© 2024

ПРОЦЕСС ПОЛНОГО НАМАГНИЧИВАНИЯ И МАГНИТНАЯ ФАЗОВАЯ ДИАГРАММА РЕДКОЗЕМЕЛЬНЫХ ФЕРРИМАГНЕТИКОВ R₂Fe₁₄B

Н. В. Костюченко ^{a,b*}, Д. И. Плохов ^{a,c,d**}, И. С. Терешина ^{a,e}, Г. А. Политова ^{f,g},

Ю. Б. Кудасов^{h,i}, В. В. Платонов^{h,i}, О. М. Сурдин^{h,i}, Д. А. Маслов^{h,i}, И. С. Стрелков^h,

Р. В. Козабаранов^{h,i}, П. Ю. Катенков^{h,i}, А. С. Коршунов^h, И. В. Макаров^h,

А. И. Быков^h, А. В. Филиппов^h, Е. А. Бычкова^h, П. Б. Репин^h, В. Д. Селемир^h,

А. А. Горбацевич^а, А. К. Звездин^{а,с}

^а Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

> ^b Московский физико-технический институт 141701, Долгопрудный, Московская обл., Россия

^с Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

^d Российский университет дружбы народов им. Патриса Лумумбы 117198, Москва, Россия

^е Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

^f Институт металлургии и материаловедения им. А. А. Байкова Российской академии наук 119334, Москва, Россия

> ⁹ Санкт-Петербургский политехнический университет Петра Великого 195251, Санкт-Петербург, Россия

> > ^h Российский федеральный ядерный центр — ВНИИЭФ 607188, Саров, Россия

ⁱ Саровский физико-технический институт НИЯУ МИФИ 607186, Саров, Россия

> Поступила в редакцию 10 июля 2024 г., после переработки 20 августа 2024 г. Принята к публикации 23 августа 2024 г.

На примере интерметаллида Ho₂Fe₁₄B и его гидрида Ho₂Fe₁₄BH_{1.7} исследован процесс полного намагничивания редкоземельных ферримагнетиков системы R-Fe-B. Показано, что во внешнем магнитном поле мегагауссного диапазона в данных соединениях происходят индуцированные ориентационные переходы из ферримагнитного состояния в ферромагнитное. На основе экспериментальных данных определены величины критических полей указанных переходов. Теоретически получены магнитные фазовые диаграммы в переменных «магнитное поле – температура», рассчитаны значения констант обменного R-Fe-взаимодействия.

DOI: 10.31857/S0044451024120083

1. ВВЕДЕНИЕ

В Нобелевской лекции академика В. Л. Гинзбурга [1] приводится перечень основных задач физи-

^{**} E-mail: dmitry@plokhov.ru

Рис. 1. Принципиальная схема магнитокумулятивного генератора МК-1

ки и астрофизики, представляющихся ему наиболее важными в XXI веке, среди которых указана проблема исследования экстремального состояния вещества в сверхсильных магнитных полях. Упоминая лишь вскользь интереснейшую проблематику нейтронных звезд с исключительно сильным магнитным полем (магнитаров) — см., например, обзор [2] и недавнее сообщение [3] о рекордно большой индукции магнитного поля $1.6 \cdot 10^9$ Тл, создаваемого бинарной звездной системой, — сосредоточимся на исследованиях свойств магнитных материалов в полях мегагауссного диапазона.

Распространенным методом генерации сильных и сверхсильных магнитных полей является магнитокумулятивный метод, который основывается на идеях академика А. Д. Сахарова, высказанных еще в начале 50-х годов прошлого века [4].

Суть метода состоит в следующем (рис. 1): при разряде конденсаторной батареи на соленоидлайнер внутри него возникает магнитный поток. Подрыв заряда взрывчатого вещества, окружающего лайнер, синхронизован так, что под действием продуктов взрыва он приходит в движение, когда начальное магнитное поле достигает максимума. Лайнер при схождении к центру сжимает магнитный поток, а поскольку поток сохраняется приблизительно постоянным, индукция магнитного поля внутри оболочки увеличивается. Значения индукции генерируемых таким образом магнитных полей могут достигать величин, превышающих 1000 Тл [5,6].

В России магнитокумулятивный метод генерации сильных и сверхсильных магнитных полей на протяжении многих лет весьма успешно развивается в РФЯЦ ВНИИЭФ (г. Саров Нижегородской обл.), где был получен импульс магнитного поля с рекордной индукцией 2800 Тл [5]. Вопросы, связанные с разработкой и применением магнитокумулятивных генераторов, подробно освещаются в монографии [7], а физическим исследованиям в сверхсильных магнитных полях посвящен обзор [8].

Магнитокумулятивный метод позволяет проводить систематические исследования экстремального состояния вещества, необходимые для самых различных областей физики. В частности, в физике твердого тела этот метод позволяет фактически непосредственно получать информацию о важнейших микроскопических параметрах магнитоупорядоченных материалов, в первую очередь, обменных констант (внутри- и межподрешеточных обменных взаимодействий), параметров кристаллического поля, констант магнитокристаллической анизотропии и т.п., на основе изучения не только магнитных фазовых переходов, но и процессов полного намагничивания, включающих, к примеру, переход ферримагнитных материалов в ферромагнитное состояние, индуцированное внешним магнитным полем [9, 10], причем без необходимости прибегать к спектроскопическим экспериментам, а также к модельным, громоздким и трудоемким методам теоретического исследования, например, с использованием первопринципных расчетов.

