
ЖЭТФ, 2024, том 166, вып. 1 (7), стр. 38–44 © 2024

ON THE MICROSCOPIC APPROACH TO THE ANDREEV
CURRENT...

P. I. Arseev a*, N. S. Maslova b, Yu. M. Bilinskii a

a P.N. Lebedev Physical Institute of the Russian Academy of Sciences
119991, Moscow, Russia

b M.V. Lomonosov Moscow State University
119991 Moscow, Russia

Received March 30, 2024,
revised version March 30, 2024,

Accepted for publication March 31, 2024

It was shown how we can describe microscopically the Andreev current in a uniform way for a contact with

direct coupling between N and S leads and with intermediate chain of atoms (multilayer system) inside the

contact. Considering various types of connection of the normal lead to external thermal bath we reproduce

various nonequilibrium distributions at the edge of the normal lead. It was shown what type of connection to

the external reservoir corresponds to the classical result of Blonder,Klapwijk and Tinkham. Also we discuss

difference in equilibrium and non equilibrium proximity effect, and it is clarified that the Andreev current arises

due to the nonequilibrium effects which is much larger than the equilibrium one.
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1. INTRODUCTION

One of the interesting manifestations of supercon-
ductivity is macroscopic quantum tunneling effects. In
the case of a contact between two superconductors it
is Josephson effect at first. In a junction between su-
perconductor and normal metal macroscopic quantum
nature of superconducting state also reveals as the An-
dreev current (These phenomena attracted attention
rather long ago — see review by K.Likharev [1]). Usu-

ally qualitative explanation of the Andreev current in

NS contacts is based on the process of the Andreev re-

flection [2] at the boundary described as reflection and

transmission of quasiparticles at the tunneling barrier.

In the widely cited paper by Blonder,Klapwijk and Tin-

kham (BTK) [3] one dimensional scattering model was

used to write down the equation for the current. In this

theory normal metal in the vicinity of the contact do

not suppose to be in thermal equilibrium. That means

that electron distribution function in the N reagion are

not the Fermi function depended only on the energy

* E-mail: ars@td.lpi.ru

of the particles. The assumption of the authors of [3]

was that electrons moving to the contact obey Fermi

distribution

n→(ω) = nF (ω − eV )

while reflected and moving out electrons are non equi-

librium

n←(ω) = AnF (ω + eV ) +BnF (ω − eV ),

whith coefficients A and B calculated in the scattering

theory. The question how this non equilibrium distri-

bution forms if at some distance there should be ther-

mal equilibrium distribution was out of consideration

in that paper. Contrary to the scattering approach to

the tunneling transport there is also a method based on

nonequilibrium Green’s functions [4]. In this approach

a system is placed between two thermal baths with dif-

ferent chemical potentials and all transport characteris-

tics and nonequilibrium distributions in the intermedi-

ate system are calculated using Green’s functions. This

formulation of the problem seems to be much more ad-

equate for experimental setups. One of the first papers

in this direction was written rather long ago [5], but

this approach became widespread later in the 90s.

For superconductor structures there were rather

many papers in which quasiclassical approach was used.
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In dirty metals quasiclassical equations are simplified

to the Usadel equations [6] which look easier than the

Gorkov equations. Last years people were interested in

complicated multiterminal problems, but initially some

papers were devoted to a simple NS contact [8] [7].

Nowadays superconducting hybrid structures with

very small dimensions are fabricated. To our opinion it

is useful to return to the initial microscopic picture of

the contacts not only to repeat the BTK result, but to

try to understand for what systems it is valid, and how

it is connected with microscopis language and nonequi-

librium Green’s function approach.

For contacts with superconductors such microscopic

approach was used by Cuevas, Martin-Rodero and

Levy-Yeyati in [9].

