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We put forward a generalized procedure which allows to restore the bulk-like electron and hole wave func-

tions localized in certain valleys from the wave functions of quantum confined electron/hole states obtained in

atomistic calculations of nanostructures. The procedure is applied to the lead chalcogenide quantum dots to

accurately extract the intravalley velocity matrix elements and the constants of the effective intravalley Hamil-

tonian of the exchange interaction for the ground exciton state in PbS and PbSe quantum dots. Our results

suggest that intravalley parameters in PbS quantum dots are much more anisotropic than the ones in PbSe.

Renormalization of the velocity matrix elements, forbidden band gap, valley and exchange splittings of exciton

and exciton binding energy are also calculated.
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1. INTRODUCTION

Currently, semiconductor-based nanostructures are

widely used for various applications. In particular,

quantum dots (QDs) [1] offer the tunability of various

properties from the basic ones like the effective band

gap to more complicated such as exchange interaction

in excitons [2] and carrier g-factor values [3, 4]. Rapid

progress of experimental techniques demands for the

detailed theoretical insight into properties of semicon-

ductor nanostructures. However, until now there is a

gap between purely phenomenological methods based

on the k·p model [5,6] and atomistic calculations, both

empirical [7,8] and ab initio [9,10]. For the band struc-

ture calculations, the interpretation of the atomistic

results within the k·p framework is straightforward.

For nanostructure calculations in most cases additional

work has to be done. Observable quantities (splitting

energies, optical matrix elements, etc.) are available di-

rectly from the atomistic calculations. However, their

values typically results from the complex interplay of

conceptually different phenomena (mixing of the states

at interfaces, anisotropy of effective masses, exchange
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interaction, etc.). For the qualitative description and

prediction of physical properties of real nanosystems

the values of interest are usually the latter ones.

Particularly complex problem is the fine energy

structure of the nanostructures of multi-valley semicon-

ductors (e. g. lead chalcogenides, Si, Ge), where such

values of interest are blended by the mixing of the val-

ley states. In simple cases, such as SiGe quantum wells

[11, 12] or [110]-grown PbX nanowires with the simple

surface [13], straightforward parametrization of the val-

ley splitting is possible. Though, in most cases the val-

ley mixing can be taken into account only phenomeno-

logically. In this work we focus on lead chalcogenides

and propose a generalized solution to this problem.

Lead chalcogenides PbX, X=S, Se are narrow direct

band gap semiconductors suitable for infrared optoelec-

tronic applications [14–16] due to the tunability of the

band gap in a wide range of the infrared spectrum.

Under normal conditions they have the rock-salt crys-

tal structure with O5
h space group and complex multi-

valley band structure. Conduction and valence band

extrema in PbX are located at the four inequivalent

anisotropic L valleys.

As a result of the broken translational symmetry in

lead chalcogenide quantum dots (nanostructures) dif-

ferent L valley states are mixed and the carriers wave
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functions are the combinations of the pure valley states

[17–19]. The valley mixing spreads the local density of

states in k-space among all the L valleys [18] and makes

it difficult to map the atomistic calculations onto the

effective model and vice versa [19]. In particular, the

very complex fine structure of the excitons stems from

the interplay of spin-orbit splitting, valley-mixing and

exchange interaction [19]. This also results in complex

behaviour of carriers’ g-factors [3]. The second mecha-

nism responsible for the lifting of the valley degeneracy

is the anisotropy of effective masses. The disentangle-

ment of different contributions to the exciton fine struc-

ture is further complicated by the strong anisotropy of

effective masses in PbX [17,20] which is, however, can

be captured successfully in the framework of the effec-

tive k·p theory, see, e.g., Refs. [21–23].

Below we present our solution of how to trace the

valley structure of the ground electron (hole) states in

PbX QDs from atomistic calculations to enable direct

mapping onto analytical models. The proposed proce-

dure relies on the symmetry analysis and computation

of the local density of states in reciprocal space at the

four inequivalent L points in the Brillouin zone. As an

example we use the obtained pure valley states to calcu-

late the intravalley anisotropic exchange constants and

intravalley interband velocity matrix elements in cu-

bic, cuboctahedral and octahedral PbX quantum dots

with tetragonal symmetry, similar to the ones studied

in Ref. [19].

We demonstrate that these quantities are almost

insensitive to the shape of the quantum dot and agree

very well with effective mass calculations. Direct ac-

cess to the valley states allows us to show that velocity

and exchange Coulomb matrix elements in PbS quan-

tum dots are much more anisotropic than in PbSe in

the considered range of quantum dot diameters from 3

nm to 25 nm.

2. VALLEY STATES

In bulk PbX crystal the valley states are the elec-

tron and hole states at the band extrema located at the

four inequivalent independent L valleys. In each val-

ley the states are classified by irreducible representa-

tions of the L valley wave vector point group D3d [18].

This group has six spinor representations: two two-

dimensional Γ∓
4 and four one-dimensional conjugated

Γ∓
5 and Γ∓

6 in Koster’s notation [24]. These represen-

tations are also known as L∓
6 , L∓

4 and L∓
5 respectively

[25]. (Hereafter throughout the paper we use only the

Koster’s notation.) Since the one dimensional repre-

sentations Γ∓
5 and Γ∓

6 are conjugated (related by time

inversion) they also form doubly degenerate energy lev-

els Γ∓
5 ⊕ Γ∓

6 ≡ Γ∓
56.

2.1. Extended effective mass model

In PbX crystal the ground conduction band edge

states are odd and transform according to Γ−
4 (L−

6 ),

while the ground valence band edge states are even and

form the basis of Γ+
4 (L+

6 ) [26]. The center of inver-

sion is assumed to be at cation. The standard basis

functions of Γ±
4 are (pseudo)spinors [24], therefore we

refer the band edge states at the L valleys as the valley

(pseudo)spinors

E
b
µ = (|b, µ, ↑〉 , |b, µ, ↓〉), (1)

where b = c, v or «−»,«+» is the band index,

µ = 0, 1, 2, 3 is the valley index and ↑, ↓ are the in-

dices of (pseudo)spins oriented along the valley axis.