В настоящей работе исследованы процессы намагничивания интерметаллида $Ho_2Fe_{14}B$ и его гидрида $Ho_2Fe_{14}BH_{1.7}$ в магнитных полях мегагауссного диапазона, а также получены магнитные фазовые диаграммы этих соединений в переменных «магнитное поле — температура». Выбор для данного исследования тяжелого редкоземельного металла гольмия определяется величиной магнитного момента иона гольмия ($\mu_{Ho} = 10\mu_B$, где μ_B — магнетон Бора), который является наибольшим среди всего ряда редкоземельных ионов, что приводит к реализации вынужденного ферромагнитного состояния с наибольшей возможной намагниченностью среди интерметаллидов $R_2Fe_{14}B$ (здесь R — редкоземельный элемент).

В разд. 2 статьи приведены некоторые существенные для изложения сведения обзорного характера об интерметаллидах типа R₂Fe₁₄B. В разд. 3 описан процесс синтеза исследуемых образцов и их последующей аттестации с целью контроля структурно-фазового состояния. Раздел 4 посвящен проведенным экспериментам и особенностям измерительных методик, применяемых в экспериментах с магнитокумулятивным генератором MK-1 в сверхсильных магнитных полях. В разд. 5 предложена теоретическая модель процесса полного намагничивания, сформулирована методика расчета фазовых диаграмм в сильных магнитных полях, даны количественные оценки величин критических магнитных полей и констант обменного взаимодействия. В Заключении перечислены основные результаты и сделаны выводы по проведенным экспериментально-теоретическим исследованиям.

2. ИНТЕРМЕТАЛЛИДЫ R₂Fe₁₄B

На сегодняшний день изучению свойств магнитотвердых материалов системы R–Fe–B и их гидридов уделяется значительное внимание [11], поскольку постоянные магниты на основе $Nd_2Fe_{14}B$, важнейшего представителя соединений указанного семейства, являются наиболее эффективными. Они широко используются в различных приборах и устройствах и незаменимы при разработке и развитии ряда новых современных технологий [12, 13].

В настоящее время весьма активно ведется поиск и исследование многокомпонентных составов на основе соединения Nd₂Fe₁₄B с помощью замещений как в подрешетке неодима, так и в подрешетке железа. Известно, что частичное замещение атомов Fe на атомы Со в соединениях R₂Fe₁₄B приводит к повышению температуры Кюри. Такой же эффект оказывает внедрение атомов легких элементов, например, водорода [14,15]. Частичная замена атомов Nd на атомы Dy существенно увеличивает коэрцитивную силу магнитотвердых материалов [16], в то время как легирование Но значительно улучшает температурную стабильность магнитов [17]. Замещение атомов Nd атомами Pr снижает температуру спонтанного спин-ориентационного фазового перехода [18], а частичное замещение на Еи приводит к заметному усилению анизотропии редкоземельной подрешетки, что также способствует достижению высококоэрцитивного состояния [19]. Подобные примеры можно продолжить. Целью таких замещений и внедрений является получение материалов с комплексом заранее заданных функциональных свойств и характеристик, таких как температура Кюри, температура спин-ориентационного фазового перехода, намагниченность насыщения, остаточная намагниченность, константы обмена и магнитокристаллической анизотропии.

С помощью нейтронографических исследований было установлено [20], что интерметаллиды семейства R₂Fe₁₄B обладают тетрагональной структурой пространственной группы P4₂/mnm (рис. 2). Элементарная ячейка содержит 4 формульных едини-

Рис. 2. Структура кристаллов редкоземельных интерметаллидов R₂Fe₁₄B (схематическое изображение)

цы, т.е. всего 68 атомов. Атомы железа занимают шесть различных кристаллографических позиций (4e, 4c, $8j_1, 8j_2, 16k_1, 16k_2$), редкоземельные атомы — две (4f, 4g), атомы бора — одну (4f).

При обычных условиях ряд представителей семейства $R_2Fe_{14}B$ и их гидридов являются двухподрешеточными ферримагнетиками, в которых сильные и сверхсильные магнитные поля индуцируют ориентационные фазовые переходы, сопровождающиеся разворотом магнитных подрешеток железа и редкоземельного металла, в результате чего соединения переходят в ферромагнитное состояние, т. е. завершают процесс намагничивания в сверхсильном магнитном поле.

Значения критических полей переходов, при которых начинается разворот подрешеток и происходит их параллельное выстраивание в направлении приложенного внешнего магнитного поля, принадлежат мегагауссному диапазону из-за сильного обменного взаимодействия между редкоземельной подрешеткой и подрешеткой железа (межподрешеточный R–Fe-обмен).

Актуальность и перспективность исследований соединений типа $R_2Fe_{14}B$ в сильных и сверхсильных внешних магнитных полях обусловливается тем, что стандартное лабораторное оборудование, позволяющее выполнять измерения в магнитных полях с индукцией до 30-60 Тл, а в исключительных случаях и до 100 Тл, как правило, не позволяет выявить все особенности поведения намагниченности в этих соединениях, особенно в случае, когда в качестве редкоземельного металла используются элементы иттриевой группы (от Gd до Tm), вследствие большой величины эффективных полей межподрешеточного обменного R–Fe-взаимодействия и значительной по величине константы магнитокристаллической анизотропии.

