ИНДУЦИРОВАННЫЕ ВУФ-ИМПУЛЬСОМ КАНАЛЫ ГЕНЕРАЦИИ ИЗЛУЧЕНИЯ АТОМОМ В ИНТЕНСИВНОМ ЛАЗЕРНОМ ИК-ПОЛЕ

Я. В. Бреев^{а,b}, А. А. Минина^{а,b}, А. В. Флегель^{а,b*}, М. В. Фролов^{а,b**}

^а Воронежский государственный университет 394018, Воронеж, Россия

^b Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского 603950, Нижний Новгород, Россия

> Поступила в редакцию 13 сентября 2024 г., после переработки 13 сентября 2024 г. Принята к публикации 26 сентября 2024 г.

Развита теория возмущений по взаимодействию с изолированным высокочастотным аттосекундным импульсом в области вакуумного ультрафиолета (ВУФ) с атомной системой, модифицированной интенсивным инфракрасным (ИК) полем. Получены аналитические выражения для ВУФ-индуцированных поправок к волновой функции атомного электрона в ИК-поле и для амплитуды генерации излучения в произвольном порядке теории возмущений. Проанализирован вклад парциальных амплитуд генерации излучения для различных каналов с поглощением ВУФ-фотонов как на этапе ионизации, так и на этапе рекомбинации электрона с атомным остовом в соответствии с трехшаговым механизмом перерассеяния. Выявлены области параметров ИК- и ВУФ-импульсов, при которых возможна интерференция различных ВУФ-индуцированных каналов вплоть до третьего порядка теории возмущений по взаимодействию с ВУФ-импульсом.

DOI: 10.31857/S004445102501002X

1. ВВЕДЕНИЕ

К настоящему времени достигнут существенный прогресс в теоретическом описании нелинейных эффектов, возникающих при взаимодействии интенсивного лазерного поля в инфракрасном (ИК) диапазоне с атомными системами. Квантовомеханическое описание индуцированных интенсивным ИКполем процессов предполагает два подхода: численные методы, например, основанные на решении нестационарного уравнения Шредингера (НУШ) и его различных упрощенных вариаций для случая многоэлектронных систем (метод функционала плотности, нестационарный метод Хартри-Фока) [1–9], и аналитические подходы. Численные расчеты как правило служат «эталонами» для проверки точности аналитических подходов и демонстрируют свою эффективность при нахождении нелинейного отклика атомной системы на внешнее интенсивное переменное электрическое поле. Однако, результаты численного интегрирования могут быть получены лишь при фиксированных параметрах лазерного излучения и не обладают существенной предсказательной силой, а именно, в большинстве случаев необходимо проводить многочисленные затратные по времени вычисления для достижения необходимой физической интерпретации наблюдаемого эффекта. Напротив, аналитические теории в большей степени направлены на выявление общих фундаментальных закономерностей в нелинейном взаимодействии атомной системы с интенсивным лазерным полем.

Аналитические подходы к описанию нелинейных эффектов при взаимодействии ИК-поля с атомными или молекулярными системами, как правило, основываются на одноэлектронном приближении, в рамках которого (с учетом очевидных ограничений) удается получить выражения для амплитуд и сечений фундаментальных лазерно-индуцированных и лазерно-модифицированных атомных процессов с

^{*} E-mail: flegel@cs.vsu.ru

^{**} E-mail: frolov@phys.vsu.ru

точностью, не уступающей результатам численного решения НУШ [10-16]. Принципиальным преимуществом аналитических подходов по сравнению с численными является возможность установить общую параметризацию вероятностей фотопроцессов в поле интенсивного лазерного импульса от фундаментальных характеристик мишени (потенциала U(r) взаимодействия электрона с атомным остовом) и параметров импульса (см., например, [17]). Полученные параметризации допускают дальнейшее обобщение на многоэлектронные системы с возможностью исследования влияния эффектов внутренней электронной динамики в лазерноиндуцированных фотопроцессах [18]. Среди аналитических подходов наиболее популярным является S-матричный формализм, в рамках которого для точной волновой функции активного электрона в самосогласованном потенциале U(r) используется разложение в формальный ряд по U(r) [19,20] (см. также [21, 22]). Такое разложение приводит к борновскому ряду для амплитуды перехода, члены которого (парциальные амплитуды перехода) могут быть выражены в виде свертки функции Грина свободного электрона в лазерном поле с атомным потенциалом. В частности, для процесса надпороговой ионизации (НПИ) учет U(r) в низшем порядке приводит к результату Келдыша [23]. Ввиду большой величины классического действия электрона в сильном низкочастотном поле парциальные амплитуды можно анализировать в рамках метода перевала [24], что приводит к подходу квантовых орбит [25, 26]. Этот подход дает наглядную физическую интерпретацию явлений сильного поля на языке классических траекторий, тем самым обосновывая непротиворечивость модели перерассеяния для фундаментальных атомных фотопроцессов в интенсивном лазерном поле [19, 20, 27, 28].

Хотя подход, основанный на борновском разложении амплитуд переходов, является весьма плодотворным и вносит большой вклад в описание явлений сильного поля, он не позволяет точно учитывать атомный потенциал, влияние которого на процессы в сильном поле может иметь решающее значение (см., например, [9,18,29–32]). Одним из подходов, позволяющих осуществить более точный учет динамики атомной системы в интенсивном низкочастотном поле, является адиабатическое приближение. Общая идея этого приближения состоит в использовании малости несущей частоты ω лазерного импульса по сравнению с порогом ионизации I_p атомной мишени ($\hbar\omega \ll I_p$). Низший порядок адиабатического приближения (нулевое приближения)

ние) определяется квазистационарным состоянием системы в постоянном поле, напряженность которого равна мгновенной величине низкочастотного лазерного поля [33–37]. В работах [11–17] получена поправка к нулевому адиабатическому приближению для волновой функции, обусловленная перерассеянием электрона на атомном потенциале. В работе [38] дано уточнение адиабатического подхода для определения атомного состояния в низшем адиабатическом приближении, заключающееся в использовании аналитической части волновой функции квазистационарного атомного состояния в мгновенном лазерном поле. В рамках адиабатического подхода были рассчитаны как низкоэнергетические, так и высокоэнергетические (плато перерассеяния) части фотоэлектронных спектров и спектров генерации высоких гармоник (ГВГ) лазерного излучения.

Наличие замкнутого аналитического выражения для волновой функции атомного состояния в интенсивном ИК-поле позволяет развить адиабатическую теорию возмущений по дополнительному взаимодействию с высокочастотным (например, в области вакуумного ультрафиолета — ВУФ) аттосекундным импульсом [17, 39]. Влияние ультракороткого ВУФимпульса на процесс генерации излучения заключается в появлении значительного числа новых каналов генерации и существенной модификации спектров ГВГ ИК-поля. Например, усиление в выходе гармоник за счет резонансного заселения возбужденных состояний мишени ВУФ-импульсом исследовалось в работах [40-43]. ВУФ-индуцированное усиление в выходе высоких гармоник изучалось как для последовательности аттосекундных импульсов [44-47], так и для изолированного ВУФ-импульса аттосекундной длительности [48,49]. Эти исследования показали, что ВУФ-импульс (или их последовательность) может влиять на этап ионизации в трехшаговой модели Коркума [50], т. е. изменять времена ионизации, и тем самым влиять на выход гармоник. В [51,52] было показано, что добавление слабого ВУФ-поля приводит к возникновению дополнительного плато в спектрах ГВГ. Физика возникновения дополнительного ВУФ-индуцированного плато была дана в работе [53], где показано, что дополнительное плато является следствием поглощения ВУФ-фотона на этапе рекомбинации. Отметим также, что при достаточно высокой несущей частоте ВУФ-импульса электроны из внутренней оболочки атома также могут быть задействованы в процессе ГВГ, приводя к увеличению энергии отсечки плато [54-56]. Кроме того, такие ВУФ-импульсы в сочетании с интенсивным ИК-полем позволяют исследовать Оже-процессы [57, 58] и электронные переходы из внутренних оболочек в валентную оболочку [59]. Канал переизлучения (или упругого рассеяния) ВУФ-фотона атомной системой, приводящий к существенному усилению выхода генерируемого излучения, исследовался в [60]. Исследовались также процессы второго порядка по ВУФ-взаимодействию в ИК-модифицированной атомарной среде: генерация ВУФ-импульса на удвоенной несущей частоте [39] и эффект выпрямления ВУФ-импульса [61].

В настоящей работе мы обобщаем предложенный в [17, 39] пертурбативный подход для построения поправок теории возмущений по взаимодействию с коротким ВУФ-импульсом произвольного порядка на основе адиабатических волновых функций атомного состояния в интенсивном ИК-поле. В рамках развитой теории возмущений исследуются ВУФ-индуцированные каналы генерации излучения путем анализа классических траекторий электрона в поле синхронизированных интенсивного ИКи аттосекундного ВУФ-импульсов, исследуется возможность интерференции различных каналов в результате их спектрального перекрытия. В статье используется атомная система единиц, если не указано иное.

2. АДИАБАТИЧЕСКИЙ ПОДХОД К ОПИСАНИЮ АТОМА В НИЗКОЧАСТОТНОМ ЛАЗЕРНОМ ПОЛЕ

2.1. Адиабатическое выражение для волновой функции

Рассмотрим взаимодействие атомной системы с интенсивным инфракрасным лазерным импульсом с пиковой напряженностью электрического поля F_{IR} и несущей частотой ω_{IR} . Будем полагать, что параметры лазерного импульса удовлетворяют условиям адиабатичности [23]:

$$\omega_{IR} \ll |E_0|, \quad \gamma_K \ll 1. \tag{1}$$

где $\gamma_K = \kappa \omega_{IR}/F_{IR}$ — параметр Келдыша, $\kappa = \sqrt{2|E_0|}, E_0$ — энергия невозмущенного атомного уровня. Условия (1) могут быть также записаны через среднюю энергию колебаний свободного электрона в лазерном поле $u_p = F_{IR}^2/(4\omega_{IR}^2)$:

$$\omega_{IR} \ll |E_0|, \quad \omega_{IR} \ll u_p. \tag{2}$$

Для описания нелинейного взаимодействия атомной системы с лазерным полем, удовлетворяющим условиям (2), наиболее удобно использовать адиабатический подход [12, 13, 37]. В рамках этого подхода волновая функция атомного электрона, взаимодействующего с низкочастотным лазерным полем, может быть представлена в виде суммы «медленно» ($\Psi_{IR}^{(0)}(\mathbf{r},t)$) и «быстро» ($\Psi_{IR}^{(r)}(\mathbf{r},t)$) меняющихся во времени частей [11, 12, 17]:

$$\Psi_{IR}(\mathbf{r},t) = \Psi_{IR}^{(0)}(\mathbf{r},t) + \Psi_{IR}^{(r)}(\mathbf{r},t).$$
(3)

Медленная часть $\Psi_{IR}^{(0)}(\mathbf{r},t)$ является адиабатическим приближением в низшим порядке («нулевое» приближение) и определяется квазистационарным состоянием в постоянном электрическом поле с напряженностью, равной мгновенному значению ИКполя в момент времени t [12, 37]. В ряде практических вычислений функция $\Psi_{IR}^{(0)}(\mathbf{r},t)$ может быть с хорошей точностью аппроксимирована функцией начального состояния в отсутствии ИК-поля:

$$\Psi_{IR}^{(0)}(\mathbf{r},t) \approx e^{-iE_0 t} \varphi_0(\mathbf{r}).$$
(4)

Слагаемое $\Psi_{IR}^{(r)}(\mathbf{r},t)$ в (3) описывает эффекты перерассеяния валентного электрона на атомном остове и представляет собой суперпозицию состояний рассеяния $\psi_{\mathbf{K}_s}^{(+)}$ электрона на атомном потенциале с индуцированными лазерным полем импульсами \mathbf{K}_s [17]:

$$\Psi_{IR}^{(r)}(\mathbf{r},t) = e^{-iE_0 t} \Phi_{IR}^{(r)}(\mathbf{r},t),$$
 (5a)

$$\Phi_{IR}^{(r)}(\mathbf{r},t) = \sum_{s} a_s(t)\psi_{\mathbf{K}_s}^{(+)}(\mathbf{r}).$$
 (5b)