Due to the Oh rotational symmetry of the bulk PbX

crystal the valley (pseudo)spinors in different valleys

are not fully independent. Indeed, for any g ∈ Oh the

functions gEbµ ≡ E
b
µ′ are also eigenstates of the bulk

Hamiltonian with same energy Eb, but some at differ-

ent L valley gkµ ≡ k′
µ. This allows us to construct the

valley (pseudo)spinor basis

E
b
V P = (Eb0,E

b
1,E

b
2,E

b
3) (2)

of the irreducible star of L valleys with known trans-

formation properties

gEbV P = E
b
V PD

b(g). (3)

We refer it as the ground valley multiplets. The trans-

formation matrices of E
b
V P can be established explic-

itly by choosing specific rotations gµ ∈ Oh to relate the

valley states in different valleys, such as E
b
µ = gµE

b
0.

Possible choices for gµ are either the powers of S4z ro-

toreflection [19], powers of C4z [27] or C2x, C2y and C2z

rotations [3].

When nanostructured the translation symmetry is

broken and the eightfold degenerate ground valley mul-

tiplets (2) split into several energy levels. The num-

ber of levels and their symmetries are determined by

decomposition of the transformation matrices Db(g),

Eq. (3), into irreducible representations of the symme-

try group of the quantum dot (nanostructure). Decom-

position of the Db matrices is given by symmetrization

matrices Sb via Sb
−1
DbSb. The Sb matrices are chosen

in such a way so the new basis E
b
V PS

b = EP

4∑

µ=0

∑

η=↑,↓
|b, µ, η〉Sbµη,ΓiFz

= |b,Γi, Fz〉 (4)
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transforms as (pseudo)spin. Here |b,Γi, Fz〉 are the

states which transform as the standard basis func-

tions [24] of the irreducible representation Γi. Sev-

eral S matrices for [111]-nanowires with D3d point

group and QDs with Td symmetry were calculated in

Refs. [3, 18, 19]. In quantum dots (nanostructures) the

symmetry of the ground valley multiplets holds. In-

deed, the bulk states may be related to the states in

nanostructures in the two-step procedure: (i) forma-

tion of combinations of bulk states into states which

transform under representations of nanostructure sym-

metry group and (ii) renormalization of energies of

these states due quantum confinement (localization in

r-space and delocalization in k-space, see [5]).

2.2. Empirical tight-binding method

For atomistic calculations of PbX quantum dots

(nanostructures) we use the sp3d5s∗ nearest neighbour

variant of the tight-binding method [17]. In this model

the electron and hole wave functions are expanded over

the basis of Löwdin orbitals |nξ〉 [28] localized near

atomic sites

|Ψ〉 =
∑

nξ

Cnξ |nξ〉 . (5)

Here ξ describes both spin and one of the s, p, d or s∗

type of the orbital, n is the atomic site index. Coeffi-

cients Cnξ are obtained via numerical diagonalization

of the tight-binding Hamiltonian, which is represented

by a large sparse matrix

Ĥ =
∑

nξn′ξ′

Hn′ξ′nξ |n′ξ′〉 〈nξ| . (6)

In the nearest neighbour approximation there are up to

7 · 22 · 102 · Na nonzero elements in the matrix, where

7 = 6+1 is the maximal number of nearest neighbours

n 6= n′ plus diagonal n = n′, 2 is the number of spins,

10 is the number of the sp3d5s∗ orbitals and Na is the

number of atoms in the quantum dot (nanostructure).

Numerical diagonalization of the tight-binding

Hamiltonian is performed using the thick-restart Lanc-

zos algorithm [29,30]. This is efficient iterative method

which has linear computational complexity O(m · Na)
of finding exactly m eigenvectors near the band gap.

Due to the Kramers symmetry the electron (hole)

energy levels Ei are doubly or quadruple degenerate

depending on the point symmetry of the quantum dot

(nanostructure). There is some randomness in degen-

erate tight-binding eigenstates |i, p〉 (p = 1, . . . , ni) of

Eq. (6)

Ĥ |i, p〉 = Ei |i, p〉 (7)

since any linear combination of degenerate states is also

an eigenstate with the same energy Ei. For each energy

level Ei these states Ei = (|i, 1〉 , . . . , |i, ni〉) form a ba-

sis of an irreducible representation Γi of size ni. There-

fore we can define the symmetrized states |Γi, Fz〉 as
∑

p

|i, p〉V ip,Fz
= |Γi, Fz〉 , (8)

where V i is a unitary matrix and |Γi, Fz〉 are the

(pseudo)spin-like states with standard transformation

properties [24]. Eq. (8) is readily generalized to any

number of energy levels

ETBV = EP , (9)

where ETB = (E1, . . . ,En) is the set of sets

of tight-binding states with energies E1, . . . , En,

EP = (EΓ1
, . . . ,EΓn) is the set of sets of symmetrized

states with standard transformation properties. The

matrix V = diag(V1, . . . , Vn) is block-diagonal. Ac-

cidental degeneracy of states Ei = Ej , i 6= j is not

considered as may be removed by small perturbation.

2.3. Mapping tight-binding results to effective

mass model

The next step is to identify the states of the split

conduction and valence band ground valley multiplets

in atomistic calculations. In most cases they are simply

eight closes to the band gap states in each band. How-

ever, a situation when the distance between quantum

confined levels is smaller than the splittings of the val-

ley multiples is possible [18]. For such extreme case the

states of the ground valley multiplets can be identified

in k-space. As shown in Ref. [18] the ground electron

and hole states have the maximum of local density in

k-space exactly at the L points of the Brillouin zone,

while the maximum of excited states is slightly dis-

placed. In centrosymmetric quantum dots (nanostruc-

tures) excited states can be also distinguished by their

opposite parity.

Finally, we define the conduction (valence) band

valley states in PbX quantum dots (nanostructures)

by combining Eqs. (4) and (8). In the matrix form it

reads as

E
b
V PS

b = E
b
TBW

b, (10)

where E
c(v)
TB are the raw conduction (valence) band

tight-binding states and E
b
V P are the corresponding val-

ley multiplets similar to Eq. (2). Instead of V b, Eq. (8),

we introduce a matrixW b to account for possible uncer-

tainties of the raw states to enable the inverse transfor-

mation to the basis of valley (pseudo)spinors given by

8 ЖЭТФ, вып. 2 (8)
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Fig. 1. Local density in the k-space of the same |c, 0, ↑〉 valley

state in the Brillouin Zone surface near L valleys. The exact

positions of the Lµ valleys are indicated by white «x». The

main peak near L0 valley (upper left) is shown in red colours,

while the peaks near the other valleys L1, L2, L3 are shown by

blue colours with different scale of the colormap. The values

(arb. units) of the maximal peak near each valleys are also

indicated on the plots

U b =W bSb
−1
. (11)

We factorize the matrix W (the band index is omitted

for brevity) into three matrices

W = V PR , (12)

where V = diag(Vi1 , . . . , ViN ), Eq. (8), brings the tight-

binding states to the (pseudo)spin form, the matrix P

arranges the order of irreducible representations and

accounts for the phases of their bases and the matrix

R describes the possible rotation between repetitive ir-

reducible representations in the decomposition of the

valley multiplet. The matrix V can be computed as a

sum over the point group of the quantum dot (nanos-

tructure) as described in Appendix 4. The extra ma-

trix P traces the permutations and phase multipliers

for the irreducible representations in the decomposi-

tion, see details in Appendix 4. Parametrization of

the R matrix is given in Appendix 4. The unknown

phases and rotation angles for P and R matrices for

the ground valley multiplets can be obtained by the

numerical maximization of the local density of states

in k-space at the four L points of the Brillouin zone.