Лишь в очень сильных магнитных полях (зачастую с индукцией несколько сотен тесла) в соединениях типа R₂Fe₁₄B с тяжелыми редкоземельными металлами возможно наблюдать процесс полного намагничивания. Как уже отмечалось выше, столь сильные магнитные поля нарушают ферримагнитную структуру. Магнитные моменты отдельных подрешеток (двух, трех и более — в многокомпонентных составах) поворачиваются относительно друг друга, а также относительно направления внешнего магнитного поля. На получаемых экспериментальных полевых зависимостях намагниченности, как правило, наблюдаются изменения величины намагниченности (плавные или скачкообразные), т.е. происходят спин-ориентационные переходы, индуцированные внешним магнитным полем. Процесс намагничивания считается полным (законченным), когда магнитные моменты обеих подрешеток ориентируются параллельно направлению приложенного внешнего магнитного поля и для ферримагнетика реализуется вынужденное ферромагнитное упорядочение.

Анализ всех особенностей полевых зависимостей намагниченности соединений типа R₂Fe₁₄B, наблюдаемых в сверхсильных магнитных полях, дает ценную информацию об основных магнитных параметрах этих интерметаллидов. Для соединений типа R₂Fe₁₄B, включая многокомпонентные составы, такие параметры в настоящее время не определены для многих составов с тяжелыми редкоземельными металлами. Точное определение этих величин имеет большое фундаментальное и практическое значение, в том числе и для установления особенностей поведения намагниченности редкоземельной подрешетки и влияния ее вклада на магнитные свойства указанных соединений.

3. МЕТОДИКА ПОЛУЧЕНИЯ ОБРАЗЦОВ ИНТЕРМЕТАЛЛИДОВ И ИХ ГИДРИДОВ

Исходный образец интерметаллида $Ho_2Fe_{14}B$ получался сплавлением исходных элементов высокой чистоты (R — 99.9 %, Fe — 99.99 %, B — 99.99 %) в индукционной печи «Донец-1» в атмосфере очищенного аргона в тиглях из оксида алюминия. Из-за высокой температуры плавления бора процесс осуществлялся в два этапа. На первом этапе предварительно сплавлялись между собой лишь железо и

Рис. 3. Принципиальная схема установки для гидрирования интерметаллидов R-Fe-B: 1 — гидрируемый образец, 2 и 4 — вакуумные печи, 3 — гидрид LaNi₅H_{6+x}, 5 и 6 — манометры, 7-10 – вентили

бор, формируя состав Fe₂B. На втором этапе данный состав сплавлялся вместе с редкоземельным металлом и оставшимся железом.

Синтез гидрида Ho₂Fe₁₄BH_{1.7} проводился на специальном оборудовании. На рис. 3 представлена принципиальная схема соответствующей экспериментальной установки.

Для гидрирования образцов $Ho_2Fe_{14}B$ использовался водород высокой чистоты (содержание примесей не более 10^{-3} % по массе), получаемый при разложении гидрида LaNi₅H_{6+x} путем непрямого нагрева реактора 3 в индукционной печи 4 (рис. 3). Диаграмма процесса, который состоял из двух этапов, а именно, процесса активации поверхности образцов, а также процесса гидрирования, представлена на рис. 4. Количество поглощенного водорода определялось расчетным путем с помощью уравнения Ван дер Ваальса, а также проверялось экспериментально по методу сжигания. В данной работе был получен гидрид $Ho_2Fe_{14}BH_{1.7}$ с относительно небольшой концентрацией водорода.

Ранее удавалось получить гидрид $Ho_2Fe_{14}BH_{5.5}$ с максимально возможным числом атомов водорода в расчете на формульную единицу соединения для данного типа кристаллической структуры [21, 22], процесс его полного намагничивания в сверхсильных магнитных полях исследован в работе [23].

При гидрировании поликристаллических образцов исходный гомогенизированный сплав растирался в ацетоне в агатовой ступке во избежание окис-

Рис. 4. Диаграмма процессов активации и гидрирования при получении Ho₂Fe₁₄BH_{1.7}

ления порошка при измельчении. Полученный мелкодисперсный порошок в тигле из оксида алюминия помещался (рис. 3) в реактор 1 из нержавеющей стали, который затем откачивался до высокого вакуума с помощью вакуумного насоса. Процесс откачки проводился при комнатной температуре и продолжался 12 ч. Во время откачки система проверялась на герметичность. Процессу собственно гидрирования предшествовал процесс активации, необходимый для дегазации образца (рис. 4). Активация осуществлялась в динамическом вакууме, при непрямом нагреве реактора 1 с образцом в индукционной печи 2. Заданная температура поддерживалась с помощью контроллера температуры.

Экспериментально был выбран следующий порядок активации и гидрирования: сначала реактор в течение 1 ч нагревался до температуры 420 °C, которая затем поддерживалась неизменной до стабилизации давления в системе (приблизительно 2 ч), после чего в течение 1 ч осуществлялось охлаждение до комнатной температуры. Конечное давление в системе не превышало 0.4 мПа. Реактор изолировался от системы откачки, и в него вводился водород высокой чистоты. Непосредственно при гидрировании образец выдерживался при температуре 350 °C и давлении 1 МПа в течение 12 ч. Наконец, вся система медленно охлаждалась до комнатной температуры.

Анализ проведенных рентгеноструктурных исследований [21, 22, 24] позволяет осуществлять контроль структурно-фазового состояния синтезируемых соединений и определять значения параметров a и c элементарной ячейки и ее объема V как исходного соединения, так и его гидридов (табл. 1). Установлено, что внедрение атомов водорода не изменяет тип кристаллической решетки, однако приводит к ее анизотропному расширению.