Каждое слагаемое в сумме (5b) связано с одной из возможных замкнутых классических траекторий, начинающихся в момент туннелирования t'_s и заканчивающихся в момент времени t возврата электрона к атомному остову. Индуцированные лазерным полем импульсы определены выражением

$$\mathbf{K}_{s} = \mathbf{K}(t, t'_{s}), \tag{6}$$
$$\mathbf{K}(t, t') = \mathbf{A}_{IR}(t) - \frac{1}{t - t'} \int_{t'}^{t} \mathbf{A}_{IR}(\tau) d\tau,$$

где $\mathbf{A}_{IR}(t)$ — векторный потенциал, связанный с напряженностью $\mathbf{F}_{IR}(t)$ электрического поля лазерного импульса соотношением

$$\mathbf{F}_{IR}(t) = -\partial \mathbf{A}_{IR}(t) / \partial t.$$

Времена туннелирования $t'_s(t)$ как функции времени t удовлетворяют трансцендентному уравнению (см. детали в [14]):

$$\mathbf{K}_{s}^{\prime}\cdot\dot{\mathbf{K}}_{s}^{\prime}=0,$$
(7)

где

$$\mathbf{K}'_{s} \equiv \mathbf{K}'(t, t'_{s}),
\dot{\mathbf{K}}'_{s} = \frac{\partial \mathbf{K}'_{s}}{\partial t'_{s}},
\mathbf{K}'(t, t') = \mathbf{A}_{IR}(t') - \frac{1}{t - t'} \int_{t'}^{t} \mathbf{A}_{IR}(\tau) d\tau.$$
(8)

Уравнение (7) имеет простой физический смысл: атомный электрон туннелирует в те моменты времени, которые обеспечивают минимум кинетической энергии высвободившегося электрона в лазерном поле. Зависящие от времени коэффициенты $a_s(t)$ в суперпозиции (5b) представляют собой произведение ионизационного (туннельного) $a^{(tun)}(t'_s)$ и пропагационного $a^{(pr)}(t,t'_s)$ множителей:

$$a_s(t) = a^{(tun)}(t'_s)a^{(pr)}(t,t'_s).$$
(9)

Ионизационный множитель характеризуется туннельной экспонентой в мгновенном «постоянном» электрическом поле с напряженностью

$$\mathcal{F} = [\mathbf{F}_{IR}^2(t'_s) - \mathbf{K}'_s \cdot \dot{\mathbf{F}}_{IR}(t'_s)]^{1/2},$$

см. [62]. Например, для случая линейно поляризованного лазерного поля имеет место соотношение

$$a^{(tun)}(t'_s) \propto e^{-F_{at}/(3|F_{IR}(t'_s)|)},$$
 (10)

где $F_{at} = \kappa^3$ определяет величину характерного внутриатомного поля. Для выполнения условия квазиклассичности необходимо выполнение дополнительного условия $F \ll F_{at}$, которое обеспечивает малость ионизационного множителя и незначительность эффектов распада начального состояния.

Пропагационный множитель $a^{(pr)}(t, t'_s)$ определяется классическим действием $S(t, t'_s)$ свободного электрона в лазерном поле на временном отрезке от t'_s до t:

$$a^{(pr)}(t,t'_{s}) = \frac{e^{iE_{0}(t-t'_{s})-iS(t,t'_{s})}}{(t-t'_{s})^{3/2}},$$
(11a)
$$S(t,t'_{s}) = \frac{1}{2} \int_{t'_{s}}^{t} \left[\mathbf{A}_{IR}(\tau) - - \frac{1}{t-t'_{s}} \int_{t'_{s}}^{t} \mathbf{A}_{IR}(\tau') d\tau' \right]^{2} d\tau.$$
(11b)

Отметим, что перерассеянная часть $\Phi_{IR}^{(r)}(\mathbf{r},t)$ волновой функции атомного электрона в ИК-поле по отношению к невозмущенной функции $\varphi_0(\mathbf{r})$ имеет малость ~ β_{IR} ,

$$\beta_{IR} = \gamma_K^{3/2} \frac{F_{IR}}{F_{at}} e^{-F_{at}/(3F_{IR})} \ll 1$$

По сути, результат (3) представляет собой разложение состояния атомного электрона по β_{IR} с точностью до первого порядка. В дальнейшем будем сохранять эту точность, тогда как учет более высоких порядков разложения по β_{IR} (т. е. более точный учет эффектов перерассеяния) не приводит к каким-либо заметным проявлениям в амплитудах и сечениях процессов в сильном лазерном ИК-поле.

2.2. Амплитуда генерации излучения

Амплитуда генерации фотона атомом в интенсивном лазерном поле определяется дипольным матричным элементом [63,64]:

$$\mathbf{D}(\Omega) = \int \langle \tilde{\Psi}_{IR}(\mathbf{r}, t) | \mathbf{r} | \Psi_{IR}(\mathbf{r}, t) \rangle e^{i\Omega t} dt, \qquad (12)$$

где Ω — частота генерируемого фотона, $\tilde{\Psi}_{IR}(\mathbf{r},t)$ дуальная волновая функция к состоянию $\Psi_{IR}(\mathbf{r},t)$, определяемая из состояния $\Psi_{IR}(\mathbf{r},t)$ посредством комплексного сопряжения, обращения времени $t \to -t$ и замены все *t*-нечетных параметров λ на $-\lambda$ [65, 66]. В низкочастотном лазерном поле дипольный матричный элемент (12) для $\Omega > |E_0|$ может быть записан приближенно через $\Psi^{(0)}(\mathbf{r},t)$ и $\Psi_{IR}^{(r)}(\mathbf{r},t)$ [17,63]:

$$\mathbf{D}(\Omega) = \int \langle \varphi_0 e^{-iE_0 t} | \mathbf{r} | \Psi_{IR}^{(r)}(\mathbf{r}, t) \rangle e^{i\Omega t} dt.$$
(13)

Выход гармоники, просуммированный по поляризациям и проинтегрированный по направлениям, определяется квадратом модуля $\mathbf{D}(\Omega)$:

$$Y = \frac{\Omega^4 |\mathbf{D}(\Omega)|^2}{4\pi^2 c^3},$$

где *с* — скорость света.

В адиабатическом приближении временной интеграл в (13) вычисляется методом перевала, а $\mathbf{D}(\Omega)$ можно представить в виде суммы парциальных амплитуд $\mathbf{D}_{j}(\Omega)$ [14,17]:

$$\mathbf{D}(\Omega) = \sum_{j} \mathbf{D}_{j}(\Omega), \tag{14a}$$

$$\mathbf{D}_{j}(\Omega) = a_{j}^{(tun)} \overline{a}_{j} \mathbf{d}(\mathbf{K}_{j}) e^{i\Omega t_{j}}, \qquad (14b)$$

где $a_j^{(tun)}$, \overline{a}_j туннельный и пропагационный множители, а $\mathbf{d}(\mathbf{K}_j)$ дипольный матричный элемент перехода из состояния континуума с импульсом \mathbf{K}_j в связанное состояние $\varphi_0(\mathbf{r})$:

$$\mathbf{d}(\mathbf{K}_j) = \langle \varphi_0(\mathbf{r}) | \mathbf{r} | \psi_{\mathbf{K}_j}^{(+)}(\mathbf{r}) \rangle.$$

Факторы $a_i^{(tun)}$, \overline{a}_j определяются соотношениями

$$a_j^{(tun)} \equiv a^{(tun)}(t'_j),$$

$$\overline{a}_j = \sqrt{\frac{2\pi i}{\mathbf{K}_j \cdot \mathbf{F}_{IR}(t_j) + \frac{\mathbf{K}_j^2}{t_j - t'_j}}} a^{(pr)}(t_j, t'_j).$$

Суммирование в (14а) ведется по всем замкнутым классическим траекториям электрона со временем начала t'_j и окончания t_j движения. Времена t'_j и t_j являются корнями системы трансцендентных уравнений [14, 17]:

$$\mathbf{K}'_j \cdot \dot{\mathbf{K}}'_j = 0, \quad \mathbf{K}^2_j = 2(\Omega + E_0), \tag{15}$$

где индуцированные импульсы $\mathbf{K}'_j \equiv \mathbf{K}'(t_j, t'_j),$ $\mathbf{K}_j \equiv \mathbf{K}(t_j, t'_j)$ определены в (8) и (6) соответственно.

3. НЕСТАЦИОНАРНАЯ ТЕОРИЯ ВОЗМУЩЕНИЙ ДЛЯ АТОМНОЙ СИСТЕМЫ В ИНТЕНСИВНОМ ИК-ПОЛЕ

Рассмотрим атомную систему, взаимодействуюпую с интенсивным ИК-полем и пертурбативным ВУФ-импульсом. Учет ВУФ-взаимодействия с ИКмодифицированной атомной системой возможен в рамках теории возмущений, построенной на адиабатических волновых функциях атомного электрона в ИК-поле [17]. Взаимодействие с ВУФ-импульсом будем рассматривать в дипольном приближении, соответственно, потенциал $V_{XUV}(\mathbf{r}, t)$ взаимодействия атомного электрона с ВУФ-импульсом имеет вид

$$V_{XUV}(\mathbf{r},t) = V_{+}(\mathbf{r},t)e^{-i\omega_{XUV}t} + V_{-}(\mathbf{r},t)e^{i\omega_{XUV}t}, (16)$$
$$V_{+}(\mathbf{r},t) = \frac{F_{XUV}}{2}(\mathbf{e}_{XUV}\cdot\mathbf{r})f_{XUV}(t),$$
$$V_{-}(\mathbf{r},t) = V_{+}^{*}(\mathbf{r},t),$$

где F_{XUV} — пиковая напряженность, ω_{XUV} — несущая частота, \mathbf{e}_{XUV} — вектор поляризации и $f_{XUV}(t)$ — огибающая ВУФ-импульса. Отметим, что для $\omega_{XUV} > |E_0|$ малым параметром теории возмущений по ВУФ-взаимодействию является величина [67]

$$\beta_{XUV} = \frac{\kappa F_{XUV}}{\omega_{XUV}^2} = 4 \frac{|E_0|^2}{\omega_{XUV}^2} \frac{F_{XUV}}{F_{at}} \ll 1.$$
(17)

Поэтому даже в случае соизмеримой с F_{at} напряженности ВУФ-излучения взаимодействие V_{XUV} может быть рассмотрено в рамках теории возмущений [68].

Состояние $\Psi(\mathbf{r}, t)$ атомного электрона в поле синхронизированных ИК- и ВУФ-импульсов запишем в виде

$$\Psi(\mathbf{r},t) = \Psi_{IR}(\mathbf{r},t) + \\ + \iint \mathcal{G}(\mathbf{r},t;\mathbf{r}',t') V_{XUV}(\mathbf{r}',t') \Psi_{IR}(\mathbf{r}',t') d\mathbf{r}' dt', \quad (18)$$

где $\mathcal{G}(\mathbf{r}, t; \mathbf{r}', t')$ — нестационарная (запаздывающая) функция Грина атомного электрона в двухкомпонентном поле. Для функции $\mathcal{G}(\mathbf{r}, t; \mathbf{r}', t')$ справедливо уравнение Дайсона:

$$\mathcal{G}(\mathbf{r},t;\mathbf{r}',t') = \mathcal{G}_{IR}(\mathbf{r},t;\mathbf{r}',t') + \iint \mathcal{G}_{IR}(\mathbf{r},t;\mathbf{r}'',t'') \times \\ \times V_{XUV}(\mathbf{r}'',t'')\mathcal{G}(\mathbf{r}'',t'';\mathbf{r}',t')d\mathbf{r}''dt'',$$
(19)

где $\mathcal{G}_{IR}(\mathbf{r},t;\mathbf{r}',t')$ — нестационарная (запаздывающая) функция Грина атомного электрона в ИКполе. Используя соотношения (18) и (19), представим волновую функцию $\Psi(\mathbf{r},t)$ в виде ряда теории возмущений по V_{XUV} :

$$\Psi(\mathbf{r},t) = \Psi_0(\mathbf{r},t) + \sum_{n=1}^{\infty} \Psi_n(\mathbf{r},t), \qquad (20)$$