To demonstrate the procedure, we reconstruct the

valley states in the small cuboctahedral PbS QD with-

out inversion (D ≈ 3.2 nm, N = 4,M = 0 in Ref. [19]).

Fig. 2. [111]-view of the local densities in r-space of conduction

band valley states |c, µ, ↑〉 , µ = 0, 1, 2, 3 in the cuboctahedral

QD shown at the top (for [111]-view the size of the atoms

is reduced). The black arrows indicate the orientation of the

corresponding L valleys

The arrangement of atoms in this QD is shown in the

inset of Fig. 2. In tetragonal quantum dots the ground

conduction and valence band valley multiplets split into

two doublets Γ6 ⊕ Γ7 and a quadruplet Γ8. The only

fitting parameters are three discrete phase multipli-

ers for each band. As a result we obtain eight states

|b, µ, η = ↑, ↓〉 in each band b = c(v) localized near Lµ
valleys. The wave vectors of the L valleys are chosen as

k0 ‖ [111], k1 ‖ [1̄1̄1], k2 ‖ [11̄1̄], k3 ‖ [1̄11̄].
(13)

The 2D local density of the |c, 0, ↑〉 state in k-space

near the L valleys is shown in Fig. 1. The part of the

density near the L0 valley is shown by red, while the

density near other valleys are shown by blue with differ-

ent scale. The scales of the colormaps are chose from 0

to the maximum of the local density in the correspond-

ing cross section, which are indicated on the plots in

arbitrary units. One can see that the main peak at
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Fig. 3. Interband velocity matrix elements in the basis of valley state 〈c, µ, η |v̂| v, µ′, η′〉 in the coordinate frame of the L0 valley,

Eq. (15), in QD with D ≈ 3.2 nm (see text). Color encodes the amplitude of corresponding matrix elements

the L0 valley is about 200 times larger than the peaks

near other Lµ, µ = 1, 2, 3 valleys. Moreover, these 2D

plots reveal the admixture of excited states at different

valleys since the maxima of their density are misplaced

from the L valleys. The positions of the L valleys in

Fig. 1 are shown by small white «x» at the middle of

each plot.

In Fig. 2 we also show the local density of all the

valley states |c, µ, ↑〉, µ = 0, 1, 2, 3 in r-space. To em-

phasize the difference of the local densities of the valley

states they are shown as projections onto the plane per-

pendicular to the [111] axis. In this plane projections

of the effective masses in L0 valley are isotropic, while

projections of the other valleys Lµ, µ 6= 0, are not. This

results in the anisotropy in the projections of the local

densities of the Lµ, µ = 1, 2, 3, valley states, which is

clearly seen in Fig. 2. The axis of this anisotropy de-

pends on the projection of the corresponding L valley

onto the (111) plane. The state at the L0 valley is

isotropic in this projection. The density of spin-down

and valence band states look very similar.

3. RESULTS

We apply the developed method to unwind the val-

ley structure of states in cubic, cuboctahedral and oc-

tahedral PbS and PbSe quantum dots with tetragonal

symmetry Td, similar to the ones studied in Ref. [19].

We show how having the explicit form of the valley mul-

tiplets helps to calculate physical properties of these

quantum dots, such as interband velocity matrix el-

ements and intravalley long range exchange Coulomb

interaction, which otherwise are not directly accessible.

3.1. Interband velocity matrix elements

First we consider one of the simplest yet useful prop-

erty of PbX quantum dots — interband velocity ma-

trix elements 〈c |v̂| v〉 between the electron and hole

ground levels. Velocity matrix elements in these quan-

tum dots are computed as a commutator of of the

tight-binding Hamiltonian with the coordinate opera-

tor, v̂ = i[Ĥ, r]/~ and we assume the diagonal approx-

imation r = δmnδαβrn where rn is the coordinate of

n-th atom [31]. Since the transformation of the tight-

binding states to the valley (pseudo)spinors (10) given

by the matrix U b, b = c, v (11), then the corresponding

transformation of the velocity matrix elements is given

by

VV P = U c†VTBU
v. (14)

Result of this transformation is shown in Fig. 3 for the

same D ≈ 3.2 nm cuboctahedral PbS quantum dot,

which atomistic structure is shown in inset of Fig. 2.

In Fig. 3 the interband velocity matrix elements are

given in the valley (pseudo)spin basis in the coordi-

nates frame

n0x ‖ [11̄0], n0y ‖ [112̄], n0z ‖ [111] (15)

of the L0 valley. Upper panels show real part of

vx, vy , vz (from left to right) components of the veloc-

ity matrix elements, lower panels show imaginary parts.

265
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Fig. 4. Intravalley interband velocity matrix elements vt, vl in

10−3 speed of light in PbS QDs with different shapes as a func-

tion of effective QD diameter. Results of the tight-binding cal-

culations are shown by symbols connected by thin solid lines.

The shape of the symbols represent the shape of the QDs: cu-

bic, cuboctahedral and octahedral. Results of the calculations

in the framework of anisotropic k.p theory are shown by thin

dashed lines. Dashed lines show the corresponding interband

velocity matrix elements in the bulk crystal

The absolute values of velocity matrix elements are in-

dicated by colour (positive by red, negative by blue,

zero by white), the scale of the colormap is same for

all the subplots. The upper left corner in each subplot

correspond to the intravalley velocity matrix elements

in the L0 valley. One can clearly see that the spin

matrices of the velocity operator in the L0 valley are

proportional to the Pauli matrices, v̂i ∝ σi. The abso-

lute values of the velocity matrix elements in L0 valley,

vx = vy 6= vz , represent the internal anisotropy of the

valley. One can also see there are traces of non-diagonal

by the valley index optical transitions. The intervalley

interband velocity matrix elements are non-zero due to

the admixture to the ground valley states of excited

states in other valleys seen in Fig. 1. This is a second

order perturbation with respect to the valley splitting

and it vanishes very quickly with increase of the size of

the quantum dot (nanostructure).