Таблица 1. Параметры элементарной ячейки кристалла интерметаллида Ho₂Fe₁₄B и его гидридов

Соединение	а, нм	С, НМ	V, Hm^3	$\Delta V/V$
$\mathrm{Ho}_{2}\mathrm{Fe}_{14}\mathrm{B}$	0.8752	1.1991	0.9185	_
$\mathrm{Ho_{2}Fe_{14}BH_{1.7}}$	0.8789	1.2042	0.9302	0.0128
$\mathrm{Ho_{2}Fe_{14}BH_{5.5}}$	0.8873	1.2150	0.9566	0.0415

4. ИЗМЕРЕНИЯ НА МК-1 В СВЕРХСИЛЬНЫХ МАГНИТНЫХ ПОЛЯХ

Для создания магнитных полей со значением индукции до 600 Тл использовался «малый» магнитокумулятивный генератор типа МК-1 [7,25]. Начальное магнитное поле ($B \approx 17$ Тл) создавалось в тонкостенном многослойном многозаходном соленоиде разрядом конденсаторной батареи ($W \approx 3$ МДж). Далее захваченный проводящим цилиндром магнитный поток сжимался продуктами взрыва до диаметра порядка 10 мм. Время сжатия потока составляет приблизительно 16 мкс.

В данном эксперименте основное внимание уделялось гладкости импульса магнитного поля и эффективности использования полезного объема, поэтому генератор МК-1 был снаряжен в бескаскадном варианте. Это позволило в одном опыте проводить измерения намагниченности сразу четырех образцов. Полезный объем при максимальном значении магнитного поля представлял собой цилиндр с ориентировочными размерами: диаметр 20 мм, длина 100 мм.

Воспроизводимость магнитного поля от опыта к опыту была достаточно высока. На рис. 5 и 6 приведены характерные осциллограммы для индукционного датчика производной магнитного поля и зависимости индукции магнитного поля от времени. Схематическое изображение измерительного узла представлено на рис. 7. Для регистрации производной магнитного поля использовался набор индукционных датчиков с различной чувствительностью. Это позволило измерить индукцию магнитного поля с точностью не хуже 5 % во всем диапазоне работы генератора MK-1.

В целях исключения диамагнитного отклика за счет индукционных токов в диапазоне с большими значениями производных магнитного поля (от 10 до 150 Тл/мкс) перед измерениями исследуемые образцы измельчались в порошок и помещались в мат-

Рис. 5. Характерная для МК-1 скорость изменения индукции магнитного поля, на вставке — то же для начального поля

Рис. 6. Характерная для МК-1 зависимость индукции магнитного поля от времени, на вставке — индукция начального магнитного поля

рицу из эпоксидного компаунда. Текстурирование образцов не выполнялось.

Для охлаждения образцов использовался проточный гелиевый криостат, разработанный с учетом специфики работы генератора МК-1. Прежде всего, в конструкции криостата нельзя было использовать проводящие материалы, в которых возникают большие индукционные токи и пондермоторные силы. Также он должен быть недорогим и простым в изготовлении ввиду невозможности сохранения во взрывном эксперименте.

Рис. 7. Измерительный узел: 1 и 2 — индукционные датчики начального и усиленного поля, 3 — компенсационные датчики, 4 — образец, 5 — криопровод

Измерение намагниченности исследуемых образцов осуществлялось хорошо скомпенсированной парой индукционных катушек со степенью раскомпенсации не хуже 1 %. Детальное описание данного метода измерения представлено в работе [26]. Катушки диаметром d = 3 мм и числом витков N = 20 обладали встречной намоткой по отношению к внешнему магнитному полю. Специальный способ намотки позволяет значительно снизить суммарное электрическое напряжение между витками датчика, возникающее из-за больших скоростей изменения магнитного поля на последней стадии работы генератора.

Поскольку измерительные катушки и образцы уничтожаются в ходе каждого взрывного эксперимента, измерения являются однократными, при этом не удается полностью скомпенсировать сигнал от магнитного поля. Таким образом, сигнал с измерительных катушек может быть представлен в виде

$$U(t) \propto \frac{dM}{dt} + K \frac{dH}{dt}$$

где первый член соответствует «полезному» сигналу, а второй — сигналу раскомпенсации катушек (K — коэффициент раскомпенсации). При выбранном режиме работы МК-генератора раскомпенсация является монотонной функцией и не сказывается на измерениях при изучении фазовых переходов перво-

Рис. 8. Экспериментальные кривые намагничивания порошковых образцов редкоземельного интерметаллида $Ho_2Fe_{14}B$ и его гидрида $Ho_2Fe_{14}BH_{5.5}$ с максимальным содержанием водорода при температуре T = 5 K (использованы данные измерений, выполненных с помощью одновиткового соленоида [24])

го рода, когда намагниченности меняются скачком в малом интервале полей, например, при спин-флоппереходах.

В данной работе основное внимание уделялось регистрации полей насыщения, и в этом случае уделялось большое внимание хорошей компенсации катушек. Из нескольких датчиков выбирались только те, в которых коэффициент раскомпенсации К был минимален. Дополнительный учет раскомпенсации и смещения нулевой линии за счет добавки dH/dtможно провести по известным данным измерения намагниченности этих образцов в малых магнитных полях.

Результаты выполненных измерений — кривые намагничивания Ho₂Fe₁₄B и его гидридов — представлены на рис. 8 и 9.

