МОЩНЫЕ ВСПЛЕСКИ И МАГНИТОУПРУГИЕ КОЛЕБАНИЯ МАГНИТАРОВ

Д. Г. Яковлев*

Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

> Поступила в редакцию 2 марта 2024 г., после переработки 9 марта 2024 г. Принята к публикации 9 марта 2024 г.

Магнитары — нейтронные звезды, обладающие сверхсильными магнитными полями, которые могут заметно превышать 10¹⁵ Гс. В некоторых из них (так называемых источниках мягких повторяющихся гамма-всплесков, soft gamma repeaters — SGRs) время от времени происходят процессы мощного энерговыделения, вызывающие необычайно сильные всплески электромагнитного излучения. Считается, что эти всплески связаны с наличием сверхсильных магнитных полей. Несмотря на множество гипотез, их механизм остается загадкой. В послесвечении всплесков выявлены квазипериодические осцилляции (КПО). Они трактуются как собственные колебания звезды, возбуждаемые при всплесках, и используются для диагностики всплесков. Показана существенная неполнота теорий, использованных для интерпретации КПО.

Статья для специального выпуска ЖЭТФ, посвященного 130-летию П. Л. Капицы

DOI: 10.31857/S0044451024070125

1. ВВЕДЕНИЕ

Петр Леонидович Капица, которому посвящен данный выпуск ЖЭТФ, внес выдающийся вклад в изучение очень сильных магнитных полей [1]. Возможно, ему бы понравились магнитары — естественные лаборатории самых сильных магнитных полей в природе.

Нейтронные звезды — наиболее компактные из всех звезд [2]. Они давно стали привычными астрофизическими объектами, но до сих пор привлекают экстремальностью физических условий внутри и вблизи них. Они содержат сверхплотное вещество со сверхсильными магнитными полями в присутствии огромных гравитационных сил. Многие свойства нейтронных звезд (например, уравнение состояния и состав вещества внутренних слоев) до сих пор изучены недостаточно полно.

Схематически строение нейтронной звезды показано на рис. 1. Можно выделить два основных слоя (например, [3]): внешнюю оболочку, которую часто называют корой, и внутреннее ядро. При типичной массе звезды $M \approx 1.4 M_{\odot}$ (M_{\odot} — масса Солнца) ее радиус $R \approx 12$ км. Кора в основном состоит из ионов (атомных ядер), электронов и (при плотности $\rho \gtrsim 4 \cdot 10^{11} \,\mathrm{r\cdot cm^{-3}}$) свободных нейтронов. Ее толщина ~ 1 км, масса ~ 0.01 M_{\odot} , плотность на дне коры примерно равна половине стандартной ядерной плотности (последняя составляет $\rho_0 \approx 2.8 \cdot 10^{14} \,\mathrm{r\cdot cm^{-3}}$). Атомные ядра в коре, как правило, образуют кулоновский кристалл. Под корой располагается массивное объемное ядро звезды, содержащее жидкую ядерную материю; ее состав и уравнение состояния достоверно не известны. Центральная плотность звезды достигает нескольких ρ_0 .

Данная работа посвящена магнитарам (см., например, обзор [4]) — нейтронным звездам с особо сильными магнитными полями. Некоторые из них выделяют в особый класс источников мягких повторяющихся гамма-всплесков (soft gamma repeaters — SGRs). Время от времени в них происходят процессы огромного выделения энергии (вплоть до энергий $\sim 10^{46}$ эрг), наблюдаемые как мощнейшие всплески электромагнитного излучения, которые далее затухают. Считается, что эти процессы инициируются

^{*} E-mail: yak.astro@mail.ioffe.ru

Рис. 1. Схематическое строение нейтронной звезды. Массивное и объемное ядро из сверхплотной ядерной материи окружено внешней оболочкой (корой), содержащей упругий кристалл атомных ядер. Звезда-магнитар пронизана магнитным полем и окружена мощной магнитосферой

сверхсильным магнитным полем звезд. Несмотря на большое количество гипотез (например, [4]), природа всплесков пока неизвестна и здесь обсуждаться не будет.

Важно, что всплески сопровождаются наблюдаемыми квазипериодическими осцилляциями (КПО) излучения магнитаров с определенными частотами. Предполагается, что это частоты собственных колебаний звезд, возбуждаемых при всплесках. В принципе, корректная интерпретация наблюдаемых частот КПО может дать полезную информацию о параметрах магнитаров, величине и геометрии их магнитного поля, и о механизме их вспышечной активности. Это и вызывает особый интерес к проблеме КПО.

Теоретически существование КПО при всплесках магнитаров было предсказано Данканом [5] в 1998 г. Первые КПО были обнаружены после наблюдений гигантского всплеска SGR 1900+14 (27 августа 1998 г.) и гипервсплеска SGR 1806-20 (27 декабря 2004 г.). Это было сделано в ходе тщательной обработки наблюдательных данных в 2005-2006 гг. [6-8], что положило начало серьезному исследованию КПО. Указанные наблюдения, а также наблюдения других всплесков магнитаров неоднократно обрабатывались и переобрабатывались (например, [9-12]). Данные гипервсплеска SGR 1806-20 до сих пор являются наиболее представительными, повидимому, из-за исключительно высокой мощности энерговыделения.

Наблюдамые частоты ν магнитарных КПО лежат в широком диапазоне от десятка Гц до нескольких кГц. Обычно разделяют низкочастотные КПО ($\nu \lesssim 150$ Гц) и (остальные) высокочастотные КПО. Обнаружение КПО при всплесках магнитаров породило множество разных теоретических расчетов и интерпретаций частот (например, [13–37] и приведенные там ссылки).

Данная статья является логическим продолжением работ [20] и [37]. Она приводит новые аргументы в пользу того, что в большинстве расчетов магнитоупругих КПО рассматривался существенно неполный набор решений. Предварительно кратко описаны использованный формализм (разд. 2), режимы колебаний (разд. 3) и торсионные колебания коры без магнитного поля (разд. 4). Далее кратко обсуждены магнитоупругие колебания в условиях, когда влияние магнитного поля является слабым (разд. 5). Подробнее этот случай изучен для дипольного магнитного поля в коре звезды; рассмотрение экстраполировано на случай более высоких магнитных полей (разд. 6). В разд. 7 проанализирована возможность применения результатов для интерпретации наблюдаемых КПО, а в разд. 8 сформулированы основные результаты работы и нерешенные проблемы.

2. ФОРМАЛИЗМ

Колебания магнитаров описываются стандартным формализмом магнитоупругих колебаний нейтронных звезд. Формализм хорошо известен (например, [26]); достаточно напомнить основные положения. Здесь для простоты приведены уравнения без учета релятивистских эффектов. Релятивистские эффекты будут включены в разд. 5. Магнитоупругие колебания возникают за счет сил упругости кристаллической решетки в коре звезды и сил упругости при деформациях (альфвеновских возмущениях) магнитного поля всюду, где поле присутствует.