The structure of the velocity matrix elements in the

basis of valley states, Fig. 3, allows us directly calculate

their values as

vx = Re 〈c, 0, ↓ |v̂x| v, 0, ↑〉 ,
vy = Im 〈c, 0, ↓ |v̂y| v, 0, ↑〉 ,
vz = Re 〈c, 0, ↑ |v̂z | v, 0, ↑〉 .

(16)

Results of the calculations are shown in Fig. 4 for PbS

and in Fig. 5 for PbSe quantum dots in thousandths

of the speed of light. Longitudinal (vl ≡ vz) intraval-

Fig. 5. Same as in Fig. 5 for PbSe QDs

ley interband velocity matrix elements are shown by

blue, transverse ones (vt ≡ vx = vy) by red. Tight-

binding data are shown by symbols connected by thin

solid lines for each of the three considered shapes of

the quantum dots: cubic by « », cuboctahedral by « »

and octahedral by « ». For the detailed description

of the atomistic structure and shapes of the quantum

dots see Ref. [19]. Solid dashed lines show the cor-

responding velocity matrix elements in bulk PbS and

PbSe crystals. Data calculated within the framework

of fully anisotropic k·p model [3] are shown by thin

dashed lines.

These plots, Figs. 4 and 5, reveal the scaling of the

internal valley anisotropy in isotropic PbS and PbSe

quantum dots. One can clearly see that velocity matrix

elements almost insensitive to the shape of the quan-

tum dots and converge to the corresponding values in

bulk crystal at large diameters. Also these plots re-

veal that intravalley velocity matrix elements in PbSe

quantum dots are almost isotropic in the range of di-

ameters from about 5 nm to 15 nm, compared to to

their PbS counterparts. Another interesting result is

that anisotropic k·p theory for spherical quantum dots

fails a bit to predict the scaling of the longitudinal com-

ponent of the velocity at small diameters, especially for

PbS.

3.2. Intravalley exchange interaction

The second application of the valley pseuodspinors

considered in this paper is the calculation of intravalley

anisotropic long range exchange Coulomb interaction

constants. These constant are calculated here for the

same PbS and PbSe quantum dots as in Sec. 3.1 and

Ref. [19].
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Fig. 6. In the main plot the averaged intravalley exchange con-

stant Ks is shown as a function of QD diameter. Inset shows

the intravalley exchange anisotropy parameter ηX as a func-

tion of QD diameter. Results of the tight-binding calculations

are shown by symbols connected by thin solid lines. The shape

of the symbols represent the shape of the QDs: cubic, cuboc-

tahedral and octahedral. Results of the calculations in the

framework of anisotropic k·p theory are shown by thin dashed

lines. Thick dashed lines show the corresponding values in the

bulk crystal (see Table 1)

The problem with calculation of intravalley ex-

change interaction constants is the complicated inter-

play of intra- and intervalley Coulomb interaction and

the valley mixing of electron, hole and exciton states.

The full exciton Hamiltonian in PbX quantum dots has

four main contributions

ĤX = Ĥ0 + ĤVM − Ĵ + K̂, (17)

where Ĥ0 ≡ Eg(D)1 describes the quantum confine-

ment of electrons and holes, ĤVM is the valley mixing,

Ĵ ≡ J1, J > 0 is the direct Coulomb interaction and K̂

is the long range exchange [19]. The quantum confine-

ment and direct Coulomb are trivial diagonal parts of

the Hamiltonian. The exciton fine structure is defined

by the valley mixing ĤVM and exchange interaction K̂.

It was shown in Ref. [19] that intra- and intervalley ex-

change are equally important and a phenomenological

model for the exchange matrix K̂ was proposed. The

model is isotropic with one exchange constant K(D)

which can be calculated analytically. In this model the

electron-electron representation of the long range ex-

change Hamiltonian in one L valley is

Ĥ iso
exch = K

(
1
2
− σ∗ · σ

6

)
, (18)

where K is the exchange constant and the spin matrix

results from the angular parts of exchange integrals on

Fig. 7. Same as in Fig. 6 but for PbSe QDs

the spherically symmetric electron and hole wave func-

tions. The model also takes into account the valley

splittings as external parameters and allows to calcu-

late absorption spectrum of the ground exciton level

which is then can be compared to the similar spectra

in tight-binding. Comparison of the phenomenologi-

cal model and tight-binding absorption spectra in PbS

quantum dots was used in Refs. [19] and [32] to esti-

mate the exchange constant in the tight-binding. The

obvious drawback of this approach is that it requires

a fitting procedure to minimize the difference between

absorption spectra. This approach is not accurate.

In this work we calculate the intravalley exchange

interaction constants straightforwardly fully taking

into account the valley anisotropy. As discussed in

Sec. 2 the L valley states, Eq. (1), transform ac-

cording to Γ−
4 and Γ+

4 irreducible representation of

the wave vector group D3d in conduction and valence

bands, respectively. Therefore in the direct product

Γ−
4 ⊗Γ+

4 = Γ−
1 ⊕Γ−

2 ⊕Γ−
3 there are two one-dimensional,

Γ−
1 , Γ−

2 , and one two-dimensional, Γ−
3 irreducible rep-

resentations, each corresponding to an exchange con-

stant Ks,Kl and Kt. As a result, the electron-electron

representation of the Hamiltonian of the anisotropic in-

travalley exchange interaction has the following form

Ĥaniso
exch = Ks

1
2
−Kt

(σ∗
xσx + σ∗

yσy)

6
−Kl

(σ∗
zσz)

6
. (19)

Here we used same spin matrices as in Eq. (18). For

the known intravalley exchange matrix the exchange

constants Ks, Kt and Kl are calculated as

Ks =
Tr
(
Ĥaniso

exch

)

2
, Kt(l) = −

3Tr
(
M∗
t(l)Ĥ

aniso
exch

)

2
,

(20)
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where Mt = σ∗
xσx or σ∗

yσy and Ml = σ∗
zσz . Since the

energy of the dark excitons are not shifted by the ex-

change [33], it is natural to expect that

Ks =
2Kt +Kl

3
(21)

and the eigenvalues of Ĥaniso
exch are

Es = 0, Et =
Kt +Kl

3
, El =

2Kt

3
. (22)