5. ПРОЦЕСС ПОЛНОГО НАМАГНИЧИВАНИЯ И МАГНИТНАЯ ФАЗОВАЯ ДИАГРАММА

Известно [27,28], что соединение Но₂Fe₁₄B, а также его гидриды при обычных условиях являются двухподрешеточными ферримагнетиками, магнитная структура которых определяется сильным обменным взаимодействием между атомами железа и менее сильным обменным взаимодействием между атомами подрешетки железа и редкоземельной под-

Рис. 9. (Сверху) экспериментальные кривые намагничивания порошковых образцов редкоземельного интерметаллида Ho₂Fe₁₄B и его гидрида Ho₂Fe₁₄BH_{1.7} с промежуточным содержанием водорода; (снизу) производная намагниченности по времени dM/dt. Штриховыми линиями показаны величины намагниченности в ферримагнитной $M_{ferri} = 14M_{Fe} - 2M_{Ho}$ и вынужденной ферромагнитной

 $M_{ferro} = 14 M_{\rm Fe} + 2 M_{\rm Ho}$ фазах при $T \rightarrow 0~{\rm K}$

решетки. Обменное взаимодействие между редкоземельными ионами является наиболее слабым, и этим взаимодействием можно пренебречь.

При этом для редкоземельных ионов энергия обменного взаимодействия с ионами железа велика по сравнению с энергией магнитной анизотропии, поэтому редкоземельную подрешетку можно рассматривать как совокупность ионов, магнитные моменты которых выстраиваются вдоль направления эффективного магнитного поля H_R, включающего внешнее **H** и обменное \mathbf{H}_{ex} магнитные поля:

 $\mathbf{H}_{\mathrm{R}} = \mathbf{H} + \mathbf{H}_{ex} = \mathbf{H} - \lambda \mathbf{M}_{\mathrm{Fe}}.$

В этом выражении $\lambda > 0$ — константа обменного взаимодействия, а $M_{\rm Fe}$ — намагниченность железной подрешетки.

Зависимость намагниченности $M_{\rm R}$ редкоземельной подрешетки от эффективного магнитного поля $H_{\rm R}$ и температуры T, вообще говоря, определяется спектром редкоземельного иона в кристаллическом поле. Однако вклад в энергию кристалла за счет взаимодействия иона с внешним сверхсильным магнитным полем значительно превышает энергию, обусловленную взаимодействием иона с кристаллическим полем, поэтому явный вид зависимости $M_{\rm R}(T, H_{\rm R})$ можно аппроксимировать функцией Бриллюэна:

$$M_{\rm R} = M_{0\rm R} B_J \left(\frac{\mu_{\rm R} H_{\rm R}}{k_B T}\right)$$

Здесь $M_{0\rm R}$ — намагниченность редкоземельной подрешетки при нулевой температуре, J — квантовое число полного углового момента редкоземельного иона.

Выражение для энергии анизотропии W_A кристалла в целом может быть представлено в одноионном приближении, когда железная и редкоземельная подрешетки вносят независимые вклады:

$$W_A = W_{\rm Fe} + W_{\rm R} = W_{\rm Fe}(\theta, \varphi) + W_{\rm R}(\theta', \varphi'),$$

где θ , φ , θ' , φ' — углы, определяющие ориентацию намагниченностей подрешеток по отношению к кристаллографическим осям. В случае рассматриваемых одноосных кристаллов в выражении для энергии анизотропии в первом приближении можно ограничиться лидирующим членом

$$W_A(\theta,\varphi) = -K_1 \sin^2 \theta, \qquad (1)$$

записанным в системе координат, оси x и z которой направлены соответственно вдоль кристаллографических a- и c-осей. Константа анизотропии K_1 положительна.

Энергия одноосной анизотропии (1) отражает существование в монокристаллическом образце выделенного направления, вдоль которого выстраиваются намагниченности подрешеток. Процесс полного намагничивания в монокристалле теоретически рассмотрен в работе [23]. Однако в исследованных в настоящей работе нетекстурированных поликристаллическых порошковых образцах, состоящих из большого числа кристаллитов, оси легкого намагничивания которых случайным образом ориентированы в пространстве, такое выделенное направление отсутствует, что отвечает изотропной среде, поэтому в выражении (1) следует положить $K_1 = 0$. Данное обстоятельство позволяет также пренебречь температурной зависимостью константы анизотропии.

Помимо этого, энергия анизотропии относительно невелика по сравнению с энергией обменного взаимодействия [29–31]. В работе [32] было показано, что учет анизотропии приводит к незначительному пересмотру оценок критических полей. В настоящей работе исследуется поведение соединения в неколлинеарной фазе в сверхсильных полях, доминирующей является обменная энергия, а вклад анизотропии является поправочным. Необходимо также указать на следующее обстоятельство: в действительности наблюдаемая зависимость константы анизотропии для соединении Ho₂Fe₁₄B носит немонотонный характер [33], она максимальна при температуре около 150 K и с понижением температуры быстро убывает практически до нуля. С этой особенностью связано наличие спинового ориентационного перехода [33, 34], происходящего при температуре T = 57.6 K, когда намагниченности подрешеток становятся неколлинеарными (угол $\Delta\theta$ между намагниченностью образца и *с*-осью достигает наибольшего значения 23° при $T \rightarrow 0$ K). Количественно этот эффект объясняется действием кристаллического поля на ионы гольмия [35].