Предполагается, что в звезде имеется стационарное магнитарное поле $\mathbf{B}(\mathbf{r})$ (~ $10^{14} - 10^{16}$ Гс), недостаточно сильное, чтобы вызывать заметные отклонения формы звезды от сферической. Уравнения колебаний получаются линеаризацией уравнений движения замагниченного вещества в приближении вмороженности поля в вещество. Невозмущенная конфигурация звезды считается сферическисимметричной. В этих условиях хорошо применимо приближение колебаний несжимаемого вещества, когда элементы вещества смещаются только по сферическим поверхностям. Тогда возмущения давления и плотности отсутствуют (и излучение гравитационных волн подавлено). Возмущения возбуждают малые скорости элементов вещества $\mathbf{v}(\mathbf{r}, t)$, малые смещения этих элементов $\mathbf{u}(\mathbf{r},t)$ и малые вариации магнитного поля $\mathbf{B}_1(\mathbf{r},t)$. Все эти вариации осциллируют во времени как $\exp(i\omega t)$, где $\omega = 2\pi\nu$ — круговая частота колебаний. Общий осциллирующий фактор в уравнениях сокращается, оставляя стационарное волновое уравнение для малых (комплексных) амплитуд $\mathbf{v}(\mathbf{r})$, $\mathbf{u}(\mathbf{r})$ и $\mathbf{B}_1(\mathbf{r})$ и собственной частоты колебаний ω :

$$\rho\omega^2 \mathbf{u} = \mathbf{T}_{\mu} + \mathbf{T}_B. \tag{1}$$

Здесь \mathbf{T}_{μ} и \mathbf{T}_{B} имеют смысл объемных плотностей сил (со знаком минус), определяемых упругостью кристалла и магнитными возмущениями. В первом случае

$$\mathbf{T}_{\mu i} = -\frac{\partial \sigma_{ik}}{\partial x_k}, \quad \sigma_{ik} = \mu \left(\frac{\partial u_i}{\partial x_k} + \frac{\partial u_k}{\partial x_i}\right), \quad (2)$$

где σ_{ik} — тензор сдвиговых деформаций и μ — сдвиговая вязкость (в приближении изотропного кристалла). Для магнитных возмущений

$$\mathbf{T}_B = \frac{1}{4\pi} \, \mathbf{B} \times \operatorname{rot} \mathbf{B}_1, \quad \mathbf{B}_1 = \operatorname{rot}[\mathbf{u} \times \mathbf{B}]. \tag{3}$$

Уравнения нужно дополнить граничными условиями. Поскольку кристалл существует лишь в коре звезды, радиальные составляющие вязких напряжений должны исчезать на внешней и внутренней границах коры. Условия для магнитного поля зависят от постановки задачи; альфвеновские возмущения **u**(**r**) могут распространяться в ядро и магнитосферу звезды.

3. ОБЩИЕ ЗАМЕЧАНИЯ

Предварительно полезно сделать несколько замечаний. Хорошо известно, что модуль сдвига μ определяет скорость распространения упругих деформаций v_{μ} в кристалле. Как следует из расчетов (например, [38]), эти деформации обычно локализованы вблизи дна коры звезды, при $\rho \sim 10^{14} \, \mathrm{r\cdot cm^{-3}}$. Тогда при типичных условиях справедлива оценка

$$v_{\mu} \sim \sqrt{\mu/\rho} \sim 10^8 \,\mathrm{cm} \cdot \mathrm{c}^{-1}.\tag{4}$$

Таблица. Три режима магнитоупругих колебаний магнитаров

Режим	Условие	Ведущий механизм
Ι	$B \ll B_{\mu}$	сдвиговые волны в кристалле
II	$B \sim B_{\mu}$	сдвиговые и альфвеновские волны
III	$B \gg B_{\mu}$	альфвеновские волны

Магнитные возмущения распространяются с альфвеновской скоростью v_A . При той же плотности оценка дает

$$v_A = \frac{B}{\sqrt{4\pi\rho}} \sim 3 \cdot 10^7 \, B_{15} \,\mathrm{cm} \cdot \mathrm{c}^{-1},\tag{5}$$

где B_{15} — магнитное поле в единицах 10¹⁵ Гс. При этом v_A заметно уменьшается внутрь звезды и увеличивается к поверхности.

Формально скорости (4) и (5) становятся близкими по величине при соотношении

$$B \sim B_{\mu} \sim 3 \cdot 10^{15} \, \Gamma \mathrm{c},\tag{6}$$

которое выделяет три режима магнитоупругих колебаний (см. таблицу).

В режиме I магнитоупругие колебания в основном формируются благодаря упругим волнам в коре звезды; альфвеновские возмущения подстраиваются под сдвиговые деформации кристалла и сравнительно слабо меняют частоты колебаний. Такие колебания почти полностью локализованы в коре и определяются микрофизикой вещества и магнитным полем коры.

В режиме II роль сдвиговых и альфвеновских волн становится сопоставимой. Альфвеновские возмущения могут распространяться за пределы коры (например, [13,14]). В альфвеновские колебания может быть вовлечена почти вся звезда. Для их расчета требуется знание всей микрофизики магнитара, которая содержит много непределенностей, включая уравнение состояния, сверхтекучесть и сверхпроводимость ядра звезды, а также конфигурацию магнитного поля в ней.

Наконец, в режиме III колебания главным образом формируются альфвеновскими волнами, а упругость кристалла становится малосущественной или даже пренебрежимой (например, [17, 19]).

Разумеется, описанная классификация колебаний слишком схематична. В частности, она не учитывает возможные запрещенные интервалы частот альфвеновских колебаний в ядре звезды (например, [26]), при которых колебания могут оставаться локализованными в коре даже при очень сильных магнитных полях. Важны также эффекты проникновения альфвеновских возмущений из коры в ядро и обратно — они могут приводить к вариациям частот, затуханию и потере когерентности колебаний коры.

Требует комментария и использованное (разд. 2) приближение несжимаемости вещества при магнитоупругих колебаниях. Типы колебаний нейтронных звезд очень разнообразны (например, [39] и приведенные там ссылки). Магнитоупругие колебания удобны тем, что их частоты достаточно низки, чтобы объяснять наблюдаемые КПО магнитаров. Сдвиговые и альфвеновские скорости v_{μ} и v_{A} в основном гораздо ниже скорости обычного звука, определяемой полным давлением плотного вещества звезды. Частоты колебаний многих типов выше, чем магнитоупругих.

4. УПРУГИЕ КОЛЕБАНИЯ КОРЫ БЕЗ МАГНИТНОГО ПОЛЯ

Такие колебания называют торсионными. Они являются базисными для изучения магнитоупругих колебаний. Их теория начала развиваться в 1980-х гг. в классических работах Хансен и Чиоффи [40], Шумейкер и Торна [41], а также МакДермотта и др. [39] задолго до открытия магнитарных КПО. После обнаружения КПО теория торсионных колебаний получила новый импульс для развития (например, [27, 29, 36, 42–48] и приведенные там ссылки).