The intravalley part (19) of the full 64 × 64 exhcange

Hamiltonian can also be calculated via the inverse

transformation (11). For the v ⊗ c exciton indexing

scheme the transformation of exciton states is given by

the direct product Uv∗ ⊗ U c.
Results of the calculations are shown in Fig. 6 for

PbS and in Fig. 7 for PbSe cubic, cuboctahedral and

octahedral QDs with tetragonal symmetry. Instead of

Ks,Kt,Kl in Figs. 6 and 7 we show Ks(D) and the

long range exchange anisotropy parameter

ηX(D) =
Kl(D)−Kt(D)

Ks(D)
. (23)

Tight-binding data are shown by symbols connected

by thin solid lines for each of the three considered

shapes of the QDs: cubic by « », cuboctahedral by

« » and octahedral by « ». Detailed description of the

atomistic structure and shapes of the QDs are given in

Ref. [19]. Data calculated within the framework of fully

anisotropic k·p model [3] are shown by thin dashed

lines. One can see that the intravalley exchange is al-

most insensitive to the shape of the QDs and does not

oscillate with the change of the QD diameter. The

tight-binding results agree well with anisotropic k·p
theory. Details of the k·p calculations are given in Ap-

pendix 4.

The asymptotic values for ηX may be calculated

from k·p theory [34, 35]. The longitudinal-transverse

splitting reads as

~ωLT =
8e2~2P 2

ε∞m2
0E

2
ga

3
B

(24)

where aB is the exciton Bohr radius and ε∞ is the high

frequency dielectric permittivity, see Table 1. It may

be shown that the effect of the valley anisotropy may be

fully accounted by considering the direction-dependent

longitudinal-transverse splitting

~ω
l(t)
LT =

8e2~2P 2
l(t)

ε∞m2
0E

2
ga

3
B

. (25)

Table 1. Main components of longitudinal-transverse long

range exchange exciton splittings, anisotropic material param-

eters for bulk PbS and PbSe, high-frequency dielectric permit-

tivity and exciton Bohr radius. αb
t(l) are remote band contri-

butions [3]. Interband momentum matrix elements Pt(l) are

given in atomic units.

PbS PbSe

~ωtLT (µeV) 76 19

~ωlLT (µeV) 110 11

〈~ωLT 〉 (µeV) 87 16

ηX −0.775 0.689

Pt (atomic) 0.1756 0.2699

Pl (atomic) 0.2110 0.2243

Eg (eV) 0.294 0.213

αvtm0/~
2 3.713 3.618

αvlm0/~
2 0.481 0.784

αctm0/~
2 3.359 3.006

αclm0/~
2 0.697 0.946

ε∞ [36] 19.2 26.9

aB (nm) [37–39] 18 46

Then, the anisotropy of the main components of

longitudinal-transverse splitting of the exciton is

ηX =
ωlLT − ωtLT
〈ωLT 〉

= 6
P 2
t − P 2

l

2P 2
t + P 2

l

. (26)

The values of ηX for bulk PbS and PbSe are also given

in Table 1.

Similarly to the intravalley exchange, Eq. (19), one

can also compute the non-diagonal intervalley parts

Ĥµµ′

exch, µ 6= µ′ of the full exchange Hamiltonian. The

magnitude of the intervalley exchange in highly sym-

metric quantum dots is almost identical to the intraval-

ley one |Ĥµµ′

exch| ∼ |Ĥ
µµ
exch|, so the full exchange Hamilto-

nian is almost isotropic and also leads to the formation

of the ultra-bright valley-symmetric superradiant exci-

ton triplet as was shown in simplified model in Refs. [19]

and [27]. However, the intervalley exchange has very

complicated non-analytical form and we do not present

it here. The only difference with the isotropic approxi-

mation is that the valley anisotropy leads to the bright-

ening of some dark triplets. Though, their oscillator

strength is still two order of magnitude smaller and the

use of isotropic model [19] is fully justified.
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Fig. 8. Main plot: low temperature band gap energy, Eq. (27),
as a function of effective diameter in octahedral, cubeoctahe-

dral and cubic PbS QDs. Dashed line indicate the band gap of

the bulk PbS. Inset: the upper estimate for the exciton bind-

ing energy in PbS QDs. In both plots symbols show the data

calculated in tight-binding, solid lines show k·p results

3.3. Electron and hole energy spectra, exciton

binding energies

In this section we discuss energy spectrum of elec-

trons, holes and exciton binding energies in PbX QDs.

As mentioned above, in PbX QDs with Td point sym-

metry the electron (hole) ground states are split into

two doublet levels Γ6,Γ7 and a quadruplet Γ8. Follow-

ing Ref. [19] we associate the electron (hole) ground

confinement energy with the energy of the quadruplet

state EΓ8
. This allows to fully parametrize the valley

splittings by two energy differences between doublet

levels, EΓ6
, EΓ7

, and the quadruplet level EΓ8
. In this

notation the band gap energy reads as

Eg(D) ≡ EcΓ8
(D)− EvΓ8

(D) (27)

and the valley splittings are

EbΓ7
(D) − EbΓ8

(D), EbΓ8
(D)− EbΓ6

(D), b = c, v.

(28)

The band gap energy Eg(D), Eq. (27), is shown in

the main plot in Fig. 8 for PbS and in the main plot

in Fig. 9 for PbSe QDs. Results of the tight-binding

calculations are shown by black symbols. The shapes

of the QDs are indicated by the shape of the symbols

similar to Figs. 6 and 7. Band gap of the bulk PbS and

PbSe crystals, see Table 1, indicated by dashed lines.

Solid lines show the band gap calculated in the frame-

work of the k·p theory in isotropic approximation, see

Appendix 4.

Parameters of the valley splittings, Eq. (28), are

shown in Fig. 10 for PbS and 11 for PbSe QDs. Due

Fig. 9. Same as in Fig. 8, but for PbSe QDs

to the fast decay of the valley splitting energies they

are shown on logarithmic scale. The shape of QDs in

Figs. 10 and 11 are indicated by shape of the symbols

and color: red for octahedral, green for cuboctahedral

and blue for cubic QDs. Negative values are shown by

hollow symbols, positive ones by filled. One can see

that the lowest values of the valley splittings are in oc-

tahedral QDs, their signs oscillate with the change of

the QD size parameter N , see Ref. [19] for details. The

largest values of the valley splitting are in cubic QDs,

they do not oscillate.