где $\Psi_0(\mathbf{r},t) \equiv \Psi_{IR}(\mathbf{r},t)$ — атомное состояние в отсутствие ВУФ-импульса, см. (3), $\Psi_n(\mathbf{r},t) \sim \beta_{XUV}^n$ поправки *n*-го порядка, удовлетворяющие следующему рекуррентному соотношению:

$$\Psi_{n+1}(\mathbf{r},t) = \iint \mathcal{G}_{IR}(\mathbf{r},t;\mathbf{r}',t') \times \\ \times V_{XUV}(\mathbf{r}',t')\Psi_n(\mathbf{r}',t')d\mathbf{r}'dt'.$$
(21)

Точность адиабатического приближения допускает приближенное вычисление временных интегралов в (21). Основной вклад в значение соответствующих интегралов дают преимущественно слабо пересекающиеся окрестности точек t' = t и $t' = \tilde{t}'_s(t)$, где $\tilde{t}'_s(t)$ — множество седловых точек фазы быстро осциллирующего фактора подынтегральной функции в (21) (эта фаза определяется главным образом классическим действием электрона в ИК-поле и несущей частотой ВУФ-импульса). Асимптотическое выражение для функции Грина $\mathcal{G}_{IR}(\mathbf{r}, t; \mathbf{r}', t')$ в окрестности указанных особых точек было получено в работе [17]:

$$\mathcal{G}_{IR}(\mathbf{r},t;\mathbf{r}',t') \approx \approx \begin{cases} G_{at}(\mathbf{r},t;\mathbf{r}',t'), & t \approx t', \\ G_{vol}(0,t;0,t')\psi_{\mathbf{K}}^{(+)}(\mathbf{r})[\psi_{\mathbf{K}'}^{(+)}(\mathbf{r}')]^*, & t \neq t', \end{cases}$$
(22)

где $G_{at}(\mathbf{r}, t; \mathbf{r}', t')$ — нестационарная атомная функция Грина электрона, $G_{vol}(0, t; 0, t')$ — волковская функция Грина электрона в ИК-поле при $\mathbf{r} = \mathbf{r}' = 0$, импульсы $\mathbf{K} \equiv \mathbf{K}(t, t')$ и $\mathbf{K}' \equiv \mathbf{K}'(t, t')$ определены выражениями (6) и (8) соответственно.

Явное выражение для поправки $\Psi_n(\mathbf{r}, t)$ *n*-го порядка можно получить последовательным вычислением поправок более низкого порядка, используя соотношения (22) и (21) и приближенно оценивая интегралы по времени. Поправка *n*-го порядка может быть разбита на медленную $\Psi_n^{(s)}$ и быструю $\Psi_n^{(r)}$ части:

$$\Psi_n(\mathbf{r}, t') = \Psi_n^{(s)}(\mathbf{r}, t') + \Psi_n^{(r)}(\mathbf{r}, t').$$
(23)

Для определения медленной части $\Psi_n^{(s)}$ представим ее в виде суперпозиции

$$\Psi_n^{(s)}(\mathbf{r},t) \approx \sum_{\nu} e^{-iE_{\nu}t} \varphi_{\nu}^{(n)}(\mathbf{r},t), \qquad (24)$$

где $E_{\nu} = E_0 + \nu \omega_{XUV}$, а медленные функции времени $\varphi_{\nu}^{(n)}(\mathbf{r},t)$ требуют определения. Медленную временную зависимость функций $\varphi_{\nu}^{(n)}(\mathbf{r},t)$, а также огибающей $f_{XUV}(t)$ будем понимать в рамках следующих условий:

$$\left|\frac{\partial \varphi_{\nu}^{(n)}}{\partial t}\right| \ll \omega_{XUV} \left|\varphi_{\nu}^{(n)}\right|,\tag{25a}$$

$$\left. \frac{\partial f_{XUV}(t)}{\partial t} \right| \ll \omega_{XUV} \left| f_{XUV}(t) \right|. \tag{25b}$$

Подчеркнем, что для выделения медленно меняющейся во времени части волновой функции следует пренебречь вкладом окрестностей седловых точек $\tilde{t}'_s(t)$ во временной интеграл в (21) и учесть только окрестность предельной точки $t' \approx t$. Подставляя (24) в (21) и пользуясь асимптотикой функции Грина для $t' \to t$ (см. соотношение (22)), получим

$$\sum_{\nu} e^{-iE_{\nu}t} \varphi_{\nu}^{(n+1)}(\mathbf{r},t) = \iint G_{at}(\mathbf{r},t;\mathbf{r}',t') \times \\ \times V_{XUV}(\mathbf{r}',t') \sum_{\nu'} e^{-iE_{\nu'}t'} \varphi_{\nu'}^{(n)}(\mathbf{r}',t') d\mathbf{r}' dt'.$$
(26)

Далее, аппроксимируя в правой части уравнения (26) медленные функции $\varphi_{\nu}^{(n)}(\mathbf{r}',t')$ своими значениями при t' = t и используя связь между стационарной и нестационарной атомной функцией Грина:

$$G_E(\mathbf{r}, \mathbf{r}') = \int e^{iE(t-t')} G_{at}(\mathbf{r}, t; \mathbf{r}, t') dt', \qquad (27)$$

получим

$$\sum_{\nu} e^{-iE_{\nu}t} \varphi_{\nu}^{(n+1)}(\mathbf{r},t) =$$

$$= \sum_{\nu'} e^{-iE_{\nu'+1}t} G_{E_{\nu'+1}} V_{+} |\varphi_{\nu'}^{(n)}\rangle +$$

$$+ \sum_{\nu'} e^{-iE_{\nu'-1}t} G_{E_{\nu'-1}} V_{-} |\varphi_{\nu'}^{(n)}\rangle.$$
(28)

Отметим, что если энергия функции Грина совпадает с энергией основного состояния, то, как следует из общей теории возмущений, функция Грина заменяется на редуцированную функцию Грина G'_{E_0} [69,70],

$$G'_{E_0} = \lim_{E \to E_0} \left[G_E(\mathbf{r}, \mathbf{r}') - \frac{\varphi_0^*(\mathbf{r}')\varphi_0(\mathbf{r})}{E - E_0} \right].$$
(29)

Учитывая слабую зависимость функций $\varphi_{\nu'}^{(n)}$ и V_{\pm} от времени [см. (25)], приравняем коэффициенты при «быстро осциллирующих» экспонентах с одинаковыми показателями в (28) и получим уравнение для функций $\varphi_{\nu}^{(n+1)}$:

$$\varphi_{\nu}^{(n+1)} = \begin{cases} G_{E_{\nu}}V_{+}|\varphi_{\nu-1}^{(n)}\rangle + G_{E_{\nu}}V_{-}|\varphi_{\nu+1}^{(n)}\rangle, & \nu \neq 0, \\ G_{E_{0}}'V_{+}|\varphi_{-1}^{(n)}\rangle + G_{E_{0}}'V_{-}|\varphi_{+1}^{(n)}\rangle, & \nu = 0. \end{cases}$$
(30)

Итерационный метод решения уравнения (30) предполагает наличие следующего выражения для нулевой итерации:

$$\varphi_{\nu}^{(0)}(\mathbf{r},t) = \varphi_0(\mathbf{r})\delta_{\nu,0}.$$
(31)

Таким образом, используя соотношения (24) и (30), можно найти поправку *n*-го порядка для медленной части волновой функции, которая формально будет совпадать с выражением для *n*-го порядка теории возмущений в монохроматическом поле [70] (для монохроматического поля $f_{XUV}(t) \equiv 1$, т.е. V_{\pm} не зависят от времени). Запишем $\Psi_n^{(s)}$ в *n*-ом порядке теории возмущений с помощью интегрального оператора \hat{P}_n :

$$\Psi_n^{(s)}(\mathbf{r},t) = \hat{P}_n(E_0,t) |\varphi_0\rangle, \qquad (32)$$

который представляет собой свертку атомной функции Грина со всеми возможными комбинациями n операторов V_+ и/или V_- . Приведем явный вид операторов \hat{P}_n для первых трех порядков теории возмущений ($n \leq 3$):

$$\begin{split} \hat{P}_{0}(E_{0},t) &= e^{-iE_{0}t}\hat{I}, \\ \hat{P}_{1}(E_{0},t) &= e^{-iE_{1}t}G_{E_{1}}V_{+} + e^{-iE_{-1}t}G_{E_{-1}}V_{-}, \\ \hat{P}_{2}(E_{0},t) &= e^{-iE_{2}t}G_{E_{2}}V_{+}G_{E_{1}}V_{+} + \\ &+ e^{-iE_{0}t}G'_{E_{0}}V_{-}G_{E_{1}}V_{+} + \\ &+ e^{-iE_{0}t}G'_{E_{0}}V_{+}G_{E_{-1}}V_{-} + \\ &+ e^{-iE_{-2}t}G_{E_{-2}}V_{-}G_{E_{-1}}V_{-}, \\ \hat{P}_{3}(E_{0},t) &= e^{-iE_{3}t}G_{E_{3}}V_{+}G_{E_{2}}V_{+}G_{E_{1}}V_{+} \\ &+ e^{-iE_{1}t}G_{E_{1}}V_{-}G_{E_{2}}V_{+}G_{E_{1}}V_{+} + \\ &+ e^{-iE_{1}t}G_{E_{1}}V_{+}G'_{E_{0}}V_{-}G_{E_{1}}V_{+} + \\ &+ e^{-iE_{1}t}G_{E_{1}}V_{+}G'_{E_{0}}V_{+}G_{E_{-1}}V_{-} + \\ &+ e^{-iE_{-1}t}G_{E_{-1}}V_{-}G'_{E_{0}}V_{+}G_{E_{-1}}V_{-} + \\ &+ e^{-iE_{-1}t}G_{E_{-1}}V_{+}G'_{E_{-2}}V_{-}G_{E_{-1}}V_{-} + \\ &+ e^{-iE_{-1}t}G_{E_{-1}}V_{+}G_{E_{-2}}V_{-}G_{E_{-1}}V_{-} + \\ &+ e^{-iE_{-1}t}G_{E_{-3}}V_{-}G_{E_{-2}}V_{-}G_{E_{-1}}V_{-} + \\ &+ e^{-iE_{-3}t}G_{E_{-3}}V_{-}G_{E_{-2}}V_{-}G_{E_{-1}}V_{-} + \\ \end{split}$$

где \hat{I} — единичный оператор. Очевидно, что медленная часть волновой функции есть сумма парциальных слагаемых $\Psi_n^{(s)}(\mathbf{r},t)$:

$$\Psi^{(s)}(\mathbf{r},t) = \sum_{n=0}^{\infty} \Psi_n^{(s)}(\mathbf{r},t) = \sum_{n=0}^{\infty} \hat{P}_n(E_0,t)\varphi_0(\mathbf{r}).$$
 (33)

Заслуживает внимания схожесть полученного ряда теории возмущений по ВУФ-взаимодействию для волновой функции атомной системы в интенсивном ИК-поле с известным результатом теории возмущений для квазистационарного состояния атома в пертурбативном монохромотическом лазерном поле, полученном в рамках метода квазистационарных квазиэнергетических состояний (ККЭС) [70]: ряд (33) формально совпадает с результатом для ККЭС после замены точной квази
энергии ККЭС ϵ на энергию основного состояния Е0 и напряженности поля F_{XUV} на мгновенную амплитуду импульсного поля $\mathcal{F}_{XUV}(t) = F_{XUV} f_{XUV}(t)$. Таким образом, если известна функциональная зависимость волновой функции ККЭС $\Psi_{XUV}^{(QQES)}({\bf r},t;\epsilon,F_{XUV})$ от квазиэнергии и напряженности поля, то такая же зависимость определяет функцию $\Psi^{(s)}(\mathbf{r},t)$:

$$\Psi^{(s)}(\mathbf{r},t) = \Psi^{(QQES)}_{XUV}(\mathbf{r},t;E_0,\mathcal{F}_{XUV}(t)).$$
(34)