В сверхсильном магнитном поле вклад кристаллического поля уже не является доминирующим, поэтому в первом приближении можно ограничиться рамками рассматриваемой модели двухподрешеточного ферримагнетика. В пользу этого свидетельствуют полученные нами данные процесса полного намагничивания: уже в полях около 20 Тл происходит выход на ферримагнитное насыщение (рис. 8 и 9), при этом актуальные рассматриваемые поля существенно выше.

Для анализа поведения намагниченностей подрешеток во внешнем магнитном поле можно использовать термодинамический подход, описанный в монографии [36]. Для этого свободную энергию соединения (в расчете на единицу объема), с учетом всех сделанных выше замечаний, представим в виде

$$F = -M_{\rm Fe}H\cos\theta - \int_{0}^{H_{\rm R}} M_{\rm R} dH_{\rm R} - K_1\sin^2\theta.$$
 (2)

В настоящей работе будем рассматривать случай внешнего магнитного поля, направленного вдоль начального направления ферримагнитного насыщения, при этом величина эффективного магнитного поля

$$H_{\rm R} = \sqrt{H_{ex}^2 + H^2 - 2H_{ex}H\cos\theta}.$$

Равновесные значения угла θ можно определить, пользуясь необходимым условием минимума свободной энергии (2),

$$\frac{\partial F}{\partial \theta} = M_{\rm Fe} H \sin \theta - M_{\rm R} \frac{dH_{\rm R}}{d\theta} - K_1 \sin 2\theta = 0.$$
 (3)

В нулевом внешнем поле это уравнение имеет очевидные решения $\theta = 0$ и $\theta = \pi$, отвечающие достаточному условию минимума $\partial^2 F / \partial \theta^2 > 0$.

Вместе с тем при наложении внешнего магнитного поля в некотором диапазоне его индукции при определенных температурах существуют решения $\theta \neq 0$ и $\theta \neq \pi$, отвечающие неколлинеарной фазе, т.е. фазе, в которой намагниченности подрешеток отклоняются от направления приложенного магнитного поля. Установим условия реализации такой фазы.

Из уравнения (3) непосредственно следует, что неколлинерная фаза описывается соотношением

$$M_{\rm Fe}H - \frac{\lambda M_{\rm R}H}{H_{\rm R}}B_J\left(\frac{\mu_{\rm R}H_{\rm R}}{k_BT}\right) + 2K_1\cos\theta = 0, \quad (4)$$

причем границы области ее существования по магнитному полю могут быть получены, если в этом соотношении положить $\cos \theta = 1$. Уравнение (4) имеет решения только при условии, что температура *T* не превышает некоторое предельное значение T_{max} , которое можно оценить по формуле

$$T_{max} = \frac{J+1}{3J} \frac{M_{\rm R}}{M_{\rm Fe}} \frac{\mu_{\rm R} H_{ex}}{k_B}.$$

Если температура меньше указанной максимальной, то существование неколлинеарной фазы возможно, если индукция внешнего магнитного поля больше величины H_1 , но меньше величины H_2 , называемых соответственно первым (нижним) и вторым (верхним) критическими значениями индукции. Эти величины могут быть определены аналитически из уравнения (4).

Данные измерений [24, 32] кривых полного намагничивания в сверхсильных магнитных полях, однако, позволяют непосредственно определить величину первого критического поля и аппроксимировать величину второго. На рис. 8 и 9 представлены полученные экспериментально кривые намагничивания рассматриваемого интерметаллида и его гидридов при температурах 5 К и 100 К в диапазоне внешних магнитных полей до 300 Тл.

По данным эксперимента возможно с достаточной точностью, используя уравнение (4), рассчитать значения констант исследуемого материала и его гидридов. На рис. 8 тонкие штриховые линии отражают теоретический ход кривой намагничивания во всех трех реализуемых фазах: горизонтальные участки отвечают ферри- и ферромагнитной фазам, наклонный участок — неколлинеарной фазе. Точки излома (в реальности — резкого изменения наклона кривых) соответствуют критическим полям H_1 и H_2 .

Рис. 9 использовался для определения величин критических полей для гидрида с промежуточным содержанием водорода. На этом же рисунке приведены измерения кривой намагничивания в полях до

Таблица 2. Материальные константы ферримагнетиков $Ho_2Fe_{14}BH_x$ (H_1 и H_2 при $T \to 0$ K)

x	<i>H</i> ₁ , Тл	H_2 , Тл	<i>H</i> _{ex} , Тл	T_{max}, \mathbf{K}
0	37	159	98	157
1.7	35	147	91	142
5.5	30	120	75	111

300 Тл при 100 К, но эти данные менее надежны для проведения числовых оценок, поскольку в больших полях накапливается значительная ошибка измерений. Именно с этим связано противоречащее теоретической модели изменение градиента dM/dH в неколлинеарной фазе $H_1 < H < H_2$ по мере возрастания индукции магнитного поля.

Числовые оценки критических полей H_1 и H_2 , пересчитанных на нулевую температуру, и параметров изучаемых соединений приведены в табл. 2. Для негидрированного состава $Ho_2Fe_{14}B$ величина обменного поля равна 98 Тл. Заметим, что гидрирование интерметаллида существенно влияет на его физические характеристики. Так, заметно снижается величина эффективного обменного поля, а вместе с тем и критическая температура реализации неколлинеарной фазы.

Приведем в целях сравнения также данные об оценках величины эффективного обменного поля по различным источникам.