Insets in Figs. 8 and 9 show the estimate for the

exciton binding energy −Ĵ = J1, see Eq. (17), given

by the direct Coulomb interaction constant J > 0 in

PbS and PbSe QDs, respectively. Results of the tight-

binding calculations are shown by black symbols. Re-

sults of the k·p calculations are shown by solid lines.

In tight-binding the direct Coulomb is calculated

using the same technique with the same high-frequency

dielectric constant as for the exchange term. Similar

approach is used for k·p calculations, see details in

Appendix 4. This yields the upper estimate for the

exciton binding energy since the static dielectric con-

stant ε0 in PbX is about ten times larger than the high

frequency one ε∞ [36]. One can see that the upper

estimate for the exciton binding energy is about an or-

der in magnitude smaller than the effective band gap

in PbS and PbSe QDs, which correlates well with the

large observed exciton Bohr radii in these materials.

3.4. Valley and exchange exciton splittings

The splitting of the ground exciton level is con-

trolled by the valley mixing ĤVM and long range ex-

change K̂ Hamiltonians (17). Interplay of these two

contributions was thoroughly investigated in Ref. [19].
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Fig. 10. Valley splitting energies, Eq. (28), in octahedral (red), cuboctahedral (green) and cubic (blue) PbS QDs. Data is shown

on logarithmic scale. Filled symbols show positive values of the splitting energies, hollow symbols show negative ones
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Fig. 11. Same as in Fig. 10, but for PbSe QDs

Here we present the comparison of the two contribu-

tions and focus on their scaling as a function of the QD

diameter.

The total splitting of the exciton fine structure due

to the valley mixing, ĤVM , neglecting exchange is given
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Fig. 12. Total exciton splitting due to the valley mixing of

states ∆EV S, Eq. (29), and total exciton exchange splitting

∆EK , Eq. (30). ∆EV S is shown by color symbols: red for

octahedral QDs, green for cuboctahedral QDs and blue for cu-

bic QDs. ∆EK is shown by black symbols. In both cases the

shape of the QDs is also indicated by the shape of the symbols,

similarly to Fig. 6

by distance between furthest exciton levels

∆EV S =
∑

b=c,v

max(EbΓ6
, EbΓ7

, EbΓ8
)−min(EbΓ6

, EbΓ7
, EbΓ8

).

(29)

As discussed in Ref. [19], neglecting the valley mixing,

the exchange Hamiltonian K̂ leads to the formation of

the ultra-bright exciton triplet split by

∆EK =
8Ks

3
(30)

from the manifold of the dark exciton levels, where

Ks is the averaged (isotropic) intravalley exchange con-

stant, see Eq. (21). Due to the cubic (Td) symmetry of

the considered QDs, the exchange Hamiltonian K̂ does

not split the exciton triplets despite the pronounced

anisotropy of the intravalley exchange constants. How-

ever, the internal valley anisotropy of the exchange con-

stant leads to the brightening of another exciton triplet

to up to about 1% of the oscillator strength of the ultra-

bright exciton triplet. This effect is expected to be

more pronounced in anisotropic PbX QDs.

The splittings of the exciton level due to the valley

mixing, Eq. (29), and exchange Coulomb interaction,

Eq. (30), are shown in Fig. 12 for PbS and in Fig. 13 for

PbSe QDs. The total valley splitting ∆EV S strongly

depend on the shape of the QD and shown by red, green

and blue color symbols for octahedral, cuboctahedral

and cubic QDs, respectively. The total exchange split-

ting ∆EK is almost insensitive to the shape of QDs

and shown by black symbols. One can see that in cu-

bic and cuboctahedral QDs the total valley splitting

is larger than the exchange one for all range of the

5 10 15 20 25
D (nm)
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100

101

102

ΔE
 (m

eV
)

ΔEVS (octa, cubeocta, cube)
ΔEK (octa, cubeocta, cube)

Fig. 13. Same as in Fig. 12, but for PbSe QDs

computed QD diameters. Therefore in these QDs the

exciton fine structure is mostly defined by the valley

mixing of states. In octahedral QDs the valley split-

ting decays much faster. Therefore in small octahedral

QDs the exciton fine structure is mostly defined by the

valley mixing of states, while in large octahedral QDs

the exciton fine structure is dominated by long range

exchange interaction.

4. CONCLUSIONS

To conclude, we developed a generalized procedure

which allows us to restore the valley states in nanos-

tructures of multivalley semiconductors starting from

the quantum confined electron/hole states obtained in

atomistic calculations. The method allows for the ex-

traction of the parameters of effective Hamiltonians

and/or observables in the physically transparent ba-

sis and makes it possible for the direct mapping of the

results of atomistic calculations to simplified analytical

models.

To demonstrate the strength of the procedure we

directly extract the anisotropic exchange constants in

PbS and PbSe faceted (cubic, cuboctahedral and oc-

tahedral) QDs from the empirical tigh-binding calcula-

tions and compared the results to the fully anisotropic

k·p model. We also showed that in PbSe the in-

travalley exchange interaction, as well as the intraval-

ley velocity, is almost isotropic, while in PbS it is

strongly anisotropic with its longitudinal part being

close to zero.

The developed procedure does not depend on par-

ticular symmetry, periodicity or valley composition of

states of the considered nanostructure and therefore

can be applied for any atomistic calculations (including

density functional theory) of any multivalley semicon-

ductor nanostructure.
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APPENDIX A.
SYMMETRIZATION

Let E = (χ1, χ2, . . . , χd) be the basis of an irre-

ducible representation Γ of a finite group G of size

N , which transforms ∀g ∈ G as gχi = χjTji(g) or

gE = ET (g) and V be a unitary matrix. Then E
′ = EV

also forms the basis of the same irreducible representa-

tion, but transforms ∀g ∈ G as gE ′ = E
′D(g), where

∀g ∈ G : D(g) = V −1T (g)V . (31)

Lemma: If D(g) and T (g) matrices are known, then

the matrix V can be calculated as

Vn = α ei
2πn
d

Ṽ

det
(
Ṽ
) 1

d

, (32)

Ṽ =
∑

g∈G
T (g)UD(g−1) .

Here d is the dimension of the representation Γ, α is a

common phase multiplier, |α| = 1, and U is a matrix

with one or several ones. Additional phase exp(i2πn/d)

and index n = 0, . . . , d − 1 are added explicitly to un-

derline the uncertainty of the root of the complex de-

terminant.