Каждая мода торсионных колебаний задается тремя квантовыми числами: 1) n = 0, 1, 2, ... числом узлов волновой функции по радиусу, 2) орбитальным числом, которое в данной задаче пробегает значения $\ell = 2, 3, ..., 3$) азимутальным квантовым числом m, принимающим целые значения от $-\ell$ до ℓ .

В сферических координатах (r, θ, ϕ) стационарная волновая функция $\mathbf{u}(\mathbf{r})$ имеет лишь две нетривиальные компоненты: \mathbf{u}_{ϕ} и \mathbf{u}_{θ} (поскольку $\mathbf{u}_{r} = 0$). Их можно представить в виде (например, [37])

$$u_{\phi}(r,\theta,\phi) = rY(r) e^{im\phi} \frac{dP_{\ell}^m}{d\theta}, \qquad (7)$$

$$u_{\theta}(r,\theta,\phi) = rY(r) e^{im\phi} \frac{imP_{\ell}^{m}}{\sin\theta},$$
(8)

где $P_{\ell}^m(\cos \theta)$ — присоединенный полином Лежандра, $Y(r) = Y_{n\ell}(r)$ — безразмерная радиальная вол-

ЖЭТФ, том **166**, вып. 1 (7), 2024

новая функция, удовлетворяющая уравнению

$$Y'' + \left(\frac{4}{r} + \frac{\mu'}{\mu}\right)Y' + \left[\frac{\rho}{\mu}\omega^2 - \frac{(\ell+2)(\ell-1)}{r^2}\right]Y = 0, \quad (9)$$

где штрих означает дифференцирование по r. Эти колебания локализованы в кристаллической коре $r_1 \leq r \leq r_2$, где r_1 — радиус границы между корой и ядром, r_2 — внешний радиус зоны кристаллизации, близкий к радиусу звезды. На границах радиальные упругие напряжения должны исчезать,

$$Y'(r_1) = Y'(r_2) = 0.$$

Частоты торсионных колебаний вырождены по т:

$$\omega = \omega_{\mu n \ell}$$

(индекс μ указывает, что рассматриваются сдвиговые деформации кристалла); функции Y(r) не зависят от m. Величина $Y_0 = Y(r_2)$ характеризует угловой размах колебаний (в радианах) внешнего края области кристаллизации. При m = 0 вещество колеблется лишь по параллелям ($\mathbf{u}_{\theta} = 0$), а при $m \neq 0$ возникают и меридиональные движения. Величина m сильно влияет на геометрию поля смещений $\mathbf{u}(\mathbf{r})$ и угловую зависимость плотности энергии упругих колебаний. Модель звезды влияет лишь на Y(r), а угловые зависимости $\mathbf{u}(\mathbf{r})$ стандартны.

Торсионные колебания нейтронных звезд делятся на фундаментальные (n = 0) и обычные (n > 0). Для фундаментальных колебаний очень хорошим приближением является слабая деформируемость кристалла, когда Y почти не зависит от r (например, [38]). В этом случае

$$\omega_{\mu 0\ell} \approx \frac{1}{2} \omega_{\mu 0} \sqrt{(\ell+2)(\ell-1)},$$

где $\omega_{\mu 0}$ — частота основного тона ($\ell = 2$). Фундаментальные колебания могут иметь особенно низкие частоты.

Частоты обычных торсионных колебаний (n > 0)выше и сильно возрастают с ростом n. При фиксированном n имеется целое семейство близких частот, которые слабо растут с увеличением ℓ (демонстрируя тонкое расщепление по ℓ), причем волновые функции $Y_{n\ell}(r)$ зависят от ℓ достаточно слабо (например, [49]). Поскольку частоты торсионных колебаний не зависят от m, при их нахождении обычно использовались волновые функции с m = 0, а наличие состояний с $m \neq 0$ игнорировалось. Торсионные колебания могут нести большую энергию. Например, можно выбрать модель нейтронной звезды с нуклонным ядром и современным уравнением состояния плотного вещества BSk21 (подробно описанным в [50]). При массе звезды $1.4 M_{\odot}$ ее радиус составляет R = 12.6 км, а радиус ядра $r_1 = 11.55$ км. Согласно результатам [49], энергия колебаний основной моды ($n = 0, \ell = 2, \nu_{\mu 0} = 23.0$ Гц) составляет $E_{vib} \approx 10^{49} Y_0^2$ эрг. При угле размаха колебаний внешней кромки кристаллической коры порядка 0.1° ($Y_0 \approx 1.7 \cdot 10^{-3}$ рад) получим $E_{vib} \approx 3 \cdot 10^{43}$ эрг. При этом напряжения в колеблющемся кристалле еще далеки от разрушающих [38].

5. КОЛЕБАНИЯ, ДОМИНИРОВАННЫЕ УПРУГОСТЬЮ КОРЫ

Что же касается магнитоупругих колебаний, наиболее простым является режим I (см. таблицу). Это режим достаточно невысоких магнитных полей ($B \ll B_{\mu}$), которые можно учитывать по теории возмущений, рассматривая волновые функции торсионных колебаний (разд. 4) как функции нулевого приближения, а величину \mathbf{T}_B в формуле (1) как малую поправку. Несмотря на большое число исследований магнитоупругих колебаний (например, [13–16, 18, 21–26, 28, 30, 31, 33, 35] и приведенные там ссылки), наличие состояний с $m \neq 0$ обычно игнорировалось. Тем самым изучался неполный спектр частот магнитоупругих колебаний.

Исключения составляют статья Шайсултанова и Эйхлера [20] и недавняя работа [37]. В [20] было обосновано, что присутствие магнитного поля снимает вырождение частот торсионных колебаний. В магнитном поле эти частоты расщепляются на серии частот, что можно назвать эффектом Зеемана в магнитарах. Эффект был правильно описан и оценен, но работа не привлекала внимания. Ее развитию была посвящена лишь недавняя статья [37], где был предложен простой алгоритм расчета частот колебаний в первом порядке теории возмущений для широкого класса магнитных полей В в коре магнитара. Для примера было рассчитано зеемановское расщепление частот фундаментальных колебаний (n = 0) в дипольном магнитном поле при $2 < \ell < 5.$

Ниже дано расширенное рассмотрение магнитоупругих колебаний в том же порядке теории возмущений для фундаментальных мод (n = 0). Детали, подробно описанные в [37], здесь упоминаются лишь кратко. При сделанных приближениях достаточно считать, что колебания локализованы в упругой коре звезды. Как и в [37], предположено, что магнитное поле в коре аксиально-симметрично относительно магнитной оси: отличны от нуля лишь компоненты поля $B_r(r, \theta)$ и $B_{\theta}(r, \theta)$. В этом случае

$$\omega_{\ell m}^2 = \omega_{\mu\ell}^2 + \omega_{B\ell m}^2, \qquad (10)$$

где $\omega_{\mu\ell}$ — частота торсионных колебаний (разд. 4), $\omega_{B\ell m}$ — малая поправка, обусловленная магнитным полем; ℓ и *m* нумеруют волновую функцию нулевого приближения; см. (7) и (8).