В работе [33] константа межподрешеточного обмена оценивалась по данным измерений температурной зависимости намагниченности монокристаллических образцов. Авторы получили, что энергия обменного взаимодействия ионов железа с редкоземельными ионами равна $1.44 \cdot 10^{-22}$ Дж, что приводит к оценке $H_{ex} \approx 15$ Тл.

В работе [37] приводится описание кривых намагничивания монокристаллов вдоль разных кристаллографических направлений на основе гамильтониана кристаллического поля с учетом обменного взаимодействия. Авторы дают усредненную оценку для обменного поля $2\mu_B H_{ex}/k_B = 310$ K, т. е. $H_{ex} = 231$ Tл (257 Tл для ионов Ho³⁺ в fположениях, а в g-положениях — 205 Tл).

Наконец, анализ кривых намагничивания в сильных магнитных полях (до 18 Тл), проведенный в работе [34], дает наиболее близкую к полученной нами величине обменного поля: 136 Тл.

Рис. 10. Температурные зависимости критических полей H_1 и H_2 для Ho₂Fe₁₄B (синяя кривая) и его гидридов (красные кривые): при $H < H_1$ — ферримагнитная фаза, при $H > H_2$ — ферромагнитная фаза, при $H_1 < H < H_2$ — неколлинеарная фаза

Мы видим, что в литературе имеются противоречивые сведения о величине эффективного обменного поля, поэтому вопрос о ее определении остается актуальным. В цитированных выше работах эта величина рассматривается как подгоночный параметр, поэтому, опираясь лишь на измерения в достаточно слабых полях, нельзя получить для нее надежную оценку. Однако с помощью исследований кривой полного намагничивания удается выполнить, в сущности, прямое измерение обменной константы с достаточной степенью точности. Тем не менее мы полагаем, что дальнейшие измерения на монокристаллических образцах с построением более точной (хотя и существенно более громоздкой теории процесса полного намагничивания) необходимы, однако, это выходит за рамки решаемых в настоящей работе задач.

Количественно температурные зависимости критических полей H_1 и H_2 во всем интервале температур $0 < T < T_{max}$ могут быть получены путем численного решения уравнения (4). Графики этих зависимостей показаны на рис. 10.

Фактически эти графики представляет собой фазовые H-T-диаграммы исследуемых соединений в сверхсильных магнитных полях. Если индукция внешнего магнитного поля не превышает нижнего критического значения, то интерметаллид находится в ферримагнитном состоянии, когда намагниченности редкоземельной и железной подрешеток противонаправлены. При достижении нижней критической индукции поля происходит фазовый переход, реализуется неколлинеарная фаза, в которой намагниченности подрешеток отклоняются от оси ферримагнитного насыщения, совершая переориентацию к ферромагнитному упорядочению, реализующемуся при индукции поля, превышающей верхнее критическое значение. Описанный процесс является процессом полного намагничивания. Заметим, что по мере повышения температуры нижнее критическое поле возрастает, а верхнее — убывает, и они становятся равными друг другу при $T \rightarrow T_{max}$.

По поведению свободной энергии при переходе между коллинеарной и неколлинеарной фазами можно судить о типе фазового перехода. В самом деле, вблизи точки перехода угол θ мал, поэтому, раскладывая свободную энергию в ряд, получим

$$F = a(T, H) \theta^2 + b(T, H) \theta^4 + \dots$$

где функция a(T, H) обращается в нуль на границе между фазами, а функция b(T, H) на этой границе положительна. Такой вид свободной энергии характерен для фазовых переходов второго рода [38]. Величину угла θ можно рассматривать как параметр порядка. При $\theta = 0$ (коллинеарная фаза) ферримагнетик инвариантен относительно произвольных поворотов вокруг вектора индукции магнитного поля. При $\theta \neq 0$ (неколлинеарная фаза, в которой происходит разворот подрешеток) эта инвариантность исчезает. Переход происходит с понижением симметрии в соответствии с теорией Ландау фазовых переходов второго рода.

6. ЗАКЛЮЧЕНИЕ

Основные результаты и выводы данной работы могут быть сформулированы следующим образом: выполнены измерения намагниченности редкоземельного интерметаллического ферримагнетика Ho₂Fe₁₄B и его гидридов в сверхсильных магнитных полях мегагауссного диапазона, построена модель процесса полного намагничивания, позволяющая дать оценки значений критических полей, индуцирующих переходы из ферримагнитной фазы в неколлинеарную (H_1) и из неколлинеарной в ферромагнитную (H_2). На основе извлеченных данных количественно рассчитаны магнитные фазовые диаграммы указанных соединений, даны оценки констант межподрешеточного обменного взаимодействия.

Проведенные измерения позволили экспериментально наблюдать индуцированный полем фазовый переход из исходного ферримагнитного состояния в неколлинеарное состояние. Для завершения процесса полного намагничивания и наблюдения обоих соединений в вынужденном ферромагнитном состоянии необходимы магнитные поля, индукция которых принадлежит мегагауссному диапазону.

Несмотря на то что развитая в настоящей работе теоретическая модель процесса полного намагничивания является весьма простой, она оказывается достаточной для описания основных особенностей кривой намагничивания в сверхсильных магнитных полях и выполнения оценок характеристик процесса и параметров исследованных соединений. С минимальными изменениями представленная модель может быть применена для исследования магнитных свойств редкоземельных магнетиков различных классов соединений в сильных и сверхсильных магнитных полях.