В отличие от медленной части, временная зависимость быстрой части $(\Psi_n^{(r)}(\mathbf{r},t))$ определяется быстро осциллирующей экспоненциальной зависимостью $\sim e^{-iS}$, задаваемой классическим действием S электрона в ИК-поле вдоль замкнутых траекторий (см. (5b), (9) и (11a)). Отметим, что в рамках используемого адиабатического приближения возникновение любых произведений двух и более волковских функций Грина приводит к превышению точности, и поэтому в любом порядке теории возмущений по ВУФ-взаимодействию выражение для $\Psi_n^{(r)}(\mathbf{r},t)$ содержит только одну волковскую функцию Грина. Из соотношения (21) следует, что $\Psi_n^{(r)}(\mathbf{r},t)$ определяется как результат свертки или медленной части $\Psi_n(\mathbf{r}, t)$ с функцией Грина \mathcal{G}_{IB} , аппроксимируемой волковской функцией Грина (см. соотношение (22)), или быстрой части $\Psi_n(\mathbf{r},t)$ с функцией Грина \mathcal{G}_{IR} , аппроксимируемой атомной функцией Грина (см. соотношение (22)):

$$\Psi_{n+1}^{(r)}(\mathbf{r},t) = = \int G_{\text{vol}}(0,t;0,t') \langle \psi_{\mathbf{K}'}^{(+)} | V_{XUV}(t') | \Psi_n^{(s)}(t') \rangle \psi_{\mathbf{K}}^{(+)}(\mathbf{r}) dt' + + \iint G_{at}(\mathbf{r},t;\mathbf{r}',t') V_{XUV}(\mathbf{r}',t') \Psi_n^{(r)}(\mathbf{r}',t') d\mathbf{r}' dt', \quad (35)$$

где первый интеграл предполагает приближенное вычисление методом перевала, а второй интеграл должен быть оценен, учитывая только вклад окрестности $t' \approx t$. Соответственно, $\Psi_{n+1}^{(r)}$, можно записать в виде суммы двух слагаемых:

$$\Psi_{n+1}^{(r)} = \Psi_{n+1}^{(r,1)} + \Psi_{n+1}^{(r,2)}, \tag{36}$$

где выражения для $\Psi_{n+1}^{(r,1)}, \Psi_{n+1}^{(r,2)}$ обсуждаются ниже. Будем использовать приближенное выражение (24) для функции $\Psi_n^{(s)}$ в первом интеграле в (35), после чего выполним интегрирование по t'методом перевала. В результате получим выражение для $\Psi_{n+1}^{(r,1)}$:

$$\Psi_{n+1}^{(r,1)}(\mathbf{r},t) = \sum_{\nu}' \sum_{\tilde{t}'} \psi_{\tilde{\mathbf{K}}}^{(+)}(\mathbf{r}) \mathcal{G}_{\nu}(t,\tilde{t}') \times \\ \times \left[\langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | V_{+}(\tilde{t}') | \varphi_{\nu-1}^{(n)} \rangle + \langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | V_{-}(\tilde{t}') | \varphi_{\nu+1}^{(n)} \rangle \right], \quad (37)$$

где $\tilde{\mathbf{K}}' = \mathbf{K}'(t, \tilde{t}'), \ \tilde{\mathbf{K}} = \mathbf{K}(t, \tilde{t}'), \ a$ суммирование ведется по всем допустимым значениям ν той же четности, что и n+1 в интервале $|\nu| \leq n+1$, и перевальным точкам $\tilde{t}' \equiv \tilde{t}'(t)$ (точкам стационарной фазы), определяемым из уравнения

$$\tilde{\mathbf{K}}^{\prime 2} = 2E_{\nu}.\tag{38}$$

В (37) используется обозначение

$$\mathcal{G}_{\nu}(t,\tilde{t}') = -\frac{e^{-iS(t,\tilde{t}')-iE_{\nu}\tilde{t}'}}{2\pi(t-\tilde{t}')^{3/2}} \times \left[\tilde{\mathbf{K}}'\cdot\mathbf{F}_{IR}(\tilde{t}') - 2E_{\nu}/(t-\tilde{t}')\right]^{-1/2}.$$
 (39)

Точность приближенного выражения для функции Грина в (22) подразумевает, что в сумме (37) учитываются только такие ν , которые обеспечивают решение уравнения (38) в действительных числах.

Из выражения (37) видно, что поправка $\Psi_{n+1}^{(r,1)}$ к быстрой части волновой функции описывает состояние перерассеяния, формирующегося в рамках трехшагового сценария:

1) на первом этапе в результате поглощения или испускания n ВУФ-фотонов атомной системой формируются состояния $\varphi_{\nu}^{(n)}$;

2) на втором этапе из одного из состояний $\varphi_{\nu}^{(n)}$ происходит вынужденный однофотонный переход (с поглощением или испусканием фотона) в момент времени \tilde{t}' в состояние непрерывного спектра с асимптотическим импульсом $\tilde{\mathbf{K}}'$;

3) на третьем этапе, находясь в континууме, электрон взаимодействует с интенсивным ИК-полем и формирует в момент времени t состояние $\psi_{\tilde{\mathbf{K}}}^{(+)}(\mathbf{r})$ посредством набора энергии при движении вдоль замкнутой классической траектории. Распространение электронного пакета в континууме описывается множителем $\mathcal{G}_{\nu}(t, \tilde{t}')$.

Как следует из соотношений (5b) и (37), быстрая часть волновой функции задается быстро осциллирующим фактором $e^{-iS(t,t')}$, который определяет ИК-управляемое распространение электрона в континууме, и функцией непрерывного спектра $\psi_{\mathbf{K}}^{(+)}$. Те же компоненты определяют поправку $\Psi_n^{(r,2)}$, поэтому без ограничения общности представим $\Psi_n^{(r,2)}$ в виде

$$\Psi_n^{(r,2)} = \sum_s \hat{a}_s^{(n)}(t) |\psi_{\mathbf{K}_s}^{(+)}\rangle, \tag{40}$$

где $\hat{a}_{s}^{(n)}(t) \propto e^{-iS(t,\hat{t}'_{s})}$ — некоторый интегральный оператор, а суммирование выполняется по всем действительным моментам ионизации \hat{t}'_{s} , индуцированной ИК- или ВУФ-полем. В нулевом приближении по ВУФ-взаимодействию $\hat{t}'_{s} \equiv t'_{s}$ (см. соотношение (7)), а $\hat{a}_{s}^{(0)} \equiv a_{s}(t)\hat{I}$ (см. соотношение (9)). Стоит отметить, что оператор $\hat{a}_{s}^{(n)}(t)$ может определяться двумя слагаемыми (обозначаемыми ниже индексами а и b), описывающими два различных сценария взаимодействия электрона с ИК- и ВУФимпульсами:

а) атомный электрон туннелирует в ИКмодифицированный континуум и далее, распространяясь вдоль замкнутых классических траекторий в ИК-поле, поглощает ν и излучает $n - \nu$ ВУФ-фотонов (четность n и ν одинакова);

b) атомный электрон переходит в ИКмодифицированный континуум с энергией $E_{\nu'}$ путем поглощения ν' ВУФ-фотонов, где в процессе распространения вдоль замкнутых классических траекторий в ИК-поле поглощает $\nu - \nu'$ и излучает $n - \nu$ ВУФ-фотонов. В соответствии с описанными механизмами представим функцию $\Psi_n^{(r,2)}$ в виде суммы:

$$\Psi_n^{(r,2)} = \Psi_n^{(r,2a)} + \Psi_n^{(r,2b)}.$$
(41)

Математическое выражение для оператора $\hat{a}_{s}^{(n)}(t)$, соответствующего реализации сценария (а), можно легко получить из (35) (см. второе интегральное слагаемое в правой части), полагая, что «нулевая итерация» $\Psi_{0}^{(r)} = \Psi_{IR}^{(r)}$ для быстрой части волновой функции определена в (5). Последовательно вычисляя временные интегралы в (35) и учитывая вклад окрестности предельной точки t' = t, получим общее выражение для $\Psi_{n}^{(r,2a)}(\mathbf{r},t)$:

$$\Psi_n^{(r,2\mathbf{a})}(\mathbf{r},t) = \sum_s a_s(t) \hat{P}_n\left(\frac{\mathbf{K}_s^2}{2},t\right) \psi_{\mathbf{K}_s}^{(+)}(\mathbf{r}), \quad (42)$$

где суммирование включает все решения уравнения (7). Отметим, что аналогично выше рассмотренному случаю функции $\Psi^{(s)}(\mathbf{r},t)$ суммирование ряда теории возмущений по *n* с учетом явного вида (42) приводит к результату, формально совпадающему с выражением для квазиэнергетического состояния рассеяния $\Psi_{\mathbf{K}}^{(+)}(\mathbf{r},t;\epsilon,\mathcal{F}_{XUV}(t))$ атомного электрона в монохроматическом ВУФ-поле [70] с квазиэнергией $\epsilon = \mathbf{K}_s^2/2$, асимптотическим импульсом $\mathbf{K} = \mathbf{K}_s$ и напряженностью ВУФ-поля, равной мгновенной величине $\mathcal{F}_{XUV}(t)$:

$$\sum_{n} \hat{P}_{n} \left(\frac{\mathbf{K}_{s}^{2}}{2}, t \right) \psi_{\mathbf{K}_{s}}^{(+)}(\mathbf{r}) =$$
$$= \Psi_{\mathbf{K}_{s}}^{(+)} \left(\mathbf{r}, t; \frac{\mathbf{K}_{s}^{2}}{2}, \mathcal{F}_{XUV}(t) \right) \equiv \Psi_{\mathbf{K}_{s}}^{(+)}(\mathbf{r}, t), \qquad (43)$$

и следовательно,

$$\Psi^{(r,2a)}(\mathbf{r},t) = \sum_{n} \Psi_{n}^{(r,2a)}(\mathbf{r},t) = \sum_{s} a_{s}(t) \Psi_{\mathbf{K}_{s}}^{(+)}(\mathbf{r},t).$$

Поправка $\Psi_n^{(r,2b)}$ к быстрой части волновой функции, отвечающая за реализацию сценария (b), возникает во втором и более высоких порядках теории возмущений. В качестве «нулевой итерации» для получения данной поправки служит слагаемое $\Psi_1^{(r,1)}$ ($\Psi_0^{(r)} = \Psi_1^{(r,1)}$), соответствующее поглощению ВУФ-фотона (см. первое слагаемое в квадратных скобках в (37)):

$$\Psi_{0}^{(r)}(\mathbf{r},t) = \sum_{\tilde{t}'} \psi_{\tilde{\mathbf{K}}}^{(+)}(\mathbf{r}) \mathcal{G}_{1}(t,\tilde{t}') \langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | V_{+}(\tilde{t}') | \varphi_{0} \rangle, \quad (45)$$

где \tilde{t}' определяется из уравнения (38) с $\nu = 1$. Подставляя (45) во второе слагаемое в (35) и вычисляя временной интеграл в окрестности $t' \approx t$, получим искомую поправку во втором порядке теории возмущений:

$$\Psi_{2}^{(r,2\mathrm{b})}(\mathbf{r},t) = \sum_{\tilde{t}'} \hat{P}_{1}\left(\frac{\mathbf{K}^{2}}{2},t\right) \psi_{\tilde{\mathbf{K}}}^{(+)}(\mathbf{r}) \times \mathcal{G}_{1}(t,\tilde{t}') \langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | V_{+}(\tilde{t}') | \varphi_{0} \rangle.$$
(46)

. .

Соотношению (46) легко придать прозрачный физический смысл: электрон, находясь в связанном состоянии, поглощает ВУФ-фотон и переходит в состояние непрерывного спектра с асимптотическим импульсом $\tilde{\mathbf{K}}'$ (чему соответствует матричный элемент $\langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | V_+(\tilde{t}') | \varphi_0 \rangle$ в (46)), затем распространяется в ИК-модифицированном континууме вдоль замкнутой траектории (см. множитель $\mathcal{G}_1(t, \tilde{t}')$), в результате чего формирует в момент времени t состояние непрерывного спектра посредством однофотонного канала взаимодействия с ВУФ-излучением (т. е. поглощая или испуская ВУФ-фотон).