Выражения для $\omega_{\mu\ell}$ и $\omega_{B\ell m}$ приведены в [37]. Там же (в разд. 6) указано, какие изменения следует внести в теорию, чтобы учесть релятивистские эффекты. Согласно [37],

$$\omega_{\mu\ell}^2 = \frac{(1 - x_{g*}) \int\limits_{crust} dV \,\mu}{\int\limits_{crust} dV \left(\rho + P/c^2\right) r^2},\tag{11}$$

$$\omega_{B\ell m}^{2} = \frac{(1 - x_{g*}) \frac{1}{4\pi} \int_{crust} dV I_{B}}{\Xi(\ell, m) \int_{crust} dV (\rho + P/c^{2}) r^{2}}.$$
 (12)

Здесь Р — давление вещества, c — скорость света, $dV = r^2 dr \sin \theta \, d\theta \, d\phi$ — элемент объема в приближении локально плоского пространства-времени коры; интегрирование ведется по объему упругой коры. Множитель $(1 - x_{g*})$ приближенно учитывает гравитационное красное смещение квадрата частоты колебаний для удаленного наблюдателя, $x_{g*} = 2GM_*/(c^2r_*)$, G — гравитационная постоянная, r_* — радиус любой точки в коре (от конкретного выбора результат почти не зависит [49]), M_* — гравитационная масса внутри сферы радиуса r_* . Величина

$$\Xi(\ell, m) = \frac{2\ell(\ell+1)(\ell+m)!}{(2\ell+1)(\ell-m)!}$$
(13)

— удобный множитель, I_B — комбинация B_r , B_{θ} , P_{ℓ}^m и их производных (см. формулу (18) в [37]), квадратичная по магнитному полю, благодаря чему $\omega_{B\ell m} \propto B^2$. В данном случае колебания локализованы в коре звезды и не зависят от конфигурации **B**(**r**) вне коры.

6. СЛУЧАЙ ДИПОЛЬНОГО ПОЛЯ

Как и в [37], для иллюстрации будет рассмотрено дипольное магнитное поле в коре звезды, при котором

$$B_r = B_0 \, \cos\theta \, (R/r)^3$$

$$B_{\theta} = \frac{1}{2} B_0 \sin \theta \, (R/r)^3.$$

Здесь B_0 — магнитное поле на магнитном полюсе на поверхности звезды. Дипольное поле снимает вырождение частот $\omega_{\mu\ell}$, но лишь частично: в соответствии с (10) частота $\omega_{\mu\ell}$ расщепляется на серию из $\ell+1$ частот $\omega_{\ell m}$, где $m = 0, 1, \ldots, \ell$. Частота $\omega_{\ell 0}$ оказывается невырожденной, а частоты $\omega_{\ell m}$ с m > 0остаются вырожденными двукратно (реально отвечают состояниям $\pm m$). Зеемановское расщепление определяется величиной $\omega_{B\ell m}$, которая дается формулой (12). Для дипольного поля

$$I_{B} = -\frac{B_{0}^{2}}{4} \left(\frac{R}{r}\right)^{6} \times \left[P'^{2}(1+3\operatorname{ctg}^{2}\theta) - 3P'P''\operatorname{ctg}\theta + P'P''' + \frac{m^{2}}{\sin^{2}\theta} \left(-P'^{2} - 10PP'\operatorname{ctg}\theta + 8P^{2}\operatorname{ctg}^{2}\theta\right)\right].$$
(14)

Здесь

$$P = P_{\ell}^m(\cos\theta),$$

штрих означает дифференцирование по θ . Тогда

$$\omega_{B\ell m}^2 = \frac{B_0^2 r_2^3 \left[\left(r_2 / r_1 \right)^3 - 1 \right]}{12\pi \int_{r_1}^{r_2} dr \, r^4 (\rho + P/c^2)} \, \zeta_{\ell m}, \qquad (15)$$

где

$$\zeta_{\ell m} = \frac{1}{B_0^2 \Xi(\ell, m)} \int_0^{\kappa} \sin \theta \, d\theta \, I_B(R, \theta).$$
(16)

Приведенные здесь формулы (14) и (15) отвечают формулам (26) и (27) в [37]. Последние содержат опечатки, которые здесь исправлены. Все вычисления в [37] выполнены по правильным формулам.

Величины $\zeta_{\ell m}$ в [37] вычислены и аппроксимированы простой формулой

$$\zeta_{\ell m} = c_0(\ell) + c_2(\ell)m^2 \tag{17}$$

лишь при $\ell \leq 5$, а величины $c_0(\ell)$ и $c_2(\ell)$ табулированы. Теперь же величины $\zeta_{\ell m}$ вычислены вплоть до $\ell = 15$, а величины $c_0(\ell)$ и $c_2(\ell)$ аппроксимированы простыми формулами

$$c_0(\ell) = 0.721 \left[(\ell - 2)(\ell + 1) \right]^{0.954}, \tag{18}$$

$$c_2(\ell) = \frac{2}{3} - \frac{0.766 \,(\ell - 2)^{1.09}}{1 + 0.532 \,(\ell - 2)^{1.15}}.$$
 (19)

Точность аппроксимации составляет несколько процентов, что вполне достаточно для приложений.

Рис. 2. Частоты магнитоупругих колебаний нейтронной звезды с массой $1.4 M_{\odot}$ в зависимости от величины магнитного поля B_0 на магнитном полюсе на поверхности. Каждая серия частот, отвечающая $\ell = 2, ..., 11$, содержит $\ell + 1$ ветвь разных зеемановских компонент. Компоненты с m = 0 изображены штриховыми линиями. Затемнена область квазипересечений компонент (подробности в тексте)

Формулы (17)–(19) применимы лишь для дипольного магнитного поля в коре звезды; поля других конфигураций требуют отдельного рассмотрения.

Далее результаты проиллюстрированы для звезд с дипольным полем, что расширяет рассмотрение [37] на более широкий интервал частот.

Рисунок 2 показывает зависимость частот колебаний от B_0 при $n = 0, \ell = 2, ..., 11$ и разных m. Как и в [37], рассмотрена звезда с массой $1.4 M_{\odot}$ и уравнением состояния BSk21, упомянутая в разд. 4. Расчет выполнен на основе формул (10), (11) и (15). Рисунок 2 аналогичен рис. 1 *b* из работы [37], но покрывает область частот $\nu \leq 140$ Гц (вместо 80 Гц в [37]).

Согласно результатам разд. 3, рис. 2 показывает два режима магнитоупругих колебаний: режим I полей, значительно меньших $B_{\mu} \approx 3 \cdot 10^{15}$ Гс, и режим II промежуточных полей (см. таблицу). Использованные расчетные формулы строго применимы лишь в режиме I. На рисунке они экстраполированы и в промежуточный режим II, хотя возможность такой экстраполяции требует подтверждений (см. ниже).