We present here theoretical approach for one dimen-

sional or quasi one-dimensional (planar) contacts based

on nonequilibrium diagram technique similar to [9] but

taking into account all changes in electron properties

at the edges of the contact. Besides we do not sup-

pose that normal metal is a thermal bath itself, which

allows to show the origin of nonequilibrium electron

distribution. So a more general system than in [9] is

considered with some intermediate region between the

external reservoirs. This part of the present paper com-

plements the old paper of the authors [10] in which nor-

mal current characteristics were considered in the NS

contact with additional atomic state between the leads.

2. ONE DIMENSIONAL MODEL

The one dimensional model of NS contact is shown

in Fig. 1 and can be described by the following Hamil-

tonian Ĥ

Ĥ =
∑

iσ

µa+iσaiσ +
∑

i≥1,σ

t(a+i,σai+1,σ + H.c.) +

+
∑

i≥1,σ

t(c+i,σci+1,σ + H.c.) +
∑

i≥1,σ

(∆c+i↑c
+
i↓ + H.c.) +

+ T (c+1,σa1,σ + H.c.) (1)

In the both parts of the chain we number the sites

from one to the left or to the right from the contact.

The first line describes normal metal, the second line —

superconductor and term in the third line describes the

tunneling between normal and superconducting parts

of the chain. We assume in what follows that all en-

ergies are counted from the chemical potential of su-

perconductor, so in the equation (1) µsp = 0, T — is

the tunneling matrix amplitude between N and S parts.

The hopping matrix element t in the chain is supposed

to be the same in the superconducting and normal part

Fig. 1. One dimensional NS system with added relaxation in

the normal part shown as a weak connection to external bath

at each site (wavy lines)

of the chain. (Later we consider also modified formu-

las with different tS , tN ). So the choice T = t evidently

corresponds to the «ideal transparency» of the contact.

Operators ci correspond to electrons in superconductor

and ai — to the normal metal in the site representation.

Tunneling current through the contact has the usual

form (electrical current is eI):

I = iT
[
〈c+1 a1〉 − 〈a+1 c1〉

]
= T

[
G<NS −G<SN

]
. (2)

Though the current is expressed only in terms of nor-

mal Green’s functions, calculations with superconduc-

tors inevitably incorporate anomalous functions. It is

convenient to use well known matrix representation in

order to simplify calculations with superconductors

ΓR(ω) =

(
GR(ω) −FR(ω)
F+R(ω) GA(−ω)

)
, (3)

Γ<(ω) =

(
G<(ω) −F<(ω)
F+<(ω) G>(−ω)

)
. (4)

We use the following definitions of Keldysh func-

tions (here t and t′ lie on the Keldysh contour):

Gnm(t, t′) = −i〈Tccn↑(t)c+m↑(t′)〉,
Fnm(t, t′) = i〈Tccn↑(t)cm↓(t′)〉, (5)

F+
nm(t, t′) = i〈Tcc+n↓(t)c+m↑(t′)〉.

In this representation tunneling interaction is propor-

tional to the unity matrix

T̂ = T

(
1 0

0 1

)
. (6)

Let us first calculate matrix Green’s function for the

normal and superconducting semi infinite chains. For

infinite normal metal chain:

G0R
nm(ω) =

= a

π
a∫

−π
a

dkeika(n−m) 1

ω + iδ + µ− 2t cos (ka)
, (7)
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G0A
nm(ω) =

[
G0R
mn(ω)

]∗
, (8)

further on ω = ω + µ

Exact calculation of integral in (7) gives

G0R
nm(ω) = − i

2t

1

cos(φ)
×

×
[
(−i)|n−m|ei|n−m|φ − (−i)(n+m)ei(n+m)φ

]
, (9)

where sinφ(ω) = ω/2t

It is possible to emulate the behavior of a finite

chain by using the infinite chain with infinitely strong

point defects U → +∞ added at site 0. Then in matrix

form Green’s functions for semi infinite chain gives by

ΓRnm(ω) ≡
≡ Γ0R

nm(ω)− Γ0R
n0 (ω)

(
Γ0R
0,0(ω)

)−1
Γ0R
0,m(ω). (10)

For the normal metal chain which begins from the

site number 1 this equation gives

GR1m(ω) = − i
t
(−i)(m−1)eimφ. (11)