Финансирование. Настоящее исследование выполнено в рамках научной программы Национального центра физики и математики (НЦФМ), проект «Исследования в сильных и сверхсильных магнитных полях» (шифр «НЦФМ-7-2325»). Работа Н.В.К. выполнена при поддержке Министерства науки и высшего образования РФ (договор 075-03-2023-106, проект ФСМГ-2021-0005). Работа Д.И.П. выполнена при поддержке Программы стратегического академического лидерства РУДН. Работа Г.А.П. выполнена в рамках государственного задания на проведение фундаментальных исследований, код темы FSEG-2023-0016.

ЛИТЕРАТУРА

- 1. В. Л. Гинзбург, УФН 174, 1240 (2004).
- V. M. Kaspi and A. M. Beloborodov, Ann. Rev. Astron. Astrophys. 55, 261 (2017).
- L.-D. Kong, S. Zhang, S.-N. Zhang et al., Astrophys. J. Lett. 933, L3 (2022).
- 4. А. Д. Сахаров, УФН 88, 725 (1966).
- A. I. Bykov, M. I. Dolotenko, N. P. Kolokolchikov et al., Physica B: Cond. Mat. 294-295, 574 (2001).
- D. Nakamura, A. Ikeda, H. Sawabe et al., Rev. Sci. Instr. 89, 095106 (2018).
- М. И. Долотенко, Магнитокумулятивные генераторы МК-1 сверхсильных магнитных полей, РФЯЦ-ВНИИЭФ, Саров (2015).
- Г. В. Борисков, А. И. Быков, М. И. Долотенко и др., УФН 181, 441 (2011).

- А. К. Звездин, И. А. Лубашевский, Р. З. Левитин и др., УФН 168, 1141 (1998).
- А. К. Звездин, В. В. Костюченко, В. В. Платонов и др., УФН 172, 1303 (2002).
- I. S. Tereshina, N. Yu. Pankratov, A. Yu. Karpenkov et al., J. Appl. Phys. **130**, 220902 (2021).
- 12. O. Gutfleisch, M. A. Willard, E. Brück et al., Adv. Mater. 23, 821 (2011).
- 13. J. M. D. Coey, Engineering 6, 119 (2020).
- 14. G. Delette, J. Magn. Magn. Mater. 577, 170768 (2023).
- L. A. Ivanov, T. Kaminskaya, I. Tereshina et al., Sol. St. Phenomena **312**, 235 (2020).
- W. F. Li, H. Sepehri-Amin, T. Ohkubo et al., Acta Materialia 59, 3061 (2011).
- I. S. Tereshina, I. A. Pelevin, E. A. Tereshina et al., J. Alloys Compounds 681, 555 (2016).
- 18. И. С. Терешина, Г. А. Политова, Т. П. Каминская и др., Науч.-техн. вед. СПбГПУ, физ.-мат. науки 15, 34 (2022).
- 19. J. Chaboy, N. Plugaru, J. Bartolomé et al., Phys. Rev. B 67, 014415 (2003).
- 20. J. F. Herbst, J. J. Croat, and W. B. Yelon, J. Appl. Phys. 57, 4086 (1985).
- I. S. Tereshina, A. P. Pyatakov, E. A. Tereshina-Chitrova et al., AIP Adv. 8, 125223 (2018).
- 22. I. S. Tereshina, L. A. Ivanov, E. A. Tereshina-Chitrova et al., Intermetallics 112, 106546 (2019).
- **23**. Н. В. Костюченко, Д. И. Плохов, В. В. Дорофеев и др., Инж. физ., вып. 5, 12 (2024).
- 24. N. V. Kostyuchenko, I. S. Tereshina, E. A. Tereshina-Chitrova et al., Phys. Rev. Mater. 5, 074404 (2021).
- 25. А. И. Быков, Е. А. Бычкова, С. В. Галанова и др., в сб. Труды XXVII Междунар. симп. по нанофизике и наноэлектронике (Нижний Новгород, 2023), ИПФ РАН, Нижний Новгород (2023), с. 311.
- **26**. Ю. Б. Кудасов, Электрофизические измерения, Физматлит, Москва (2010).

- 27. J. F. Herbst, Rev. Mod. Phys. 63, 819 (1991).
- 28. И. С. Терешина, Дисс. ... д-ра физ.-мат. наук, МГУ, Москва (2003).
- **29**. В. И. Силантьев, А. И. Попов, Р. З. Левитин, А.К. Звездин, ЖЭТФ **78**, 640 (1980).
- 30. Г. А. Бабушкин, А. К. Звездин, Р. З. Левитин и др., ЖЭТФ 80, 1952 (1981).
- H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley (1991).
- 32. N. V. Kostyuchenko, I. S. Tereshina, A. V. Andreev et al., IEEE Trans. Magn. 57, 2101105 (2021).
- 33. S. Hirosawa, Y. Matsuura, H. Yamamoto et al., J. Appl. Phys. 59, 873 (1986).

- 34. G. Givord, H. S. Li, J.M. Cadogan et al., J. Appl. Phys. 63, 3713 (1988).
- 35. H. Hiroyoshi, R. Kato, M. Yamada et al., Sol. St. Commun. 62, 475 (1987).
- 36. К. П. Белов, А. К. Звездин, А. М. Кадомцева и др., Ориентационные переходы в редкоземельных магнетиках, Наука, Москва (1979).
- 37. T. S. Zhao and J. I. Lee, J. Appl. Phys. 75, 3008 (1994).
- 38. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Физматлит, Москва (2021).