При $B_0 \leq 4 \cdot 10^{14}$ Г
с в области $\nu < 140$ Гц рис. 2 предсказывает 10 частот фундаментальных торсионных колебаний (разд. 4), различающихся значениями ℓ и фактически не подверженных влиянию магнитного поля. Однако с ростом B_0 каждая из частот заметно расщепляется на зеемановские компоненты: 10 исходных частот распадаются на 75 ветвей колебаний.

При не слишком высоких B_0 отчетливо видны 10 отдельных наборов (пучков) частот, отвечающих определенным ℓ . Частоты колебаний в каждом пучке различаются значениями m. В согласии с результатами [37] ветви колебаний с m = 0 (штриховые линии) при $\ell = 2$ и 3 лежат ниже других ветвей пучка, а при более высоких ℓ они становятся выше других (причем такая инверсия присуща, по-видимому, именно дипольному магнитному полю). Чем выше ℓ , тем богаче расщепление и тем слабее то значение B_0 , при котором это расщепление начинает проявляться.

При $\ell > 3$ самая нижняя ветвь колебаний любого пучка соответствует наиболее высоким $m = \ell + 1$. Интересно, что с повышением ℓ такие кривые становятся более горизонтальными и слабее зависят от B_0 . Другими словами, при высоких m частоты $\nu_{\ell m}(B_0)$ приближаются к частотам торсионных колебаний $\nu_{\mu\ell}$ незамагниченной звезды (разд. 4).

Начиная с полей $B_0 \gtrsim 1.5 \cdot 10^{15}$ Гс и значений $\ell \approx 11$, в верхнем правом углу рис. 2 появляется особая область частот и магнитных полей, в которой магнитоупругие колебания ведут себя сложно. При увеличении B_0 до самых высоких изображенных значений ($4 \cdot 10^{15}$ Гс) эта область спускается до частот ~ 90 Гц (а при еще более высоких B_0 будет спускаться ниже). Представляется, что именно в этой области особенно важны два эффекта, которые не учтены в расчетах.

Во-первых, в этой области с увеличением B_0 ветви колебаний из разных пучков начинают демонстрировать квазипересечения (рис. 2). Идентичность отдельных пучков теряется, и область плотно заполняется разрешенными частотами колебаний. Поведение кривых вблизи точек квазипересечений требует дальнейшего анализа. Как обычно, в окрестностях этих точек колебания сближающихся мод взаимодействуют друг с другом, а их частоты искажаются.

Во-вторых, при наличии ярко выраженных эффектов затухания и потери когерентности колебаний коры из-за уноса колебательной энергии альфвеновскими волнами в ядро звезды, ветви колебаний могут приобрести конечные сдвиги и ширины (которые в целом могут расти с увеличением B_0 и ν). Частоты колебаний коры при этом способны размываться и сдвигаться. Однако возможны запрещенные интервалы частот колебаний в ядре (например, [26] и приведенные там ссылки), которые могут препятствовать уносу энергии колебаний коры в ядро.

Ясно, что оба эффекта взаимно связаны и требуют самосогласованного рассмотрения. Невозможно количественно правильно рассчитать эффекты квазипересечений, не имея надежной теории взаимодействия колебаний коры с альфвеновскими возмущениями в ядре. Большие усилия на построение такой теории были потрачены (например, [13– 15, 17, 21–26, 28, 30, 31, 33, 35]) лишь для аксиальносимметричных возмущений (m = 0), а при $m \neq 0$ такая теория пока отсутствует. Поэтому самосогласованное рассмотрение составляет трудную задачу на будущее. Представляется, что оба эффекта наиболее важны именно в особой области высоких частот и полей, а при более низких ν и B_0 проявляются слабее.

7. ОБСУЖДЕНИЕ

Все указанные эффекты могут быть важны для интерпретации наблюдаемых частот магнитарных КПО. Ниже дано обобщение интерпретаций КПО при гипервсплеске SGR 1806–20 и гигантском всплеске SGR 1900+14, начатое в [37]. В рассмотрение включено больше наблюдаемых КПО. Нерешенные проблемы квазипересечения частот магни-

Рис. 3. То же, что на рис. 2, но оставлены лишь ветви колебаний с m = 0, которые только и учитывались в большинстве публикаций

тоупругих колебаний и взаимодействия колебаний коры с альфвеновскими колебаниями ядра звезды здесь не учитываются. Поэтому, как и в [37], рассмотрение иллюстративно и может быть особенно неточным при достаточно высоких ν и B_0 .

Полученные наблюдательные данные о частотах КПО многократно анализировались; окончательные результаты приведены, например, в [35]. Они широко используются многими авторами и будут использованы ниже. Исключение составляет работа [12], авторы которой на основе байесовского анализа выразили сомнение в значимости измеренных низкочастотных КПО; это требует дальнейшего подтверждения.

Уже отмечалось, что в большинстве интерпретаций КПО ветви колебаний с $m \neq 0$ не учитывались совсем. Для примера на рис. 3 из всех ветвей колебаний, представленных на рис. 2, оставлены только те, которые отвечают m = 0. Из 75 ветвей, изображенных на рис. 2, остается только 10. Ясно, что они представляют существенно неполный набор теоретических кривых. При использовании такого набора интерпретация наблюдений может усложняться и искажаться. При выбранных параметрах описанный выше эффект квазипересечения ветвей колебаний на рис. 3 исчезает.

Причина пренебрежения решениями с $m \neq 0$ состоит в том, что векторы смещения $\mathbf{u}(\mathbf{r})$ колеблющегося вещества звезды для таких решений зависят не только от r и θ , но и от угла ϕ (см., например, формулы (7) и (8)). Другими словами, для аксиальносимметричных исходных магнитных полей $\mathbf{B}(r, \theta)$, рассмотренных большинством исследователей, возмущенные величины \mathbf{u} и \mathbf{B}_1 при $m \neq 0$ оказываются аксиально-асимметричными. Однако аксиальная симметрия возмущений обычно постулировалась авторами изначально, это и приводило к потере решений с $m \neq 0$.