If we add in the Hamiltonian (7) interaction with a

bath at each site of the normal chain (which is shown

symbolicaly as wavy lines in Fig. 1) it can be proved,

that we have simply to replace ω → ω + iγ Futher on

we shall use only single site diagonal Green’s functions

G11, F11 and omit this site index (11) using matrix rep-

resentation

Γ̂0R
N (ω) =

(
G0R

11 (ω) 0

0 G0A
11 (−ω)

)
=

= − i
t
e−χeiφ

(
1 0

0 −1

)
, (12)

sin(φ) ch(χ) =
ω

2t
, cos(φ) sh(χ) =

γ

2t
.

For the superconductor chain we also start from

Green’s functions of infinite chain:

G0R
nm(ω) = a

π
a∫

−π
a

dkeika(n−m)×

× ω + 2t cos (ka)

(ω + iδ)2 − (2t cos (ka))2 −∆2
, (13)

F 0R
nm(ω) = a

π
a∫

−π
a

dkeika(n−m)×

× ∆

(ω + iδ)2 − (2t cos (ka))2 −∆2
. (14)

Similar calculations for the superconductor give

for ω < ∆

Γ0R
S (ω) =

−2e−χ0

(2t)2 sh(χ0)

(
ω −∆

∆ −ω

)
, (15)

where

sh(χ0) =

√
∆2 − ω2

2t
,

ch(χ0) =

√
1 +

∆2 − ω2

(2t)2
.

In terms of the matrix functions (3,4) the current

(2) is written as

I = T 2
[
Γ<NΓ0A

S − Γ0R
S Γ<N + ΓRNΓ

0<
S − Γ0<

S ΓAN
]
11
,

(16)

where the index (11) here means that at the end of the

calculations we have to know only the element (11) of

this matrix expression. In this formula Green’s func-

tions of superconductor are the initial ones without

interaction with the normal part taking into account.

But Green’s functions of the normal chain should be

calculated exactly with full account for the tunneling

processes to the superconductor.

Note, that of course we can change this choice vice

versa and can use completely symmetric expression as

well

I = T 2
(
[R]
−1

Γ0<
N ΓAS − ΓRSΓ

0<
N [A]

−1
+

+ΓRNΓ0<
S [A]

−1 − [R]
−1

Γ0<
S ΓAN

)

11
.

For our problem it is easier to use unperturbed

Green’s functions of superconductor because for en-

ergies in the superconducting gap (if eV < ∆) all

Γ0<
S = 0. This simplifies significantly all calculations.

Exact retarded function of the normal metal is equal

to

ΓRN =
[
1− Γ0R

N T 2Γ0R
S

]−1
Γ0R
N ≡ [R]

−1
Γ0R
N ,

here short notation [R]−1 is used which corresponds to

the sum of the perturbation series on the tunneling in-

teraction. Using the unperturbed Green’s function of

the normal and superconducting chain we obtain
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[R] =

[
1− iC

(
ω −∆

−∆ ω

)]
,

where

C =
1

2t

(
T 2

t2
e−χ0

sh(χ0)

)
eiφe−χ. (17)

In the same notations, the exact Γ<N is equal to

Γ<N = [R]
−1

Γ0<
N [A]

−1
+ ΓRNT

2Γ0<
S ΓAN .

Let us look at the anomalous part of the normal

Green’s function appeared due to the proximity effect.

The Andreev current is determined only by this part

and is in essence the Josephson current appeared due

to the induced anomalous part:

[Γ<N ]12 =

= −i
{
C∆[n(ω − eV )− n(ω + eV )]−

− C2∆ω[n(ω − eV ) + n(ω + eV )]
}
×

×
{
|(1− iCω)2 + C2∆2|2

}−1
. (18)

We choose the chemical potential of the supercon-

ductor to be zero and the chemical potential of the nor-

mal metal is shifted by the applied voltage µN = eV .