В третьем порядке теории возмущений вычисления производятся аналогично, и соответствующая поправка имеет вид

$$\Psi_{3}^{(r,2b)}(\mathbf{r},t) = \sum_{\tilde{t}'(\nu=1)} \hat{P}_{2}\left(\frac{\tilde{\mathbf{K}}^{2}}{2},t\right)\psi_{\tilde{\mathbf{K}}}^{(+)}(\mathbf{r}) \times \\ \times \mathcal{G}_{1}(t,\tilde{t}')\langle\psi_{\tilde{\mathbf{K}}'}^{(+)}|V_{+}(\tilde{t}')|\varphi_{0}\rangle + \\ + \sum_{\tilde{t}'(\nu=2)} \hat{P}_{1}\left(\frac{\tilde{\mathbf{K}}^{2}}{2},t\right)\psi_{\tilde{\mathbf{K}}}^{(+)}(\mathbf{r}) \times \\ \times \mathcal{G}_{2}(t,\tilde{t}')\langle\psi_{\tilde{\mathbf{K}}'}^{(+)}|V_{+}(\tilde{t}')G_{E_{1}}V_{+}(\tilde{t}')|\varphi_{0}\rangle, \qquad (47)$$

где времена \tilde{t}' для первой (второй) суммы находятся из уравнения (38) для $\nu = 1$ ($\nu = 2$). Интерпретация первой суммы в (47) аналогична приведенной для соотношения (46) за исключением того, что на последнем этапе состояние непрерывного спектра формируется посредством двухфотонного взаимодействия с ВУФ-излучением. Парциальные слагаемые во второй сумме отражают следующий физический механизм: связанный электрон после поглощения двух фотонов переходит в состояние непрерывного спектра, где под действием ИК-поля распространяется вдоль замкнутой траектории и формирует состояние континумма посредством однофотонного канала взаимодействия с ВУФ-излучением. Отметим, что хотя нахождение поправок более высокого порядка не представляет каких-либо трудностей, в настоящей работе они не рассматриваются ввиду громоздкости итоговых выражений.

4. ГЕНЕРАЦИЯ ИЗЛУЧЕНИЯ АТОМОМ В СИНХРОНИЗИРОВАННЫХ ИК- И ВУФ-ИМПУЛЬСАХ

4.1. Каналы генерации

Воспользуемся полученными соотношениями для волновой функции, чтобы определить амплитуду генерации излучения атомом в поле синхронизированных, линейно поляризованных в одном направлении ИК- и ВУФ-импульсов:

$$\mathbf{F}(t) = \mathbf{F}_{IR}(t) + \mathbf{F}_{XUV}(t-\tau), \qquad (48)$$

где au — время задержки между импульсами, определяемая как временной интервал между максимумами их огибающих. Амплитуда генерации излучения дается соотношением (12) с заменой

$$\Psi_{IR}(\mathbf{r},t) \to \Psi(\mathbf{r},t), \quad \tilde{\Psi}_{IR}(\mathbf{r},t) \to \tilde{\Psi}(\mathbf{r},t),$$

где $\tilde{\Psi}(\mathbf{r},t)$ — дуальная волновая функция, определяемая из $\Psi(\mathbf{r},t)$ по той же процедуре, что и $\tilde{\Psi}_{IR}(\mathbf{r},t)$ (см. обсуждение ниже соотношения (12)).

Как мы показали в предыдущем разделе, функция $\Psi({\bf r},t)$ представляется суммой «медленной» $(\Psi^{(s)}({\bf r},t))$ и «быстрой» $(\Psi^{(r)}({\bf r},t))$ составляющих. Соответственно, амплитуда генерации излучения может быть представлена в виде

$$\mathcal{D}(\Omega) = \mathcal{D}^{(s)}(\Omega) + \mathcal{D}^{(r)}(\Omega) + \\ + \tilde{\mathcal{D}}^{(r)}(\Omega) + \hat{\mathcal{D}}^{(r)}(\Omega), \qquad (49a)$$

$$\mathcal{D}^{(s)}(\Omega) = \int \langle \tilde{\Psi}^{(s)}(\mathbf{r},t) | \mathbf{r} | \Psi^{(s)}(\mathbf{r},t) \rangle e^{i\Omega t} dt, \quad (49b)$$

$$\mathcal{D}^{(r)}(\Omega) = \int \langle \tilde{\Psi}^{(s)}(\mathbf{r}, t) | \mathbf{r} | \Psi^{(r)}(\mathbf{r}, t) \rangle e^{i\Omega t} dt, \quad (49c)$$

$$\tilde{\boldsymbol{\mathcal{D}}}^{(r)}(\Omega) = \int \langle \ \tilde{\Psi}^{(r)}(\mathbf{r},t) | \mathbf{r} | \Psi^{(s)}(\mathbf{r},t) \rangle e^{i\Omega t} dt, \quad (49d)$$

$$\hat{\boldsymbol{\mathcal{D}}}^{(r)}(\Omega) = \int \langle \ \tilde{\Psi}^{(r)}(\mathbf{r},t) | \mathbf{r} | \Psi^{(r)}(\mathbf{r},t) \rangle e^{i\Omega t} dt, \quad (49e)$$

где каждый член детально обсуждается ниже.

«Медленное» слагаемое $\mathcal{D}^{(s)}(\Omega)$ описывает генерацию гармоник ВУФ-поля атомной системой. Принимая во внимание, что $\Psi^{(s)}(\mathbf{r},t)$ определяется рядом теории возмущений (см. соотношения (33) и (34)), очевидно, $\mathcal{D}^{(s)}(\Omega)$ можно выразить через нелинейные восприимчивости $\chi_n(\omega_{XUV})$ на частотах генерируемых гармоник:

$$\mathcal{D}^{(s)}(\Omega) = e^{i\Omega\tau} \sum_{n} \chi_n(\omega_{XUV}) F_{XUV}^n f_n(\Omega), \qquad (50)$$

$$f_n(\Omega) = \frac{1}{2^n} \int_{-\infty}^{\infty} f_{XUV}^n(t) e^{i\Omega t} dt.$$
(51)

Стоит отметить, что в силу правил дипольного отбора для центрально симметричных систем нелинейные восприимчивости $\chi_n(\omega_{XUV})$ для четных *n* обращаются в ноль. Однако, если учесть более точно эффекты ИК-поля в нулевом приближении $\Psi_{IR}^{(0)}(\mathbf{r},t)$, то можно показать, что восприимчивости $\chi_n(\omega_{XUV})$ должны быть заменены на обобщенные нелинейные восприимчивости атомной системы в постоянном электрическом поле с напряженностью, соответствующей ИК-импульсу в момент времени задержки τ :

$$\chi_n(\omega_{XUV}) \to \chi_n^{(DC)}(\omega_{XUV}; \mathcal{F}_{DC} = F_{IR}(\tau)).$$
 (52)

В этом случае запрет на генерацию четных гармоник снимается, и в спектре генерируемого излучения наблюдаются пики соответствующие частотам $N\omega_{XUV}$, где N — целое число (см., например, [39]).

Рассмотрим «быстрое» слагаемое $\mathcal{D}^{(r)}(\Omega)$ в (49). Учитывая, что быстрая часть волновой функции в синхронизированных ИК- и ВУФ-импульсах есть сумма двух слагаемых (см. (36)), запишем $\mathcal{D}^{(r)}(\Omega)$ в виде

$$\mathcal{D}^{(r)}(\Omega) = \mathcal{D}^{(r,1)}(\Omega) + \mathcal{D}^{(r,2)}(\Omega), \qquad (53)$$

где $\mathcal{D}^{(r,i)}(\Omega)$ (i = 1, 2) определяется соответствующей поправкой для быстрой части волновой функции. Используя соотношения (32), (37), получим $\mathcal{D}^{(r,1)}(\Omega)$ в виде

$$\mathcal{D}^{(r,1)}(\Omega) = \int \mathcal{D}^{(r,1)}(t) e^{i\Omega t} dt, \qquad (54a)$$

$$\mathcal{D}^{(r,1)}(t) = \sum_{\nu=1}^{\infty} \sum_{\tilde{t}'} M_{\nu}(\tilde{t}') \mathcal{G}_{\nu} \langle \tilde{\Psi}^{(s)} | \mathbf{r} | \psi_{\tilde{\mathbf{K}}}^{(+)} \rangle, \quad (54b)$$

$$|\tilde{\Psi}^{(s)}\rangle = \sum_{\nu} [\hat{P}_{\nu}(E_0, -t)\varphi_0]^*,$$
 (54c)

где $\mathcal{G}_{\nu} \equiv \mathcal{G}_{\nu}(t, \tilde{t}')$ определено в (39), времена \tilde{t}' – корни уравнения (38), и $M_{\nu}(\tilde{t}')$ – сумма матричных элементов, описывающих ν -фотонное ВУФиндуцированное возбуждение атомной системы из начального состояния φ_0 в состояние континуума $\psi_{\mathbf{K}'}^{(+)}$ с учетом каналов переизлучения. Явный вид $M_{\nu}(\tilde{t}')$ может быть определен в рамках теории возмущений с использованием рекуррентного соотношения (30):

$$M_{1}(\tilde{t}') = \langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | \tilde{V}_{+} | \varphi_{0} \rangle + + \langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | \tilde{V}_{+} G_{E_{0}}^{'} \tilde{V}_{-} G_{E_{0} + \omega_{XUV}}^{'} \tilde{V}_{+} | \varphi_{0} \rangle + \cdots , M_{2}(\tilde{t}') = \langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | \tilde{V}_{+} G_{E_{0} + \omega_{XUV}}^{'} \tilde{V}_{+} | \varphi_{0} \rangle + \cdots M_{3}(\tilde{t}') = \langle \psi_{\tilde{\mathbf{K}}'}^{(+)} | \tilde{V}_{+} G_{E_{0} + 2\omega_{XUV}}^{'} \tilde{V}_{+} G_{E_{0} + \omega_{XUV}}^{'} \tilde{V}_{+} | \varphi_{0} \rangle + \cdots$$

где $\tilde{V}_{\pm} \equiv V_{\pm}(\mathbf{r}, \tilde{t}')$ (заметим, что для случая линейно-поляризованного ВУФ-импульса $\tilde{V}_{+} = \tilde{V}_{-}$). Третий множитель в (54b) (матричный элемент $\langle \tilde{\Psi}^{(s)} | \mathbf{r} | \psi_{\tilde{\mathbf{K}}}^{(+)} \rangle$) определяет амплитуду рекомбинации в атомное состояние в поле ВУФ-импульса в момент времени t (см. выражение (34)).

Функция $\mathcal{D}^{(r,1)}(t)$ быстро меняется с изменением времени t из-за наличия в \mathcal{G}_{ν} быстро осциллирующего фактора $e^{-iS(t,\tilde{t}')}$. Учитывая, что временной интервал между ионизацией и рекомбинацией (т. е. время распространения электрона в континууме под действием ИК-поля) имеет порядок периода ИК-поля ($|\tilde{t} - \tilde{t}'| \sim T_{IR}$), ионизация и рекомбинация не могут происходить на протяжении длительности \mathcal{T}_{XUV} аттосекундного ВУФ-импульса ($\mathcal{T}_{XUV} \ll T_{IR}$). Это обстоятельство позволяет опустить в сумме по ν в (54с) все слагаемые за исключением $\nu = 0$, а амплитуду рекомбинации ($\tilde{\Psi}^{(s)} |\mathbf{r}| \psi_{\tilde{\mathbf{K}}}^{(+)}$) записать в низшем по F_{XUV} приближении (т. е. полагая $F_{XUV} = 0$ для состояния $\tilde{\Psi}^{(s)}$):

$$\langle \tilde{\Psi}^{(s)} | \mathbf{r} | \psi_{\tilde{\mathbf{K}}}^{(+)} \rangle \approx e^{iE_0 t} \langle \varphi_0 | \mathbf{r} | \psi_{\tilde{\mathbf{K}}}^{(+)} \rangle.$$
 (55)

Оценка интеграла (54а) методом стационарной фазы приводит к результату

$$\mathcal{D}^{(r,1)}(\Omega) = \sum_{\tilde{t}} \mathcal{D}^{(r,1)}(\tilde{t}) e^{i\Omega \tilde{t}},$$
(56)

где суммирование выполняется по всем временам, удовлетворяющим уравнению

$$\frac{\tilde{\mathbf{K}}^2}{2} = \Omega + E_0, \quad \tilde{\mathbf{K}} = \mathbf{K}(\tilde{t}, \tilde{t}'), \tag{57}$$

при решении которого следует учесть неявно заданную зависимость $\tilde{t}' = \tilde{t}'(\tilde{t})$ согласно уравнению (38). Исходя из полученных аналитических соотношений, нетрудно дать физическую интерпретацию механизму генерации излучения, описываемому $\mathcal{D}^{(r,1)}(\Omega)$: атомный электрон, поглощая ν фотонов ВУФ-поля, переходит в континуум, в котором он распространяется вдоль замкнутой траектории под действием интенсивного ИК-поля. В момент возврата к атомному остову набранная электроном энергия испускается в виде кванта с частотой Ω посредством рекомбинации в основное состояние. Описанный механизм генерации будем называть ВУФ-ионизационным каналом генерации (в англоязычной литературе «XUVinitiated HHG channel») [44, 46, 71–73].