Нужно добавить, что, как видно на рис. 3, частота ν_{20} (нижняя штриховая линия) вовсе не зависит от B (см. также [37]). Этот результат справедлив лишь в первом порядке теории возмущений в области слабых магнитных полей (разд. 5) и только для дипольного поля. Он означает, что разложение $\nu_{20}(B_0)$ в ряд по степеням B_0^2 в этом случае не содержит слагаемого, пропорционального B_0^2 . Слагаемые, пропорциональные более высоким степеням B_0^2 , должны присутствовать, но их вычисление требует усилий. Можно возразить, что согласно известной работе [16], посвященной именно колебаниям звезды с дипольным полем, слагаемое, пропорциональное B^2 , присутствует. Однако, как отмече-

Рис. 4. То же, что на рис. 2, но для звезды с массой $2.2 M_{\odot}$ в сравнении с частотами КПО (точечные горизонтальные линии), наблюдаемыми при гипервсплеске магнитара SGR 1806–20. Вертикальная затемненная полоса показывает возможные значения B_0 , одновременно согласующиеся с некоторыми наблюдаемыми КПО (подробности в тексте)

Рис. 5. То же, что на рис. 2 и 4, в сравнении с частотами КПО (точечные горизонтальные линии), наблюдаемыми при гигантском всплеске магнитара SGR 1900+14

но в [26], решение в [16] искалось путем разложения функции u_{ϕ} в ряд по функциям (7) с разными ℓ при m = 0, причем сумма по ℓ искусственно обрывалась. В действительности же такое обрывание эквивалентно решению точной задачи с недипольным магнитным полем [26], что и снимает возражение.

Наибольшее количество КПО было обнаружено при обработке наблюдений гипервспышки SGR 1806–20. В области низких частот, которые и рассмотрены ниже, были обнаружены КПО на частотах 18, 26, 30 и 150 Гц, а также (с меньшей достоверностью) на частотах 17, 21, 36 и 59 Гц.

Можно ли интерпретировать эти КПО как фундаментальные магнитоупругие колебания одной звезды (с одинаковой массой, радиусом и внутренним строением) с одним и тем же дипольным полем? Этот вопрос был поставлен в [37], где теоретические расчеты были ограничены значениями $\ell < 5$ и могли претендовать на объяснения частот КПО не выше примерно 60 Гц. Оказалось, что для звезды с $M = 1.4 M_{\odot}$ из 7 таких частот (17, 18, 21, 26, 30, 36 и 59 Гц) можно было объяснить лишь три: 26, 30 и 59 Гц, предположив, что $B_0 \approx (3.2 - 3.4) \cdot 10^{15}$ Гц (рис. 2 а в работе [37]). Самые низкочастотные КПО таким образом объяснить нельзя. Однако, оставив то же уравнение состояния вещества звезды (BSk21), но увеличив ее массу до $2.2 \, M_{\odot}$ (при предельно допустимой массе $2.27 M_{\odot}$), можно несколько понизить все теоретические частоты за счет более сильного гравитационного красного смещения частот колебаний более массивной (и компактной) звезды. В этом случае (рис. 2b в [37]) удалось объяснить 6 частот, кроме одной (30 Гц), считая, что $B_0 \approx (3.5 - 3.7) \cdot 10^{15}$ Гс.

Добавив новые расчеты данной работы (до $\ell = 11$), можно объяснить все наблюдаемые низкочастотные КПО гипервспышки SGR 1806-20, кроме одной, той же самой частоты 30 Гц, предположив такое же поле $B_0 \approx (3.5 - 3.7) \cdot 10^{15}$ Гс, что и в [37]. Это показано на рис. 4, аналогичном рис. 2 b в [37], но содержащем частоты вплоть до 120 Гц. Объяснение самой высокой из выбранных частот КПО (150 Гц) не показано, чтобы не загромождать рисунок, но очевидно из густоты теоретических ветвей колебаний при $\nu > 90$ Гц. Невозможность объяснить КПО с частотой 30 Гц не смущает [37]: никаких попыток серьезно объяснить наблюдения не предпринималось. Значение $M = 2.2 M_{\odot}$ было выбрано для примера и не варьировалось. Требуемое магнитное поле B_0 явно соответствует режиму II (разд. 3), где теоретические значения частот могут быть верны лишь качественно. Вдобавок предположено дипольное магнитное поле, а возможные отклонения от диполя способны сильно изменить теоретические результаты. В любом

случае предлагаемый полный теоретический набор частот магнитоупругих колебаний сильно упрощает теоретическую интерпретацию низкочастотных магнитарных КПО.

Кроме того, в [37] была сделана попытка интерпретации КПО, наблюдавшихся при гигантской вспышке SGR 1900+14. Были обнаружены 4 низкочастотных КПО (28, 53, 84 и 155 Гц). Две самые низкие частоты легко объяснялись моделью звезды с $M = 1.4 M_{\odot}$ (рис. 3 в [37]). Взяв ту же модель звезды и увеличив теперь значения теоретических частот до 160 Гц, удается объяснить (рис. 5) все 4 частоты КПО при $B_0 \approx (2.42 - 2.62) \cdot 10^{15}$ Гс. Как и для рис. 4, более серьезная интерпретация представляется преждевременной.

Следует подчеркнуть, что поле $B \sim B_{\mu}$ нередко считалось истинным полем магнитаров из различных соображений (например, [35]).

8. ЗАКЛЮЧЕНИЕ

Продолжено развитие теории магнитоупругих колебаний магнитаров. Как обычно, считалось, что такие колебания возбуждаются при вспышках магнитаров и наблюдаются как КПО во время вспышек (см. разд. 1 и приведенные там ссылки). Корректная интерпретация наблюдений может дать полезную информацию о параметрах магнитаров, их магнитных полей и о природе их вспышек.

Следуя работам [20, 37], рассмотрена полнота теоретических моделей КПО, особенно в связи с тем, что в большинстве работ не учитывалось зеемановское расщепление частот колебаний магнитаров. На простой модели низкочастотных магнитоупругих колебаний без узлов волновой функции по радиусу, локализованных в коре магнитара с дипольным магнитным полем, в данной работе показано, что большинством авторов изучался существенно неполный набор колебаний, где при аксиальносимметричном исходном магнитном поле ${f B}({f r})$ допускались лишь аксиально-симметричные колебательные смещения элементов вещества $\mathbf{u}(\mathbf{r})$ и магнитного поля $\mathbf{B}_1(\mathbf{r})$. Тем самым был потерян широкий набор ветвей колебаний, в которых смещения $\mathbf{u}(\mathbf{r})$ и $\mathbf{B}_1(\mathbf{r})$ аксиально-асимметричны. Продемонстрировано, что полный набор колебаний дает качественно иную картину ветвей колебаний и может заметно изменить теоретическую интерпретацию наблюдаемых КПО.

Тем самым построение полного набора магнитоупругих колебаний лишь начато, а для завершения нужны серьезные усилия. Перечислим лишь некоторые проблемы.

Даже в достаточно надежно рассмотренном режиме I сравнительно низких магнитных полей изучены лишь низкочастотные колебания без узлов волновой функции по радиусу. Обобщение на случай колебаний с узлами (n > 0) можно проделать без труда. Вместо дипольного поля нетрудно рассмотреть полоидальные магнитные поля других типов. Легко рассмотреть и случай, в котором дополнительно присутствует тороидальное магнитное поле. Кроме того, представленные результаты получены в приближении локально-плоской коры звезды (например, [37,49]). Было бы полезно провести рассмотрение с полным учетом эффектов общей теории относительности. Это особенно важно для случаев, когда альфвеновские возмущения распространяются за пределы коры.