So the appearence of n(ω + eV ) is connected with the

element (22) of the matrix Green’s function (4) since

G>(−ω) ∝ (n(−ω)− 1) =

= nF (−ω − eV )− 1 = −nF (ω + eV ).

Very interesting feature of eq.(18) is that it de-

scribes two different contributions to proximity effect.

The second term proportional to C2 corresponds to

equilibrium proximity effect. And the first one is pro-

portional to C but appears only in nonequilibrium situ-

ation, when eV 6= 0. Since C ∝ T 2 the nonequilibrium

contribution is usually much larger than equilibrium

one for small transparency of the contact.

We should like to note that only nonequilibrium

proximity effect is responsible for the Andreev current

appearance.

If we are interested only in the Andreev current in

the gap, let us suppose further that

∆

2t
≪ 1, ω ≤ ∆.

The current (16) is

I =

∫
dω

2π

∆2

t2

(
T 2

t2
e−χ0

sh(χ0)

)2

×

× cos2(φ)

|(1− iCω)2 + C2∆2|2×

× [n(ω − eV )− n(ω + eV )] , (19)

where C given by Eq.(17) is some function of ω and con-

tains information about the tunneling amplitude and

density of states at the edges of the contact.

For small γ/2t and ∆/2t it simplifies to

C =

(
T 2

t2

)
1√

∆2 − ω2

and the current density I(ω) becomes

I(ω) =
4∆2

(
T 2

t2

)2

[
1 +

(
T 2

t2

)2]2
(∆2 − ω2) + 4

(
T 2

t2

)2
ω2

. (20)

This formula is in agreement with the BTK equation

(see Ref. [9] as well). Of course in any case the An-

dreev current is proportional to T 4, the square of a

«tunneling transparency», because it appears only due

to the proximity effect. Note once more, that it is

only nonequilibrium part of the proximity effect which

makes contribution to the Andreev current. Tunneling

conductivity for small bias is equal to

dI

dV
(0) = I(ω = 0) =

4
(
T 2/t2

)2
[
1 + (T 2/t2)2

] . (21)

The case of ideal transparency is formulated in this

model as a condition T = t which corresponds to the

ideal metal chain one half of which is superconducting.

In this case the current (20) does not depend on energy

ω inside the gap:

dI

dV
(ω) = 2, (22)

as in the paper [3].

Of course it is not obligatory that normal and su-

perconducting parts are the same material, so hopping

matrix elements t in the Hamiltonian (1) can be differ-

ent for the normal and supercondcuting chains. In this

case the current (20) looks like

I(ω) =

=
4∆2

(
T 2

tStN

)2

[
1 +

(
T 2

tStN

)2]2
(∆2 − ω2) + 4

(
T 2

tStN

)2
ω2

. (23)
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Formally for T 2 = tStN we again reproduce the case

of ideal transparency, but it is doubtful that it makes

some physical sense.

So we see that the system, in which BTK considera-

tion is literally valid, is the NS contact with very small

relaxation rate to equilibrium state spatially spread

from the contact to infinity along the normal chain. In

this case far from the contact we have thermal equilib-

rium distribution in the normal metal with the chemical

potential µ = eV and in the vicinity of the contact this

distribution is distorted so, that BTK non equilibrium

distribution needed for the Andreev current appears.

3. CONTACT WITH INTERMEDIATE REGION

In this section we consider a more general tunneling

system with some intermediate region as it is shown in

Fig. 2. Superconductor is connected to one dimensional

chain, but this chain consists of finite number of sites

L. The other end of the chain is connected to massive

thermal bath with γ0 be the tunneling rate to the bath.

For the unperturbed (without interaction with the su-

perconductor) retarded Green’s function we obtain

G0R
11 (ω) = − i

t

1

schL+1(φ)
×

×
[
schL(φ) − (−1)L+1

(γ0
t

)
×

× sch21(φ)

schL+1(φ) +
(
γ0
t

)
schL(φ)

.

]
(24)

This is the Green’s function in site representation for

the edge site (site number 1) of the normal chain. For

brevity we introduced the notation

schL(φ) = e−iLφ − (−1)LeiLφ.

