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In this paper, the quantum transport through armchair graphene-silicene nanoribbons junction has been investi-

gated by using non-equilibrium Green’s function method and tight binding approximation in Landauer-Büttiker

formalism. The results demonstrate that this junction exhibits metallic behavior in the absence of intrinsic spin-

orbit interaction and by increasing the size of the intrinsic spin-orbit interaction, the transition from conductor

to semiconductor for the system occurs. Moreover, the electron transport characteristics of the system can be

controlled by changing the size of the length and width of the junction and the strength of GNR-SiNR coupling.

These results can be useful for designing nanoelectronic devices.
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1. INTRODUCTION

Two-dimensional hexagonal structures such as

graphene and silicene have attracted a great deal of

attention due to their unique electronic properties as

well as their many applications in the manufacture

of nanoelectronic devices [1–13]. Silicene, which is a

monolayer, honeycomb structure of silicon atoms, has

been successfully synthesized and many studies have

been done on its electronic properties in recent years

[14, 15]. Unlike graphene, silicene has no plate struc-

ture and has a buckled structure [16]. This feature of

silicene is useful for adjusting the band gap, because

of an external electric field effect transistors [17, 18].

Also, the spin-orbit interaction in silicene, unlike

graphene, is large, which can be used to make spin-

tronic devices [19].Another useful feature of Silicene is

its good compatibility with today’s silicon-based elec-

tronics technology. Silicene nanoribbons, like graphene

nanoribbons, can be divided into zigzag edges and

armchair edges depending on the type of edge. The

results show that the armchair silicene nanoribbons

are the same as armchair graphene nanoribbons with

width Nw = 3 m + 2 (m is an integer) are conductive

and the rest are semiconductors [20]. Recent investi-
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gations have shown that hybrid nanostructures such

as graphene-silicene heterostructures reveal greater

physical properties than similar single graphene or

silicene nanoribbons [21–26].

In this paper, electron transport through the arm-

chair graphene-silicene nanoribbons junction (GNR-

SiNR junction) has been studied numerically by using

non-equilibrium Green’s function and tight-binding ap-

proximation in Landauer-Büttiker formalism. The de-

sign model of this junction is shown in Fig. 1. In partic-

ular, the effect of the power of the intrinsic spin-orbit

interaction, the strength of GNR-SiNR coupling, the

length and width of the junction on the transmission

probability function, and the electric current have been

investigated.

2. METHODOLOGY

In this article, we characterize our method based

on the GNR-SiNR junction consisting of armchair

graphene/silicene nanoribbon as a central region (CR)

contacted to two semi-infinite armchair GNR and SiNR

electrodes, as shown in Fig. 1. To study the quantum

transport properties of the GNR-SiNR junction, we de-

compose the total Hamiltonian of the system as

H = HCR +HR +HL +HC , (1)

where HCR = HGNR + HSiNR + HGS describes the

Hamiltonian of the central region, HR(HL) is the
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Fig. 1. Graphene nanoribbons (GNR), silicene- nanoribbons junction design. The left semi-infinite electrode is a graphene nanorib-

bons and the right semi-infinite electrode is a silicene nanoribbons that are connected to the central region

Hamiltonian of the right SiNR (left GNR) electrode,

and HC is the Hamiltonian for the coupling between

CR and electrodes. Using the tight-binding model with

nearest-neighbor hopping approximation, the Hamilto-

nians HGNR, HSiNR, and HC can be expressed as

follows:

HGNR = ε
∑

i,σ

c†i,σci,σ − tG
∑

i,j,σ

(c†i,σcj,σ +H.c) , (2)

HSiNR = −tS
∑

〈ij〉 α

c†iαcjα +

+ i
λSO

3
√
3

∑

〈〈ij〉〉 αβ

ηij c
†
iα σ

z
αβ cjβ −

− i
2

3
λR

∑

〈〈ij〉〉 αβ

ξij c
†
iα (~σ × ~d 0

ij)
z
αβ cjβ , (3)

HGS = −
∑

i,j,σ

tGS(i,j,σ)(c
†
i,σcj,σ +H.c), (4)

HC =
∑

i,j,σ

tc(i,j,σ)(c
†
i,σdj,σ +H.c), (5)

c†i,σ, and ci,σ (d†i,σ, and di,σ ) are the creation and anni-

hilation operators of a π-electron at the ith site of the

GNR-SiNR (electrodes), respectively. i and j stand for

the nearest-neighbor pairs in the GNR and SiNR lat-

tices. ε is the on-site energy. The hopping integral

between the nearest-neighbor GNR(SiNR) lattice is

tG = 2.7 eV (tS = 1.6 eV [27]). 〈ij〉 and 〈〈ij〉〉 stand for

the nearest-neighbor and next nearest-neighbor pairs

in the SiNR lattice, respectively. The effective intrinsic

spin-orbit interaction (SOI) parameter and the intrinsic

Rashba SOI parameter are λSO and λR, respectively.