Представим дипольный момент $\mathcal{D}^{(r,2)}(\Omega)$, определяемый волновой функцией $\Psi^{(r,2)}$, в виде суммы

$$\mathcal{D}^{(r,2)}(\Omega) = \mathcal{D}^{(r,2a)}(\Omega) + \mathcal{D}^{(r,2b)}(\Omega), \qquad (58)$$

где парциальные дипольные моменты $\mathcal{D}^{(r,2a)}(\Omega)$ и $\mathcal{D}^{(r,2b)}(\Omega)$ соответствуют поправкам $\Psi^{(r,2a)}$ и $\Psi^{(r,2b)}$ быстрой части волновой функции (см. обсуждение выражения (41)). С учетом (42), запишем $\mathcal{D}^{(r,2a)}(\Omega)$ в виде

$$\mathcal{D}^{(r,2\mathrm{a})}(\Omega) = \int \mathcal{D}^{(r,2\mathrm{a})}(t) e^{i\Omega t},$$
(59a)

$$\mathcal{D}^{(r,2\mathrm{a})}(t) = \sum_{s} a_s(t) \langle \tilde{\Psi}^{(s)} | \mathbf{r} | \Psi_{\mathbf{K}_s}^{(+)} \rangle, \qquad (59\mathrm{b})$$

где $\Psi_{\mathbf{K}_s}^{(+)}$ определено соотношением (43). Учитывая определение дуальной функции $\tilde{\Psi}^{(s)}$, построенной из $\Psi^{(s)}$ (см. соотношение (34)), запишем матричный элемент в (59b) в виде

$$\langle \tilde{\Psi}^{(s)} | \mathbf{r} | \Psi_{\mathbf{K}_s}^{(+)} \rangle \approx \sum_n \mathcal{A}_n^{(\text{rec})} f_{XUV}^n(t) e^{-in\omega_{XUV}t}, \quad (60)$$

где $\mathcal{A}_n^{(\text{rec})} \propto F_{XUV}^n$ — амплитуда фоторекомбинации с поглощением (n > 0) или испусканием (n < 0)*n*-фотонов ВУФ-поля. Поскольку функция $a_s(t)$ является быстро осциллирующей, интеграл в (59а) можно оценить методом перевала. В результате для $\mathcal{D}^{(r,2a)}(\Omega)$ получим

$$\mathcal{D}^{(r,2\mathbf{a})}(\Omega) = \sum_{n,s} a_s(t_s) \mathcal{A}_n^{(\mathrm{rec})} \times \\ \times f_{XUV}^n(t_s - \tau) e^{i(\Omega - n\omega_{XUV})t_s}, \tag{61}$$

где времена рекомбинации t_s находятся из перевального уравнения

$$\frac{\mathbf{K}^2(t_s, t'(t_s))}{2} = \Omega + E_0 - n\omega_{XUV}, \qquad (62)$$

а соответствующие времена ионизации $t'(t_s)$ удовлетворяют уравнению (7) при подстановке в него $t = t_s$. В дальнейшем будем нумеровать возможные пары решений системы уравнений (7) и (62) одним индексом s: (t_s, t'_s) . Аналитическое соотношение (61) позволяет дать простую квазиклассическую интерпретацию механизму генерации излучения, описываемому слагаемым $\mathcal{D}^{(r,2\mathrm{a})}(\Omega)$: в момент времени t'_s связанный электрон туннелирует и распространяется вдоль замкнутой траектории до момента рекомбинации t_s. Рекомбинация происходит с испусканием фотона с частотой Ω при одновременном поглошении *n*-фотонов ВУФ-поля. Более того, огибающая ВУФ-импульса выступает в роли «временного сепаратора», отсекая те моменты рекомбинации для которых разность $|t_s - \tau|$ больше длительности ВУФ-импульса. Данный механизм генерации излучения определяет так называемый ВУФ-рекомбинационный канал генерации (в

37

английской литературе «XUV-assisted recombination HHG channel») [52,53].

Покажем теперь, что оставшиеся слагаемые $\mathcal{D}^{(r,\mathrm{2b})}(\Omega), \ \tilde{\mathcal{D}}^{(r)}(\Omega)$ и $\hat{\mathcal{D}}^{(r)}(\Omega)$ пренебрежимо малы. Расчет парциального дипольного момента $\mathcal{D}^{(r,2\mathrm{b})}(\Omega)$ с использованием соотношений (46), (47) и (33) показывает, что он определяется членами, которые были отброшены при анализе $\mathcal{D}^{(r,1)}(\Omega)$. В частности, матричный элемент дипольного перехода между $\Psi_2^{(r,\mathrm{2b})}$ и $\Psi^{(s)}$ имеет второй порядок по F_{XUV} и определяет линейную ($\propto F_{XUV}$) поправку к дипольному моменту в однофотонном ВУФ-ионизационном канале генерации излучения посредством учета ВУФвзаимодействия на этапе рекомбинации (т.е. включает в себя наряду с ВУФ-ионизационным однофотонный ВУФ-рекомбинационный также канал). Аналогично можно показать, что $\Psi_3^{(r,2b)}$ дает поправку $\propto F_{XUV}^2$ к однофотонному ВУФионизационному каналу за счет двухфотонного взаимодействия в ВУФ-рекомбинационном канале, а также поправку $\propto F_{XUV}$ к двухфотонному ВУФ-ионизационному каналу посредством однофотонного ВУФ-рекомбинационного механизма. Указанные поправки следует опустить из-за существенной разницы во временных масштабах между динамикой взаимодействия атомного электрона с ИК- и аттосекундным ВУФ-импульсами: характерный временной масштаб между последовательными процессами ионизации и рекомбинации сопоставим с периодом ИК-поля, ввиду чего этапы ионизации и рекомбинации не могут произойти в рамках длительности одного аттосекундного ВУФ-импульса.

Для оценки вклада дипольного момента $\tilde{\boldsymbol{\mathcal{D}}}^{(r)}(\Omega),$ определенного выражением (49d), заметим, что он описывает инвертированный во времени процесс по отношению к рассмотренным выше каналам генерации для слагаемого $\mathcal{D}^{(r)}(\Omega)$, что непосредственно следует из определения дуальной волновой функции. Так, например, генерация излучения в ВУФрекомбинационном канале для $\tilde{\boldsymbol{\mathcal{D}}}^{(r)}(\Omega)$ происходит в рамках следующего сценария: связанный электрон испускает излучение на частоте Ω , которое сопровождается одновременным поглощением *п* ВУФфотонов, в результате чего электрон переходит в виртуальное состояние с большей по абсолютной величине отрицательной энергией и возвращается в начальное состояние, взаимодействуя с интенсивным ИК-полем. Так как все этапы формирования излучения происходят при отрицательной энергии, то в рамках квазиклассического приближения указанный механизм сильно подавлен и его вклад пренебрежимо мал (см., например, обсуждение в [63]). Используя аналогичные рассуждения для ВУФ-ионизационного канала генерации, приходим к выводу, что им можно пренебречь.

Наконец, слагаемое $\hat{\mathcal{D}}^{(r)}(\Omega)$ также должно быть опущено в нашем рассмотрении, так как оно определяется произведением двух быстрых частей волновой функции, и его учет приводит к превышению точности, установленной в настоящем анализе.

Таким образом, мы показали, что генерация излучения атомной системой, взаимодействующей и интенсивным ИК-излучением и аттосекундным ВУФ-импульсом, длительность которого много меньше, чем период ИК-поля, может происходить в рамках трех каналов: 1) генерация гармоник ВУФ-поля, определяемая соответствующими атомными нелинейными восприимчивостями; 2) ВУФ-ионизационный канал генерации; 3) ВУФрекомбинационный канал генерации.

4.2. Вклад различных каналов генерации излучения

Рассмотрим общие свойства каналов генерации излучения, такие как положение и ширина спектральной области излучения $[\Omega_{\min}; \Omega_{\max}]$ для заданного канала. Эти свойства зависят от характеристик атомной мишени (энергии начального связанного состояния) и параметров лазерного поля, с которым данная атомная система взаимодействует. Представляет интерес вклад различных каналов генерации и их спектральное перекрытие.

Интервал частот $[\Omega_{\min}; \Omega_{\max}]$ может быть определен из требования существования вещественных решений перевальных уравнений для классических времен ионизации и рекомбинации. Для их нахождения мы параметризуем электрическое поле ИКимпульса через векторный потенциал $\mathbf{A}_{IR}(t)$:

$$\mathbf{F}_{IR}(t) = -\frac{\partial \mathbf{A}_{IR}(t)}{\partial t},\tag{63a}$$

$$\mathbf{A}_{IR}(t) = -\mathbf{e}_x \frac{F_{IR}}{\omega_{IR}} f_{IR}(t) \sin\left(\omega_{IR}t\right), \tag{63b}$$

$$f_{IR}(t) = \begin{cases} \cos^2\left(\frac{\pi t}{\mathcal{T}_{IR}}\right) & |t| \le \frac{\mathcal{T}_{IR}}{2} \\ 0 & |t| \ge \frac{\mathcal{T}_{IR}}{2} \end{cases}$$
(63c)

где $\mathcal{T}_{IR} = 5T_{IR}$ — длительность импульса, $T_{IR} = 2\pi/\omega_{IR}$. Во всех численных расчетах мы полагаем $E_0 = -13.6$ эВ, что соответствует основному состоянию атома водорода.

4.2.1. ВУФ-рекомбинационный канал

Для ВУФ-рекомбинационного канала генерации времена ионизации t'_s и рекомбинации t_s удовлетворяют системе уравнений (7) и (62):

$$\mathbf{K}'_{s} \cdot \dot{\mathbf{K}}'_{s} = 0, \quad \mathbf{K}^{2}(t'_{s}, t_{s}) = 2(\Omega + E_{0} - n\omega_{XUV}).$$
 (64)

Как видно из (64), решение данной системы для произвольного n может быть получено из решения для n = 0 посредством соответствующего сдвига частоты генерируемого излучения: $\Omega \to \Omega + n\omega_{XUV}$. Поэтому ниже мы анализируем случай n = 0, который, очевидно, соответствует генерации гармоник в отсутствие ВУФ-поля. Система (64) имеет действительные решения для $\Omega > |E_0|$ и $\Omega < \max \mathbf{K}^2/2 + |E_0| = \alpha_0 u_p + |E_0|$, где $u_p = F_{IR}^2/(4\omega_{IR}^2), \alpha_0$ — числовой фактор, зависящий от формы огибающей ИК-импульса, например, для длинного монохроматического импульса ($f_{IR}(t) \equiv 1$) $\alpha_0 \approx 3.17$.

На рис. 1 представлена зависимость частоты Ω генерируемого излучения от времен рекомбинации t_j . Цветом изображено абсолютное значение туннельного множителя $a_j^{(tun)}$, входящего в выражение (14b) для парциальной амплитуды генерации высших гармоник ИК-поля. Из рисунка видно, что для фиксированных параметров лазерного импульса число решений системы (64) растет с уменьшением Ω , что приводит к формированию сложной интерференционной структуры в области плато [17]. В окрестности глобального максимума для Ω (т. е. отсечки ИК-индуцированного плато в спектрах ГВГ) существует только два решения, определяющие известные интерференционные осцилляции выхода ГВГ в области отсечки плато [74, 75].