Denominator of the GR describes resonances in the

intermediate system. Without relaxation these reso-

nances are simply size quantised states in a finite chain

determined by the condition schL(φ) = 0. Clearly

there are two different limiting cases

χL = (γ/2t)L≫ 1 and χL = (γ/2t)L≪ 1.

(Remind that χ is determined by the intensity of the

spread along the chain relaxation γ (12).) In the first

case

schL(φ) ≃ eLγ/2t ≫ 1,

and we return to the semi-infinite chain, because uni-

formly distributed along the chain relaxation γ almost

Fig. 2. Tunneling system with an intermediate region. Normal

chain is of L sites length and at the end it is connected to a

massive reservoire. The tunneling rate from the last site L to

the reservoire is denoted as γ0

completely «takes away» electron flow before it reaches

the opposite end and the second contact to reservoir

plays no role. Contrary to this in the second case we

have a system of several sites (atoms) placed between

the contacts which serve as thermal baths.

For L = 1 the general formula (24) gives exactly the

Green’s function of a single site (atom).

G0R
11 (ω) =

1

ω + iγ0
.

For L = 2 Eq. (24) gives the function for two sites

and so on.

Equation (24) is written for the chemical potential

equal to the site energy level, but can be easily mod-

ified for general case. If chemical potential does not

coincide with atom level ε, then ω should be replaced

by ω − ε.

Now we have some new functions G0R
11 and conse-

quently new equations for C(ω). But this is the only

needed modification, all equations of the previous sec-

tion are valid with replacement by the new function

C(ω). For example for a single site in the contact

C = − i

(ω − ε0) + iγ0

(
T 2

t2S

e−χ0

2 sh(χ0)

)
. (25)

This value of C leads for ∆ ≪ tS to simplified expres-

sions analogous to (21)

dI

dV
(0) = I(ω = 0) =

4(t2S/γ
2
0)
(
T 2/t2S

)2
[
1 + (t2S/γ

2
0) (T

2/t2S)
2
]2 . (26)

Conductivity at the edge of the gap in this case does

not depend on T and band width 2tS

dI

dV
(∆) = I(ω = ∆) =

1

2

γ20
γ20 +∆2

. (27)

If γ0 is small enough so, that γ0/tS ≪ (T/tS)
2 ≤ 1,

then conductivity (26) is suppressed compared to (21),

dI

dV
(0) =

4(t2Sγ
2
0)

T 4
. (28)
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But it is possible also that γ0/tS ≪ 1, but

γ0/tS ≫ (T/tS)
2 for small tunneling transparency.

Then

dI

dV
(0) =

4T 4

(t2Sγ
2
0)
. (29)

Compared to (21), a resonant enhancing factor

(t2S/γ
2
0) appears. Equations (26), ( 27) shows that tun-

neling conductivity is less then in the direct NS con-

tact and increases with bias increasing even in the case

T = tS .

Let us look briefly at the chain with two atoms

(L = 2), because it is the simplest example of inter-

mediate system with several levels. For two atoms we

have

G0R
11 (ω) =

ω − ε+ iγ

(ω − ε)2 − t2 + iγ0ω
, (30)

C = i
ω + iγ0

ω2 − t2 + iγ0ω

(
T 2

t2s

e−χ0

2 sh(χ0)

)
. (31)

Substituting this value of the function C in our

equations we get

dI

dV
(0) =

4(γ20/t
2
S)
(
T 2/t2

)2
[
1 + (γ20/t

2
S) (T

2/t2)
2
]2 , (32)

dI

dV
(∆) =

1

2

γ20t
4

(γ20 +∆2) ((∆2 − t2)2 + γ20∆
2)
. (33)

We see that for γ0 and t there are critical values,

determined by the condition

γ0
t2

=
tS
T 2
.