Рассмотренный режим колебаний I недостаточен для интерпретации наблюдений. Представляется, что для этой цели особенно важен промежуточный режим II ($B \sim B_{\mu}$). Такие колебания могут заметно проникать в ядро звезды, и приведенное рассмотрение не является количественно точным (хотя, возможно, применимо качественно, особенно для самых низких частот). Последовательное рассмотрение колебаний в этом режиме усложняется, поскольку в расчет следует включать микрофизику ядра, которая допускает много возможностей (сверхтекучесть и сверхпроводимость в ядре, разные конфигурации магнитного поля там и пр.). Возникает и важная проблема взаимодействия альфвеновских колебаний ядра с колебаниями коры. Энергия колебаний коры способна перетекать в ядро звезды, что может приводить к затуханию и потере когерентности колебаний коры. Все эти эффекты активно исследовались для колебаний с аксиально-симметричными возмущениями. Важный случай аксиально-асимметричных возмущений рассмотрен не был.

Еще одно направление исследований — улучшение микрофизики вещества нейтронных звезд, влияющей на колебания магнитаров. В частности, это улучшенные расчеты модуля сдвига в коре, учет деликатных эффектов сверхтекучести и сверхпроводимости вещества, эффектов ядерных взаимодействий, ядерной пасты у дна коры и пр. (см., например, [27, 29, 36, 37, 43–49, 51] и приведенные там ссылки).

Наконец, уместно перечислить основные оригинальные результаты данной работы. Исследования низкочастотных магнитоупругих колебаний в [37] распространены на более высокие частоты (разд. 6, рис. 2). Получены простые аппроксимации коэффициентов $c_0(\ell)$ и $c_2(\ell)$ формулами (18) и (19), позволяющие рассчитывать спектр колебаний на частотах $\lesssim 150$ Гц. Предсказаны квазипересечения ветвей колебаний с разными индексами ℓ (в затемненной области на рис. 2, в которой допустимые частоты формально располагаются плотно, а фактически могут быстро затухать с учетом взаимодействия колебаний коры и альфвеновских колебаний ядра). Подтверждена возможность [37] интерпретировать низкочастотные КПО, наблюдавшиеся при гипервсплеске SGR 1806–20 (рис. 4) и гигантском всплеске SGR 1900+14 (рис. 5), магнитоупругими колебаниями. Указано на необходимость совместного учета квазипересечений мод и взаимодействий колебаний коры с альфвеновскими возмущениями в ядре звезды. Констатировано, что, несмотря на значительные усилия многих авторов, построение теории магнитоупругих колебаний далеко до завершения.

Благодарности. Автор благодарен М. Е. Гусакову, Е. М. Кантор и А. И. Чугунову за комментарии и критические замечания к предыдущей работе [37], которые были полезны для написания данной статьи.

Финансирование. Работа выполнена в рамках государственного задания ФТИ им. А.Ф. Иоффе № FFUGFFUG-2024-0002.

ЛИТЕРАТУРА

- П. Л. Капица, Экспериментальные исследования в сильных магнитных полях, УФН 163 (4), 77 (1993).
- S. L. Shapiro and A. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, Wiley-Interscience, New York (1983).
- P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars. 1. Equation of State and Structure, Springer, New York (2007).
- V. M. Kaspi and A. M. Beloborodov, *Magnetars*, Ann. Rev. Astron. Astrophys. 55, 261 (2017).
- R. C. Duncan, Global Seismic Oscillations in Soft Gamma Repeaters, Astrophys. J. Lett. 498, L45 (1998).
- G. L. Israel, T. Belloni, L. Stella, Y. Rephaeli,
 D. E. Gruber, P. Casella, S. Dall'Osso, N. Rea,
 M. Persic, and R. E. Rothschild, *The Discovery of*

Rapid X-Ray Oscillations in the Tail of the SGR 1806-20 Hyperflare, Astrophys. J. Lett. **628**, L53 (2005).

- A. L. Watts and T. E. Strohmayer, Discovery of Fast X-Ray Oscillations During the 1998 Giant Flare from SGR 1900+14, Astrophys. J. Lett. 632, L111 (2005).
- A. L. Watts and T. Strohmayer, Detection with RHESSI of High-Frequency X-Ray Oscillations in the Tail of the 2004 Hyperflare from SGR 1806-20, Astrophys. J. Lett. 637, L117 (2006).
- V. Hambaryan, R. Neuhäuser, and K. D. Kokkotas, Bayesian Timing Analysis of Giant Flare of SGR 1806-20 by RXTE PCA, Astron. Astrophys. 528, A45 (2011).
- D. Huppenkothen, L. M. Heil, A. L. Watts, and E. Göğüş, Quasi-Periodic Oscillations in Short Recurring Bursts of Magnetars SGR 1806-20 and SGR 1900+14 Observed with RXTE, Astrophys. J. 795, 114 (2014).
- D. Huppenkothen, C. D'Angelo, A. L. Watts, L. Heil, M. van der Klis, A. J. van der Horst, C. Kouveliotou, M. G. Baring, E. Göğüş, J. Granot, Y. Kaneko, L. Lin, A. von Kienlin, and G. Younes, *Quasi-Periodic* Oscillations in Short Recurring Bursts of the Soft Gamma Repeater J1550-5418, Astrophys. J. 787, 128 (2014).
- D. Pumpe, M. Gabler, T. Steininger, and T. A. Enßlin, Search for Quasi-Periodic Signals in Magnetar Giant Flares. Bayesian Inspection of SGR 1806-20 and SGR 1900+14, Astron. Astrophys. 610, A61 (2018).
- Y. Levin, QPOs During Magnetar Flares Are Not Driven by Mechanical Normal Modes of the Crust, Mon. Not. R. Astron. Soc. 368, L35 (2006).
- 14. K. Glampedakis, L. Samuelsson, and N. Andersson, Elastic or Magnetic? A Toy Model for Global Magnetar Oscillations with Implications for Quasi-Periodic Oscillations During Flares, Mon. Not. R. Astron. Soc. 371, L74 (2006).
- Y. Levin, On the Theory of Magnetar QPOs, Mon. Not. R. Astron. Soc. 377, 159 (2007).
- H. Sotani, K. D. Kokkotas, and N. Stergioulas, Torsional Oscillations of Relativistic Stars with Dipole Magnetic Fields, Mon. Not. R. Astron. Soc. 375, 261 (2007).
- H. Sotani, K. D. Kokkotas, and N. Stergioulas, Alfvén Quasi-Periodic Oscillations in Magnetars, Mon. Not. R. Astron. Soc. 385, L5 (2008).