Proof. Consider the matrix D(g)V −1Ṽ , g ∈ G.

Substituting Ṽ from Eq. (32) we obtain

D(g)V −1Ṽ = D(g)
∑

g′

V −1T (g′)UD(g′−1). (33)

Now using Eq. (31) and expanding g′−1 as

(gg′)−1g ≡ g′′−1g we transform Eq. (33) to

V −1
∑

g′′

T (g′′)UD(g′′−1)D(g) = V −1Ṽ D(g). (34)

Following the Shur’s lemma [40] the matrix V −1Ṽ is

proportional to the unit matrix and its trace equals to

Tr
(
V −1Ṽ

)
= N Tr

(
V −1U

)
.

Since V is unitary, then V −1 has at least one nonzero

element V −1
ik 6= 0. Let Ujl = δjkδil, then

Tr
(
V −1U

)
=
∑

l,j

V −1
lj Ujl = V −1

ik 6= 0.

Therefore Ṽ ∝ V , det Ṽ 6= 0 and Vn is unitary matrix

satisfying Eq. (31). Notice the proof is very similar to

the proof of the great orthogonality theorem [40,41].

The unknown matrix U can be found numerically

simply by searching through all d2 square matrices

with one nonzero element. The phase multiplier α is

chosen to adjust the time inversion symmetry given

by the complex conjugation operator K̂. Indeed, let

K̂E = EK, then

K̂E
′ = E

′V −1KV ∗ ≡ E
′K ′

and the matrix

K ′ ∝ α∗2.

The phase exp(i2πn/d) should also be adjusted. The

sum over the group elements (32) assumes either sum

over double group [24] or use of projective representa-

tions [40]. In calculations, it is more convenient to sum

over all different matrices which can be obtained from

the set of matrices of the generators of the group G,

which gives the same result.

Equation (32) can be generalized for projective rep-

resentations

Vn ∝ Ṽ , Ṽ =
∑

r∈Fk

T (r)UD(r−1)

ω(r−1, r)
, (35)

where r are rotations of the point group F and ω(r, r′)
is the factor system of the irreducible representation

[40]. Notice ω must be the same for T and D matrices,

which can be achieved via bringing both ωT and ωD to

the standard form. The proof of Eq. (35) is similar, ex-

cept the following property of the factor system should

be used

ω
(
(rr′)−1, rr′

)
=
ω(r′−1, r′)ω((rr′)−1, r)

ω(r, r′)
. (36)

This is general property of the factor system [40]

ω(h1, h2h3)ω(h2, h3) = ω(h1h2, h3)ω(h1, h2) , (37)

where

h1 = (rr′)−1, h2 = r, h3 = r′.

Formulae Eqs. (32) and (35) can be applied also

for reducible representations such as Γi1 ⊕Γi2 . . .⊕ΓiN
with no repetitive irreducible ones in the sum. Oth-

erwise the Shur’s lemma breaks and other techniques

should be used. However, this problem is not typical

for tight-binding or other atomistic methods, since in

most cases each energy level corresponds to single irre-

ducible representation and accidental degeneracies are

extremely rare.
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APPENDIX B.
INTERCHANGE OF BASIS FUNCTIONS

Let Γ =
⊕n

i=1 Γm be a reducible representation of a

groupG consisting of n repetitive equivalent irreducible

representations Γm of size m. Let

E = (E1
m,E

2
m, . . . ,E

n
m︸ ︷︷ ︸

n

) , i 6= j =⇒ E
i
m 6= E

j
m , (38)

be its basis which transforms under g ∈ G as

gE = ED(g) ≡ E1n ⊗Dm(g) (39)

and has time reversal symmetry

K̂E = E
∗T ≡ E1n ⊗ Tm(g). (40)

Here 1n is the n× n unit matrix.

The basis (38) is not unique. Indeed, consider an

interchange of basis functions

E
′ = EU (41)

given by a matrix U . To satisfy Eqs. (39) and (40)

the new basis should be i) orthonormal E ′†
E
′ = 1 and

should transform under g ∈ G and K̂ by the same

matrices ii) gE ′ = E
′D(g) and iii) E

′∗ = E
′T . These

conditions constrain the matrix U to: i) U †U = 1, ii)

∀g ∈ G : D(g)U = UD(g) and iii) UT = TU∗. Due to

the Schur’s lemma [40] and the structure of the trans-

formation matrices D(g) = 1n ⊗Dm(g) the matrix U

matrix is a direct product Un⊗ 1m of n×n matrix Un
and the m × m unit matrix 1m. Since T = 1n ⊗ Tm
the third condition UT = TU∗ requires Un ∈ O(n) to

be real orthogonal matrix.

For practical realization we construct the Un matrix

as a product of n(n − 1)/2 Givens rotation matrices

Rij(φ) [42] and a matrix of phases P which sets the

signs of the basis functions:

Un = P
∏

i<j

Rij(φ̃ij) or Un =



∏

i<j

Rij(φ̃ij)


P , (42)

where

φ̃ij = ±φij
and

P = diag(1, p2, . . . , pn) , pi = ±1 . (43)

Nonzero matrix elements of Rij(φ) are

[Rij(φ)]kk = 1, k 6= i, j,

[Rij(φ)]ii = [Rij(φ)]jj = cos(φ),

[Rij(φ)]ji = −[Rij(φ)]ij = sin(φ).

APPENDIX C.
COULOMB INTEGRALS IN ANISOTROPIC k·p

To calculate the intravalley exchange anisotropy in

k·p we use the anisotropic model and formalism pro-

posed in Ref. [3]. We consider spherical QDs with infi-

nite boundary conditions. The anisotropic k·p Hamil-

tonian is expanded into three terms

Ĥaniso = Ĥ iso + δĤP + δĤα , (44)

where Ĥ iso is the isotropic part of the Hamiltonian,

δĤP accounts for the anisotropy of the interband

momentum matrix elements and δĤα accounts for

the anisotropic far-band contributions to the effective

masses, see Ref. [3] for details.

Eigenstates of Ĥaniso are expanded over finite basis

of the solutions of the isotropic Hamiltonian Ĥ iso

Ψaniso
s =

N∑

p=1

CspΨ
iso
p (45)

and the coefficients C are found via diagonalization of

the full N × N matrix Ĥaniso
qp . Here indices q, p enu-

merate both valence and conduction band states. The

isotropic wave functions [3]

Ψiso ≡ |F, p, n, Fz〉 =
(
fF−p

2
,p (r) Ω̂

F− p
2

F,Fz

ipgF+p
2
,p (r) Ω̂

F+ p
2

F,Fz

)
(46)

are bispinors characterized by four quantum numbers:

total angular momentum F , its projection Fz , p = ±1
and main quantum number n which enumerates the

roots of dispersion equation. Ω̂ are spherical spinors.