For γ0 less than this critical value the conductivity

is suppressed while for large values we have some en-

hancement. Equation (33) shows that we return to the

single atom situation for t ≫ ∆ when discrete levels

are out of the superconducting gap. For t ≃ γ0 ≪ ∆

dI

dV
(∆) ≃ γ20t

4

∆6
(34)

is negligibly small under these conditions.

So varying the parameters of intermediate system

(several atoms chain) we theoretically can enhance An-

dreev conductivity in some limited bias region. But the

more general situation is that the Andreev current is

suppressed.

Fig. 3. The NSN structure with superconductor connected only

to the two normal leads. The position of the chemical potential

of superconductor between chemical potentials of the normal

leads is determined by the current conservation law and is not

symmetric for different tunneling amplitudes T1 and T2

4. NSN JUNCTION

Up to now it was supposed that the chemical po-

tential of superconductor is fixed. For example the su-

perconductor is grounded and relaxation in supercon-

ductor is quick enough to fix µ = 0.

In a double junction NSN system we can not set

µ = 0 in superconductor. We control only the dif-

ference of chemical potentials of the normal contacts

by applying some bias. Such system is shown in Fig. 3.

Previous consideration shows that the Andreev current

is determined only by the difference of chemical poten-

tials of N and S system at a contact. For the ener-

gies in the superconductor gap and enough long super-

conductor this current «does not feel» other contact

at the second end of the superconductor. Of course

this is seeming uncertainty because of the following.

If superconductor is under some external fields, then

we have to take into account that superconducting or-

der parameter also changed [11]. In our case the main

effect is in changing the phase of ∆. This additional

phase changes should be rewritten as additional voltage

bias using gauge transformation. Then using the self

consistency equations for superconductor these phase

changes can in principal be connected with the external

bias. But it is known, that this procedure is completely

equivalent to the current conservation law. Thus the

current conservation condition

I1(eV − µ) = I2(µ),

where I1 and I2 are the Andreev currents (19) in the left

and right junctions, is the condition which determines

the value of µ in superconductor. So in the NSN sys-

tem the current and all properties of intermediate sys-

tem is also completely determined by the two external

baths as in a normal system, but with additional com-

plication connected with indirect procedure of phase

determination.
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5. CONCLUSION

The microscopic approach of [9] was extended to a

more general situation when normal metal in NS one

dimensional contact is not supposed to be a reservoir.

Normal chain in our calculations is connected to ex-

ternal thermal bath in different ways. This makes it

possible to describe the nonequilibrium distribution of

electrons in the vicinity of the contact and to determine

the dependence of the tunneling characteristics on the

method of connecting the normal metal to the exter-

nal reservoir. So we found that BTK solution for the

Andreev current corresponds to spatially spread along

the chain weak connection to external thermal bath at

each site.

Within our approach we have unified description of

the contacts of various types: from direct NS contact

to a contact with some normal multilevel system in be-

tween the S and N sides. This intermediate system, as

we have seen for a single and double level examples,

mostly suppresses the Andreev current, although there

are some parameter relations that can increase Andreev

conductivity in some bias range.

We should like to pay attention to the following.

Quasiparticles themselves of course give no contribu-

tion to the Andreev current for energies inside the su-

perconducting gap, so the «scattering approach» by

BTK is only an indirect method to calculate proxim-

ity effect and to describe anomalous parts induced in

the normal metal. If we calculate the proximity effect

directly using Green’s function methods, we see that

besides equilibrium contribution to the proximity effect

there is also a nonequilibrium part. To our opinion it is

less discussed, that proximity effect consists of two con-

tributions and the nonequilibrium contribution is much

larger than the equilibrium one. Within microscopic

approach based on nonequilibrium diagram technique

we see that the Andreev current appears only due to

the nonequilibrium proximity effect and is in essence

the «induced Josephson current».

This approach can be easily extended to the case

of a planar contact. In the mixed representation

for Green’s functions we can use functions Gmn(p, ω)

where p is a momentum along the plane of the contact

and m,n are site numbers in perpendicular direction.

The only modification required is to add the momen-

tum integral in all formulas for the current.
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