovsky, J. Opt. A: Pure Appl. Opt. 1, 109 (1999).
- В. И. Альшиц, В. Н. Любимов, ЖЭТФ 128, 904 (2005) [JETP 101, 779 (2005)].
- 21. A. N. Darinskii, Phys. Rev. A 106, 033513 (2022).
- 22. Ф. Н. Марчевский, В. Л. Стрижевский, С. В. Стрижевский, ФТТ 26, 1501 (1984) [Sov. Phys. Solid State 26, 911 (1984)].
- 23. W. Voigt, Phil. Mag. 4, 90 (1902).
- 24. B. N. Grechushnikov and A. F. Konstantinova, Comput. Math. Appl. 16, 637 (1988).
- 25. M. V. Berry and M. R. Dennis, Proc. R. Soc. Lond. A 459, 1261 (2003).
- 26. M. V. Berry, Proc. R. Soc. A 461, 2071 (2005).
- T. G. Mackay, C. Zhou, and A. Lakhtakia, Proc. R. Soc. A 475, 20190317 (2019).
- 28. C. Zhou, T. G. Mackay, and A. Lakhtakia, Phys. Rev. A 100, 033809 (2019).
- 29. C. Zhou, T. G. Mackay, and A. Lakhtakia, Sci. Rep. 10, 12894 (2020).
- 30. C. Zhou, T. G. Mackay, and A. Lakhtakia, Res. Phys. 24, 104140 (2021).

- 31. A. A. Krokhin, A. Neogi, and D. McNeil, Phys. Rev. B 75, 235420 (2007).
- 32. Nagaraj and A. A. Krokhin, Phys. Rev. B 81, 085426 (2010).
- 33. В. И. Альшиц, В. Н. Любимов, Письма в ЖЭТФ
  112, 127 (2020) [JETP Lett. 112, 127 (2020)].
- 34. R. A. Depine and M. L. Gigli, Opt. Lett. 20, 2243 (1995).
- 35. R. A. Depine and M. L. Gigli, J. Opt. Soc. Am. A 14, 510 (1997).
- 36. M. Liscidini and J. E. Sipe, B 81, 115335 (2010).
- 37. В. И. Альшиц, В. Н. Любимов, ЖЭТФ 138, 669 (2010) [J. Exp. Theor. Phys. 111, 591 (2010)].
- 38. A. N. Furs and L. M. Barkovsky, Microw. Opt. Technol. Lett. 14, 301-305 (1997)
- 39. V. M. Galynsky, A. N. Furs, and L. M. Barkovsky, J. Phys. A 37, 5083 (2004).
- 40. R. Li, C. Cheng, F-F. Ren, J. Chen, Y-X. Fan, J. Ding, and H-T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
- 41. H-H. Liu and H. Chang, IEEE Photon. J. 5, 4800806 (2013).
- 42. V. I. Alshits, V. N. Lyubimov, J. P. Nowacki, and A. Drabik, Int. J. Appl. Electromagn. Mech. 64, 879 (2020).
- 43. K. Yu. Golenitskii, Phys. Rev. B 110, 035301 (2024). DOI: 10.1103/PhysRevB.110.035301
- В. И. Альшиц, В. Н. Любимов, УФН 193, 96 (2023) [Physics–Uspekhi 66, 90 (2023)].
- 45. P. B. Johnson and R. W. Crysty, Phys. Rev. B 6, 4370 (1972).
- 46. З. Б. Перекалина, Ц. Барта, И. Грегора, А.Б.Васильев, Л. Д. Кисловский, Опт. и Спектр. 42, 1134 (1977) [Sov. Phys. Opt. Spectrosk. 42, 653 (1977)].
- 47. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, *Handbook of Nonlinear Optical Crystals*, Springer, Berlin (1999).