4.2.2. ВУФ-ионизационный канал

Для ВУФ-ионизационного канала (состоящего в ν-фотонном переходе электрона из основного состояния в континуум, его распространении под действием ИК-поля и последующей рекомбинации) времена ионизации и рекомбинации определяются системой уравнений

$$\frac{\tilde{\mathbf{K}}'^2}{2} = E_0 + \nu \omega_{XUV}, \tag{65a}$$

$$\frac{\tilde{\mathbf{K}}^2}{2} = E_0 + \Omega, \tag{65b}$$

где $\tilde{\mathbf{K}}' = \mathbf{K}'(\tilde{t}, \tilde{t}'), \ \tilde{\mathbf{K}} = \mathbf{K}(\tilde{t}, \tilde{t}').$

Рис. 1. Зависимость времени рекомбинации от частоты генерируемого излучения для ИК-импульса с несущей частотой $\omega = 1$ эВ и пиковой интенсивностью $2 \cdot 10^{14}$ Вт/см². Цветом показана значение туннельного фактора (10), вычисленного для времен ионизации и рекомбинации, удовлетворяющих системе уравнений (64). $u_p = 26.89$ эВ, $|E_0| = 13.65$ эВ

Уравнение (65а) имеет вещественные решения при выполнении следующего необходимого условия:

$$\nu\omega_{XUV} \leqslant \max\left(|E_0| + \frac{\tilde{\mathbf{K}}^{\prime 2}}{2}\right) = |E_0| + \alpha_0 u_p. \quad (66)$$

Для определения границ спектральной области $[\Omega_{\min};\Omega_{\max}]$ классически разрешенных частот генерируемого излучения заметим, что система уравнений (65) инвариантна по отношению к замене величин $(\tilde{\mathbf{K}}', E_{\nu}) \leftrightarrow (\tilde{\mathbf{K}}, \tilde{\Omega})$, где $\tilde{\Omega} = \Omega + E_0$, и значения максимумов $ilde{\mathbf{K}}'^2/2$ и $ilde{\mathbf{K}}^2/2$ одинаковые в силу очевидной симметрии в зависимости $\mathbf{K}(t,t')$ и $\mathbf{K}'(t,t')$ от времен t, t' (см. соотношения (6) и (8)). Следовательно, в плоскости переменных $\hat{\Omega}$ и E_{ν} искомая область вещественных решений (или классически разрешенных энергий Ω и E_{ν}) симметрична относительно прямой $\tilde{\Omega} = E_{\nu}$. Более того, так как импульсы **K** и **K**' пропорциональны F_{IR}/ω_{IR} , область вещественных решений в координатах $\tilde{\Omega}, E_{\nu}$ масштабируется на величину u_p . Из вышесказанного следует, что граница классически разрешенных энергий может быть задана с помощью некоторой симметричной функции g(x, y) = g(y, x) двух аргументов $x = \Omega/u_p$ и $y = E_{\nu}/u_p$ в виде уравнения

$$g\left(\frac{\tilde{\Omega}}{u_p}, \frac{E_{\nu}}{u_p}\right) = 0$$

Рис. 2. Область существования решений системы перевальных уравнений (65). Темно-серым цветом обозначена область параметров, полученная в результате численного решения, красная штриховая линия — линейный закон (67)

На рис. 2 показана область классически разрешенных энергий $\tilde{\Omega}$ и E_{ν} , полученных из численного анализа системы уравнений (65). Искомая область хорошо аппроксимируется двумя прямыми [76]:

$$g\left(\frac{\tilde{\Omega}}{u_p}, \frac{E_{\nu}}{u_p}\right) \approx \begin{cases} \frac{\tilde{\Omega}}{u_p} + \beta_0 \frac{E_{\nu}}{u_p} - \alpha_0, & \tilde{\Omega} > E_{\nu}, \\ \frac{E_{\nu}}{u_p} + \beta_0 \frac{\tilde{\Omega}}{u_p} - \alpha_0, & \tilde{\Omega} < E_{\nu} \end{cases}$$
(67)

где

$$\beta_0 = F_{IR}(t_0')/F_{IR}(t_0)$$

 t_0' и t_0 — времена ионизации и рекомбинации, соответствующие глобальному максимуму $\tilde{\mathbf{K}}^2/2$ (для монохроматического поля $\beta_0 = 0.324$).

Зависимость решений системы уравнений (65) от частоты генерируемого излучения Ω представлена на рис. 3. Каждая пара решений (\tilde{t}', \tilde{t}) отображается точкой, цвет которой соответствует заданному значению ω_{XUV} . Как видно из представленного рисунка, а также согласно приведенной выше оценке (66), количество вещественных корней системы (65) уменьшается с ростом ω_{XUV} , при этом область возможных значений времен ионизации и рекомбинации сужается (см. области, ограниченные замкнутыми кривыми на рис. 3.) Напомним, что в развиваемой теории взаимодействие ВУФ-импульса

Рис. 3. Решения системы уравнений (65) для классических времен ионизации t'_+ и рекомбинации t_+ для случая однофотонной ионизации ($\nu = 1$) и различных значений энергии ВУФ-фотона: (а) $\omega_{XUV} = 40$ эВ, (b) $\omega_{XUV} = 60$ эВ, (c) $\omega_{XUV} = 100$ эВ. Закрашенная фиолетовая область определяет длительность ВУФ-импульса. Энергия начального состояния, несущая частота ИК-импульса, длительность ВУФ-импульса и временная задержка между импульсами такие же, как на рис. 1, пиковая интенсивность ИК-импульса $I = 3 \cdot 10^{14}$ Вт/см². Знаки (\pm) показывают направления мгновенного импульса $\tilde{\mathbf{K}}$ электрона в момент ионизации относительно вектора поляризации е $_x$ ИК-поля: (+) для случая ($\tilde{\mathbf{K}} \cdot \mathbf{e}_x$) > 0, (-) для ($\tilde{\mathbf{K}} \cdot \mathbf{e}_x$) < 0. Черная линия показывает профиль напряженности ИК-поля в произвольных единицах

с атомной системой определяется конкретными моментами ионизации и рекомбинации (см. раздел 3), задающих замкнутую траекторию свободного электрона в ИК-поле. Поэтому при определенных временах задержки рассматриваемый канал генерации излучения может быть подавлен из-за отсутствия перекрытия области решений системы (65) с временным интервалом взаимодействия с ВУФ-импульсом. Например, на рис. 3 с показано, что для ВУФ-импульса с временной задержкой $\tau = -0.5T$ область допустимых значений \tilde{t}' не пересекается с временным интервалом действия ВУФ-импульса.

Зависимости частоты генерируемого излучения от времен рекомбинации для всех обсуждаемых выше каналов представлены на рис. 4. Области, соответствующие упругому рассеянию ВУФ-фотона на атомной системе (рэлеевское рассеяния) и генерации второй гармоники, обозначены на рисунке горизонтальными пунктирными линиями (непрерывные жирные горизонтальные линии соответствуют $\Omega = \omega_{XUV}$ и $\Omega = 2\omega_{XUV}$). При интенсивностях ИК-импульса $I \gtrsim 2 \cdot 10^{14} {
m ~Br/cm^2}$ мы наблюдаем спектральное перекрытие канала генерации гармоник в ИК-поле (черные жирные линии на рис. 4) с каналом упругого рассеяния ВУФфотона, которое приводит к возникновению характерных осцилляций в спектре генерации гармоник [60]. С ростом интенсивности ИК-импульса происходит перекрытие с каналами генерации гармоник ВУФ-излучения (см. рис. 4 с, где наблюдается перекрытие с каналом генерации второй ВУФгармоники при $I = 4 \cdot 10^{14} \text{ Bt/cm}^2$). Отметим, что для возникновения интерференции между различными каналами генерации излучения необходимым условием является как спектральное перекрытие каналов, так и соизмеримые вероятности генерации в искомых каналах. ВУФ-ионизационные каналы (зеленая и оранжевая линии) спектрально перекрываются только с каналом генерации гармоник в одиночном ИК-импульсе. Более того, как видно из рис. 4, с ростом числа фотонов в ВУФионизационном канале, область спектрального перекрытия уменьшается, что, очевидно, связано с меньшей величиной набранной энергии электроном при распространении в ИК-поле после поглощения *ν* ВУФ-фотонов (см. рис. 2). Таким образом, наблюдение ВУФ-ионизационных каналов генерации излучения с $\nu > 1$ весьма затруднено ввиду подавленности более интенсивным каналом генерации гармоник в отсутствие ВУФ-импульса и возможно только при существенном увеличении интенсивности ВУФполя. Для $\nu = 1$ ВУФ-ионизационный канал генерации излучения может быть выделен при ортогональной геометрии ИК- и ВУФ-импульсов [77]. Напротив, ВУФ-рекомбинационные каналы (серые тонкие линии на рис. 4) дают вклад в генерацию более высокочастотного излучения, образуя последовательные платообразные структуры в спектрах генерации высоких гармоник [53]. Как правило, ВУФ-

Рис. 4. Спектрограммы каналов генерации для различных пиковых интенсивностей ИК-импульса: $I = 2 \cdot 10^{14}$ Вт/см² (*a*), $3 \cdot 10^{14}$ Вт/см² (*b*) и $4 \cdot 10^{14}$ Вт/см² (*c*). Черные линии показывают канал ГВГ в отсутствие ВУФ-поля, серые линии — ВУФ-рекомбинационный канал с поглощением одного и двух ВУФ-фотонов, зеленые (оранжевые) линии — ВУФ-ионизационный канал с поглощением одного (двух) ВУФ-фотонов. Сплошные горизонтальные линии показывают значения $\Omega = N\omega_{XUV}$ (N = 1, 2), пунктирные горизонтальные линии — границы спектральных областей для первой и второй ВУФ-гармоник. Энергия ВУФ-фотонов $\omega_{XUV} = 80$ эВ, энергия начального состояния, несущая частота ИК-поля и параметры огибающей ВУФ-импульса такие же, как на рис. 1

рекомбинационные каналы интерферируют с каналами генерации гармоник ВУФ-излучения [39]. Отметим, что можно подобрать условия для спектрального перекрытия канала генерации гармоник в одиночном ИК-импульсе с ВУФ-рекомбинационным и ВУФ-ионизационным каналами [см. рис. 4 *c*].

5. ЗАКЛЮЧЕНИЕ

В данной работе развит адиабатический подход для анализа эффектов взаимодействия атомной системы, модифицированной интенсивным ИК-полем, с коротким (аттосекундным) ВУФ-импульсом. Нелинейные по ВУФ-взаимодействию эффекты заключаются в возникновении дополнительных ВУФ-индуцированных каналов генерации излучения. По характеру влияния ВУФ-импульса на атом эти каналы можно разделить на три типа. К первому типу относится обусловленная ВУФ-импульсом модификация нелинейных восприимчивостей атомной системы. Для исходно неполяризованных мишеней восприимчивости нечетных порядков (например, атомная поляризуемость, описывающая рэлеевское рассеяние ВУФ-фотона [60], или восприимчивость третьего порядка, определяющая генерацию третьей ВУФ-гармоники) не исчезают в отсутствие ИК-поля, а значит в полях умеренных интенсивностей могут быть аппроксимированы восприимчивостями свободного атома. Восприимчивости четных порядков (например, описывающие эффект ВУФ-выпрямления [61] или генерацию второй ВУФ-гармоники [39]) исчезают при выключении ИК-поля, будучи обусловленными ИК-индуцированным нарушением симметрии атомного состояния. Первый тип каналов подробно рассмотрен в работах по указанным выше ссылкам.

Основное внимание данного исследования уделено второму и третьему типу каналов — это соответственно ВУФ-индуцированные каналы ионизации, заключающиеся в поглощении ВУФ-фотонов на первом этапе трехшагового механизма перерассеяния, и ВУФ-рекомбинации с поглощением ВУФфотонов в момент возврата электрона к атомному остову. Анализ вклада парциальных амплитуд, связанных с различными замкнутыми классическими траекториями электрона в ИК-поле в соответствии с перечисленными каналами ВУФ-ионизации и ВУФ-рекомбинации, показал, что для умеренных интенсивностей ИК-импульса спектральная область ВУФ-ионизационных каналов перекрывается только с областью спектра гармоник ИК-поля в отсутствие ВУФ-импульса, тогда как вероятность интерференции с каналами генерации ВУФгармоник пренебрежимо мала. Напротив, поглощение ВУФ-фотонов на этапе рекомбинации (канал ВУФ-рекомбинации) существенно расширяет спектр генерируемого излучения, в результате чего возможна интерференция различных каналов генерации. Отметим, что для случая короткого ВУФимпульса энергетическая область каналов генерации существенно зависит от времени задержки между ВУФ-и ИК-импульсами. Например, в случае высоких энергий ВУФ-фотона существуют интервалы времен задержки, для которых канал ВУФионизационной генерации подавляется.

Стоит подчеркнуть, что интерференционные явления, обусловленные спектральным перекрытием различных ВУФ-индуцированных каналов генерации излучения с каналом ГВГ ИК-поля, являются ключом к лучшему пониманию атомных фотопроцессов, протекающих в поле синхронизованных ВУФ-и ИК-импульсов, а также могут служить основой для оптических методов извлечения временного профиля ИК-импульса из измеряемых спектров генерации [39,77,78].