- U. Lee, Axisymmetric Toroidal Modes of Magnetized Neutron Stars, Mon. Not. R. Astron. Soc. 385, 2069 (2008).
- 19. P. Cerdá-Durán, N. Stergioulas, and J. A. Font, Alfvén QPOs in Magnetars in the Anelastic Approximation, Mon. Not. R. Astron. Soc. 397, 1607 (2009).
- 20. R. Shaisultanov and D. Eichler, What Magnetar Seismology Can Teach Us About Magnetic Fields, Astrophys. J. Lett. 702, L23 (2009).
- A. Colaiuda, H. Beyer, and K. D. Kokkotas, On the Quasi-Periodic Oscillations in Magnetars, Mon. Not. R. Astron. Soc. 396, 1441 (2009).
- 22. A. Colaiuda and K. D. Kokkotas, Magnetar Oscillations in the Presence of a Crust, Mon. Not. R. Astron. Soc. 414, 3014 (2011).
- 23. M. van Hoven and Y. Levin, Magnetar Oscillations – I. Strongly Coupled Dynamics of the Crust and the Core, Mon. Not. R. Astron. Soc. 410, 1036 (2011).
- 24. M. Gabler, P. Cerdá-Durán, J. A. Font, E. Müller, and N. Stergioulas, *Magneto-Elastic Oscillations and* the Damping of Crustal Shear Modes in Magnetars, Mon. Not. R. Astron. Soc. 410, L37 (2011).
- A. Colaiuda and K. D. Kokkotas, *Coupled Polar-Axial Magnetar Oscillations*, Mon. Not. R. Astron. Soc. 423, 811 (2012).
- M. van Hoven and Y. Levin, Magnetar Oscillations II. Spectral Method, Mon. Not. R. Astron. Soc. 420, 3035 (2012).
- 27. H. Sotani, K. Nakazato, K. Iida, and K. Oyamatsu, Probing the Equation of State of Nuclear Matter via Neutron Star Asteroseismology, Phys. Rev. Lett. 108, 201101 (2012).
- 28. M. Gabler, P. Cerdá-Durán, N. Stergioulas, J. A. Font, and E. Müller, *Magnetoelastic Oscillations of Neutron Stars with Dipolar Magnetic Fields*, Mon. Not. R. Astron. Soc. 421, 2054 (2012).
- 29. H. Sotani, K. Nakazato, K. Iida, and K. Oyamatsu, Possible Constraints on the Density Dependence of the Nuclear Symmetry Energy from Quasi-Periodic Oscillations in Soft Gamma Repeaters, Mon. Not. R. Astron. Soc. 434, 2060 (2013).
- 30. M. Gabler, P. Cerdá-Durán, J. A. Font, E. Müller, and N. Stergioulas, Magneto-Elastic Oscillations of Neutron Stars: Exploring Different Magnetic Field Configurations, Mon. Not. R. Astron. Soc. 430, 1811 (2013).

- 31. M. Gabler, P. Cerdá-Durán, N. Stergioulas, J. A. Font, and E. Müller, *Imprints of Superfluidity on Magnetoelastic Quasiperiodic Oscillations of Soft Gamma-Ray Repeaters*, Phys. Rev. Lett. **111**, 211102 (2013).
- 32. A. Passamonti and S. K. Lander, *Quasi-Periodic Oscillations in Superfluid Magnetars*, Mon. Not. R. Astron. Soc. 438, 156 (2014).
- 33. M. Gabler, P. Cerdá-Durán, N. Stergioulas, J. A. Font, and E. Müller, *Coherent Magneto-Elastic* Oscillations in Superfluid Magnetars, Mon. Not. R. Astron. Soc. 460, 4242 (2016).
- 34. B. Link and C. A. van Eysden, Torsional Oscillations of a Magnetar with a Tangled Magnetic Field, Astrophys. J. Lett. 823, L1 (2016).
- 35. M. Gabler, P. Cerdá-Durán, N. Stergioulas, J. A. Font, and E. Müller, Constraining Properties of High-Density Matter in Neutron Stars with Magneto-Elastic Oscillations, Mon. Not. R. Astron. Soc. 476, 4199 (2018).
- 36. H. Sotani, K. Iida, and K. Oyamatsu, Constraints on the Nuclear Equation of State and the Neutron Star Structure from Crustal Torsional Oscillations, Mon. Not. R. Astron. Soc. 479, 4735 (2018).
- D. G. Yakovlev, Zeeman Splitting of Torsional Oscillation Frequencies of Magnetars, Universe 9 (12), 504 (2023).
- 38. A. A. Kozhberov and D. G. Yakovlev, Deformed Crystals and Torsional Oscillations of Neutron Star Crust, Mon. Not. R. Astron. Soc. 498, 5149 (2020).
- 39. P. N. McDermott, H. M. van Horn, and C. J. Hansen, Nonradial Oscillations of Neutron Stars, Astrophys. J. 325, 725 (1988).
- 40. C. J. Hansen and D. F. Cioffi, *Torsional Oscillations in Neutron Star Crusts*, Astrophys. J. 238, 740 (1980).

- 41. B. L. Schumaker and K. S. Thorne, *Torsional Oscillations of Neutron Stars*, Mon. Not. R. Astron. Soc. 203, 457 (1983).
- 42. L. Samuelsson and N. Andersson, Neutron Star Asteroseismology. Axial Crust Oscillations in the Cowling Approximation, Mon. Not. R. Astron. Soc. 374, 256 (2007).
- 43. N. Andersson, K. Glampedakis, and L. Samuelsson, Superfluid Signatures in Magnetar Seismology, Mon. Not. R. Astron. Soc. 396, 894 (2009).
- 44. H. Sotani, K. Nakazato, K Iida, and K. Oyamatsu, Effect of Superfluidity on Neutron Star Oscillations, Mon. Not. R. Astron. Soc. 428, L21 (2013).
- 45. H. Sotani, Empirical Formula of Crustal Torsional Oscillations, Phys. Rev. D 93, 044059 (2016).
- 46. H. Sotani, K. Iida, and K. Oyamatsu, Probing Nuclear Bubble Structure via Neutron Star Asteroseismology, Mon. Not. R. Astron. Soc. 464, 3101 (2017).
- 47. H. Sotani, K. Iida, and K. Oyamatsu, Probing Crustal Structures from Neutron Star Compactness, Mon. Not. R. Astron. Soc. 470, 4397 (2017).
- 48. H. Sotani, K. Iida, and K. Oyamatsu, Astrophysical Implications of Double-Layer Torsional Oscillations in a Neutron Star Crust as a Lasagna Sandwich, Mon. Not. R. Astron. Soc. 489, 3022 (2019).
- 49. D. G. Yakovlev, Self-Similarity Relations for Torsional Oscillations of Neutron Stars, Mon. Not. R. Astron. Soc. 518, 1148 (2023).
- 50. A. Y. Potekhin, A. F. Fantina, N. Chamel, J. M. Pearson, and S. Goriely, *Analytical Representations* of Unified Equations of State for Neutron-Star Matter, Astron. Astrophys. 560, A48 (2013).
- 51. N. A. Zemlyakov and A. I. Chugunov, The Elasticity of the Neutron Star Mantle: The Improved Compressible Liquid Drop Model for Cylindrical Phases, Universe 9 (5), 220 (2023).