The parity of bispinor (46) is given by π = (−1)F+p
2

To catch the exchange anisotropy in our calculations

we limit ourselves with two ground confinement levels

per band for each F = 1/2 and 3/2 (N = 24 states

total).

Using the ansatz (45) the exchange matrix ele-

ments [19] become sums of integrals on Ψiso
p ≡ |p〉

HX
ia,jb =

N∑

pqrs=1

Cj∗p C
a∗
q CbrC

i
s 〈pq|rs〉 (47)

which are evaluated numerically. The total number of

integrals scales as N4, which is 331776 for N = 24.

To reduce the number of integrals to compute

we utilize the angular selection rules and employ

the index permutation symmetry. For a general

four-index Coulomb integral 〈pq|rs〉 there is parti-

cle permutation symmetry 〈pq|rs〉 = 〈qp|sr〉, and

〈pq|rs〉 = 〈rq|ps〉 = 〈ps|rq〉 if the matrix elements are
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real. In our case the matrix elements are real therefore

one has to compute only the matrix elements which

satisfy one of the following inequalities:




p ≤ r ≤ q ≤ s ,
p < r ≤ s < q ,

p ≤ q < r ≤ s ,
p < q ≤ s < r ,

p ≤ s < r ≤ q ,
p < s < q < r .

(48)

These inequalities reduce the number of double inte-

grals to be evaluated for Eq. (57) up to four times.

Combined with angular symmetry the total number of

different integrals reduces to 298.

The explicit form of the exchange integral (47) is

〈pq|rs〉 = e2

ε∞

∫
dx1dx2

|r1 − r2|
Ψ∗
p(x1)Ψ

∗
q(x2)Ψr(x1)Ψs(x2),

(49)

where
∫
dx =

∫
dr
∑

σ is the spatial integral and the

sum over the bispinor indices σ. Using the Fourier de-

composition of 1/r the Coulomb integral (49) reduces

to

〈pq|rs〉 =
∫

dk

2π2k2
Ipr(k)Iqs(−k), (50)

where

Iuv(k) =

=

∫
dreik·r

(
fufvΩ̂

†
u,−Ω̂v,− + pupvgugvΩ̂

†
u,+Ω̂v,+

)
.

(51)

Here f(r), g(r) are smooth envelopes, Ω̂± ≡ Ω̂
F±p

2

F,Fz
, are

spherical spinors and indices p, q, r, s and u, v denote

all four quantum numbers of the isotropic wave func-

tions (46). By introducing [43]

Ω̂L1 †
J1M1

Ω̂L2

J2M2
=

L1+L2∑

L=|L1−L2|
WL,M1,M2

YL,−M1+M2
, (52)

observing (numerically) that

Ω̂
J1+

p1
2

†
J1M1

Ω̂
J2+

p2
2

J2M2
= Ω̂

J1−p1
2

†
J1M1

Ω̂
J2− p2

2

J2M2
, (53)

and using the plane wave expansion

eik·r = 4π

∞∑

l=0

l∑

m=−l
iljl(kr)Y

∗
l,m(ok)Yl,m(or) (54)

we further simplify Iuv to

Iuv(k) =

=

Lu+Lv∑

L=|Lu−Lv|
4πiLWL,Mu,MvYL,−Mu+Mv (ok)J

L
uv(k) ,

(55)

where Lu = Fu ± pu/2, Lv = Fv ± pv/2 and

JLuv(k) =

R∫

0

r2drjL(kr) [fufv + pupvgugv] . (56)

Finally we reduce the Coulomb integral (50) to the

sum of double integrals

〈pq|rs〉 = 8 δ−Mp+Mr ,Mq−Ms(−1)−Mq+Ms×

×
Lmax∑

L=Lmin

WL,Mp,MrWL,Mq,Ms

∞∫

0

dkJLpr(k)J
L
qs(k),

(57)

where the L limits are

Lmin = max (|Lp − Lr|, |Lq − Ls|) ,
Lmax = min (Lp + Lr, Lq + Ls) .

(58)

Now the numerical integration is straightforward.

APPENDIX D.
ISOTROPIC K·P MODEL, DIRECT COULOMB

INTERACTION

The simplified isotropic variant of the k·p model

is described in details in supplemental materials for

Ref. [19]. It was shown in Ref. [19] that the isotropic

model successfully predicts the energy of the ground

quadruplet Γ8 in both bands for both octahedral,

cubeoctahedral and cubic PbS QDs. Therefore the

model is used here to calculate the band gap energy

and exciton binding energy (direct Coulomb interaction

constant) for all the considered PbS and PbSe QDs.

Table 2. Isotropic parameters for bulk PbS and PbSe. Mo-

mentum matrix elements are given in atomic units. Eg and

anisotropic parameters are given in Table 1

PbS PbSe

P (atomic) 0.1881 0.2556

avm0/~
2 2.635 2.674

acm0/~
2 2.472 2.320
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Parameters of the isotropic model are obtained via

averaging of the anisotropic ones over the solid angle

P =

√
2P 2

t + P 2
l

3
, αb =

2αbt + αbl
3

, b = c, v. (59)

These parameters are listed in Table 2.

Following Ref. [3] the conduction (valence) band

ground states with projection Fz are

|c, Fz〉 =
∣∣∣∣F =

1

2
,+1, n = 0, Fz

〉
,

|v, Fz〉 =
∣∣∣∣
1

2
,−1, n = 0, Fz

〉
,

where |F, p, n, Fz〉 are bispinors (46). The explicit form

of conduction (valence) ground bispinors are

Ψc ≡


 fc (r) Ω̂

0
1
2
,Fz

igc (r) Ω̂
1
1
2
,Fz


 ,

Ψv ≡


 fv (r) Ω̂

1
1
2
,Fz

−igv (r) Ω̂0
1
2
,Fz


 .

Straightforward calculation of direct Coulomb matrix

elements (50) yields

J = −Eb > 0,

J =
2e2

πε∞

∞∫

0

dkIv0 (k)I
c
0(k), (60)

where

Ib0(k) =

R∫

0

dr r2j0(kr)
(
|fb|2 + |gb|2

)
, b = c, v. (61)
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