Финансирование. Работа выполнена при финансовой поддержки Российского научного фонда (теории генерации излучения атомом в ИК- и ВУФимпульсах, проект № 22-12-00223), гранта Министерства науки и высшего образования Российской Федерации (общая теория возмущений по ВУФвзаимодействию для ИК-модифицированного атома, проект № 075-15-2021-1351).

ЛИТЕРАТУРА

 J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, and A. Scrinzi, Phys. Rev. A 71, 012712 (2005).

- D. Bauer and P. Koval, Comp. Phys. Comm. 174, 396 (2006).
- D. A. Telnov and S.-I. Chu, Phys. Rev. A 80, 043412 (2009).
- 4. L. Greenman, P. J. Ho, S. Pabst, E. Kamarchik, D. Mazziotti, and R. Santra, Phys. Rev. A 82, 023406 (2010).
- D. A. Telnov, K. E. Sosnova, E. Rozenbaum, and S.-I. Chu, Phys. Rev. A 87, 053406 (2013).
- T. Sato and K. L. Ishikawa, Phys. Rev. A, 88, 023402 (2013).
- S. Patchkovskii and H. Muller, Comp. Phys. Comm. 199, 153 (2016).
- V. Tulsky and D. Bauer, Comp. Phys. Comm. 251, 107098 (2020).
- 9. A. A. Romanov, A. A. Silaev, M. V. Frolov, and N. V. Vvedenskii, Phys. Rev. A 101, 013435 (2020).
- 10. V. V. Strelkov, Phys. Rev. A 74, 013405 (2006).
- O. I. Tolstikhin, T. Morishita, and S. Watanabe, Phys. Rev. A 81, 033415 (2010).
- O. I. Tolstikhin and T. Morishita, *Phys. Rev.* A86, 043417 (2012).
- Y. Okajima, O. I. Tolstikhin, and T. Morishita, Phys. Rev. A 85, 063406 (2012).
- 14. M. V. Frolov, N. L. Manakov, A. A. Minina, A. A. Silaev, N. V. Vvedenskii, M. Y. Ivanov, and A. F. Starace, Phys. Rev. A 99, 053403 (2019).
- A. V. Flegel, N. L. Manakov, A. V. Sviridov, M. V. Frolov, L. Geng, and L.-Y. Peng, Phys. Rev. A 102, 063119 (2020).
- A. V. Sviridov, M. V. Frolov, S. V. Popruzhenko, L. Geng, and L.-Y. Peng, Phys. Rev. A 106, 033117 (2022).
- 17. A. V. Flegel, N. L. Manakov, I. V. Breev, and M. V. Frolov, Phys. Rev. A 104, 033109 (2021).
- A. A. Romanov, A. A. Silaev, T. S. Sarantseva, M. V. Frolov, and N. V. Vvedenskii, New J. Phys. 23, 043014 (2021).
- D. B. Milošević and F. Ehlotzky, Adv. At., Mol., Opt. Phys., 49, 373 (2003).

- 20. W. Becker, F. Grasbon, R. Kopold, D. B. Milošević, G. G. Paulus, and H. Walther, Adv. At. Mol. Opt. Phys. 48, 35 (2002).
- A. Galstyan, O. Chuluunbaatar, A. Hamido, Y. V. Popov, F. Mota-Furtado, P. F. O'Mahony, N. Janssens, F. Catoire, and B. Piraux, Phys. Rev. A 93, 023422 (2016).
- 22. Y. Popov, A. Galstyan, F. Mota-Furtado, P. F. O'Mahony, and B. Piraux, ' Eur. Phys. J. D 71, 93 (2017).
- **23**. Л. В. Келдыш, ЖЭТФ **47**, 1945 (1964) [L. V. Keldysh, JETP **20**, 1307 (1965)].
- **24**. М. В. Федорюк, *Метод перевала*, Наука, Москва (1977).
- 25. P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. G. Paulus, H. Walther, R. Kopold, W. Becker, D. B. Milošević, A. Sanpera, and M. Lewenstein, Science 292, 902 (2001).
- 26. D. B. Milošević, Phys. Rev. A 96, 023413 (2017).
- 27. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
- 28. W. Becker, A. Lohr, and M. Kleber, J. Phys. B: At. Mol. Opt. Phys. 27, L325 (1994).
- 29. M. V. Frolov, N. L. Manakov, T. S. Sarantseva, M. Y. Emelin, M. Y. Ryabikin, and A. F. Starace, Phys. Rev. Lett.102, 243901 (2009).
- 30. M. V. Frolov, N. L. Manakov, and A. F. Starace, Phys. Rev. A 82, 023424 (2010).
- 31. A. D. Shiner, B. E. Schmidt, C. Trallero-Herrero, H. J. Wörner, S. Patchkovskii, P. B. Corkum, J.– C. Kieffer, F. Légaré, and D. M. Villeneuve, Nat. Phys. 7, 464 (2011).
- 32. A. D. Shiner, B. E. Schmidt, C. Trallero-Herrero, P. B. Corkum, J.-C. Kieffer, F. Légaré, and D. M. Villeneuve, J. Phys. B: At. Mol. Opt. Phys. 45, 74010 (2012).
- 33. V. N. Ostrovsky and D. A. Telnov, J. Phys. B: At. Mol. Opt. Phys. 20, 2397 (1987).
- 34. V. N. Ostrovsky and D. A. Telnov, J. Phys. B: At. Mol. Opt. Phys. 20, 2421 (1987).
- 35. M. Pont, R. Shakeshaft, and R. M. Potvliege, Phys. Rev. A 42, 6969 (1990).

- 36. D. A. Telnov, J. Phys. B: At. Mol. Opt. Phys. 24, 2967 (1991).
- 37. M. Pont, R. M. Potvliege, R. Shakeshaft, and Z. Teng, Phys. Rev. A 45, 8235 (1992).
- 38. A. V. Flegel and M. V. Frolov, J. Phys. A: Math. Theor. 56, 505304 (2023).
- 39. A. A. Romanov, A. A. Silaev, N. V. Vvedenskii, I. V. Breev, A. V. Flegel, and M. V. Frolov, Phys. Rev. A 106, 063101 (2022).
- 40. K. Ishikawa, Phys. Rev. Lett. 91, 043002 (2003).
- 41. K. L. Ishikawa, Phys. Rev. A 70, 013412 (2004).
- 42. K. Schiessl, E. Persson, A. Scrinzi, and J. Burgdörfer, Phys. Rev. A 74, 053412 (2006).
- 43. S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, Phys. Rev. A81, 063417 (2010).
- 44. K. J. Schafer, M. B. Gaarde, A. Heinrich, J. Biegert, and U. Keller, Phys. Rev. Lett. 92, 023003 (2004).
- 45. M. B. Gaarde, K. J. Schafer, A. Heinrich, J. Biegert, and U. Keller, *Phys. Rev. A* 72, 013411 (2005).
- 46. J. Biegert, A. Heinrich, C. P. Hauri, W. Kornelis, P. Schlup, M. P. Anscombe, M. B. Gaarde, K. J. Schafer, and U. Keller, J. Mod. Opt. 53, 87 (2006).
- 47. C. Figueira de Morisson Faria, P. Salières, P. Villain, and M. Lewenstein, Phys. Rev. A 74, 053416 (2006).
- 48. G.-T. Zhang, J. Wu, C.-L. Xia, and X.-S. Liu, Phys. Rev. A 80, 055404 (2009).
- 49. M. R. Miller, C. Hernández-García, A. Jaroń-Becker, and A. Becker, Phys. Rev. A 90, 053409 (2014).
- 50. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett. 19, 1870 (1994).
- 51. A. Fleischer and N. Moiseyev, Phys. Rev. A 77, 010102 (2008).
- 52. A. Fleischer, Phys. Rev. A 78, 053413 (2008).
- 53. T. S. Sarantseva, M. V. Frolov, N. L. Manakov, A. A. Silaev, N. V. Vvedenskii, and A. F. Starace, Phys. Rev. A 98, 063433 (2018).

- 54. C. Buth, F. He, J. Ullrich, C. H. Keitel, and K. Z. Hatsagortsyan, Phys. Rev. A 88, 033848 (2013).
- 55. A. C. Brown and H. W. van der Hart, Phys. Rev. Lett. 117, 093201 (2016).
- 56. J.-A. You, J. M. Dahlström, and N. Rohringer, Phys. Rev. A 95, 023409 (2017).
- 57. J. Leeuwenburgh, B. Cooper, V. Averbukh, J. P. Marangos, and M. Ivanov, Phys. Rev. Lett. 111, 123002 (2013).
- 58. J. Leeuwenburgh, B. Cooper, V. Averbukh, J. P. Marangos, and M. Ivanov, Phys. Rev. A 90, 033426 (2014).
- 59. C. Buth, M. C. Kohler, J. Ullrich, and C. H. Keitel, Opt. Lett. 36, 3530 (2011).
- 60. A. A. Romanov, A. A. Silaev, N. V. Vvedenskii, A. V. Flegel, and M. V. Frolov, Opt. Lett. 47, 3147 (2022).
- A. V. Flegel and M. V. Frolov, Phys. Rev. Lett. 131, 243202 (2023).
- 62. А. А. Минина, М. В. Фролов, А. Н. Желтухин, Н. В. Введенский, Квантовая электроника 47, 216 (2017) [А. А. Міпіпа, М. V. Frolov, А. N. Zheltukhin, and N. V. Vvedenskii, Quant. Elect. 47, 216 (2017)].
- 63. M. Y. Kuchiev and V. N. Ostrovsky, Phys. Rev. A 60, 3111 (1999).
- 64. M. V. Frolov, A. V. Flegel, N. L. Manakov, and A. F. Starace, Phys. Rev. A 75, 063407 (2007).
- 65. R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 40, 3061 (1989).
- 66. N. L. Manakov, M. V. Frolov, A. F. Starace, and I. I. Fabrikant, J. Phys. B: At. Mol. Opt. Phys. 33, R141 (2000).

- 67. Η. Л. Манаков, Α. Γ. Φайнштейн, ТΜΦ 48, 385 (1981) [N. L. Manakov and A. G. Fainshtein, Theoret. and Math. Phys. 48, 815 (1981)].
- 68. E. A. Pronin, A. F. Starace, M. V. Frolov, and N. L. Manakov, Phys. Rev. A 80, 063403 (2009).
- 69. P. W. Langhoff, S. T. Epstein, and M. Karplus, Rev. Mod. Phys. 44, 602 (1972).
- 70. N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Phys. Rep. 141, 320 (1986).
- 71. G. Gademann, F. Kelkensberg, W. K. Siu, P. Johnsson, M. B. Gaarde, K. J. Schafer, and M. J. J. Vrakking, New J. Phys. 13, 033002 (2011).
- 72. D. Azoury, M. KrGjger, G. Orenstein, H. R. Larsson, S. Bauch, B. D. Bruner, and N. Dudovich, *Nat. Comm.* 8, 1453 (2017).
- 73. M. Krüger, D. Azoury, B. D. Bruner, and N. Dudovich, Appl. Sci. 9, 378 (2019).
- 74. M. V. Frolov, N. L. Manakov, T. S. Sarantseva, and A. F. Starace, J. Phys. B: At. Mol. Opt. Phys. 42, 035601 (2009).
- 75. M. V. Frolov, N. L. Manakov, A. M. Popov, O. V. Tikhonova, E. A. Volkova, A. A. Silaev, N. V. Vvedenskii, and A. F. Starace, Phys. Rev. A 85, 033416 (2012).
- 76. A. B. Φлегель, М. В. Фролов, А. Н. Желтухин, Н. В. Введенский, Квантовая электроника 47, 222 (2017) [A. V. Flegel, M. V. Frolov, A. N. Zheltukhin, and N. V. Vvedenskii, Quant. Electron. 47, 222 (2017).
- 77. T. S. Sarantseva, A. A. Romanov, A. A. Silaev, N. V. Vvedenskii, and M. V. Frolov, Phys. Rev. A 107, 023113 (2023).
- 78. A. A. Romanov, A. A. Silaev, T. S. Sarantseva, A. V. Flegel, N. V. Vvedenskii, and M. V. Frolov, Opt. Lett. 48, 3583 (2023).