~σ = (σx, σy , σx) is the Pauli matrix with ηij = −1

(ηij = +1) if the next-nearest neighbor hopping is

clockwise (anticlockwise) with respect to the positive z-

axis, and ξij = +1 (ξij = −1) for A(B) site. ~d 0
ij =

~d ij

|~d ij |

is the unit vector parallel to the vector ~d ij connecting

the two sites i and j in the same sublattice. HGR is

the Hamiltonian for the coupling between GNR-SiNR

in the central region and tGS is the coupling strength

between the GNR and SiNR. Also, tc = tG (tc = tS) is

the coupling strength between left GNR (right SiNR)

electrode and GNR (SiNR) in the central region. The

Green’s function of the system is expressed as

G(E) =
[
(E + iη)I −HGS − ΣL,σ − ΣR,σ]

−1, (6)

where I represents the identity matrix and η → 0+, E is

the energy of the injecting electron. ΣL and ΣR are the

self-energy matrices due to the connection of right and

left electrodes to the central region, respectively, that

can be calculated numerically by the recursive method

described by Sancho and co-workers [28]. The surface

Green’s function of the right and left electrodes are cal-

culated as

gL0,0 =
[
(E + i0+)I −H0,0 −H†

−1,0T̃ ]
−1, (7)

gRN+1,N+1 =
[
(E+i0+)I−HN+1,N+1−H†

N+1,N+2T ]
−1,

(8)

where H0,0(HN+1,N+1) and H−1,0(HN+1,N+2) are the

Hamiltonian of a unit-cell and the coupling matrix be-

tween two unit cells in the left (right) electrode, re-

spectively. Here T and T̃ are the transfer matrices,
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which can be computed from the Hamiltonian matrix

elements via an iterative procedure as [28]

T = t0 + t̃0t1 + t̃0t̃1t2 + ...+ t̃0t̃1t̃2...tm, (9)

T̃ = t̃0 + t0t̃1 + t0t1 t̃2 + ...+ t0t1t2...t̃m, (10)

where ti and t̃i with 1 ≤ i ≤ m are defined by recursion

formulas

ti = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t2i−1, (11)

t̃i = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t̃2i−1. (12)

The following conditions are applied to calculate t̃i
and ti in Eq. (8) for the left electrode

t̃0 =
[
(E + i0+)I −H0,0]

−1H†
−1,0, (13)

t0 =
[
(E + i0+)I −H0,0]

−1H−1,0, (14)

and for the right electrode in Eq. (9)

t̃0 =
[
(E + i0+)I −HN+1,N+1]

−1H†
N+1,N+2, (15)

t0 =
[
(E + i0+)I −HN+1,N+1]

−1HN+1,N+2. (16)

The iteration is repeated until t̃m, tm ≤ δ with δ arbi-

trarily small. Finally, we can calculate the self-energies

of the two left and right electrodes by

ΣL = H†
0,1g

L
0,0H0,1, (17)

ΣR = HN,N+1g
R
N+1,N+1H

†
N,N+1. (18)

The energy-dependent transmission function in

terms of the Green’s function of the central region and

the coupling of it with two left and right electrodes can

be written as

T (E) = Tr(ΓL(E)Gr(E)ΓR(E)Ga(E)). (19)

Where Gr (Ga) is the retarded (advanced) Green’s

function, and ΓL(R) = i(ΣL(R) − Σ†
L(R)) is the cou-

pling matrix. The electric current can be calculated by

the Landauer-Büttiker formula [29]:

I(V ) =
e

h

+∞∫

−∞

T (E)
[
fL − fR

]
dE (20)

where fL(R) = f(E − µL(R)) is the Fermi–Dirac distri-

bution functions in the left (right) electrode with chem-

ical potential µL(R) = EF ± eV
2 and Fermi energy EF .
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Fig. 2. a — Transmission function as a function of energy.

b — The current-voltage characteristic for different values of

λSO with NW = 11, NS = 5, NG = 5

3. RESULTS AND DISCUSSION

In this section, we represent the results of the nu-

merical calculations of the quantum transport of the

GNR-SiNR system. The Fermi energy and tempera-

ture are chosen EF = 0, T = 4K respectively. Also,

the intrinsic Rashba SOI parameter is λR = 0.7meV

[27]. The intrinsic and intrinsic Rashba spin-orbit in-

teractions in graphene is omitted since it is negligible

compared to the one in silicene [30, 31].

3.1. The effects of spin-orbit interaction

Figures 2 a, b illustrate the diagram of electron

transmission probability in terms of energy and electric

current in terms of bias voltage, respectively, for differ-

ent values of λSO with NW = 11, NS = 5, NG = 5. As

it is shown in Fig. 2 a, the transmission probability di-

agram has oscillating behavior; whereas for a junction

that all its parts are composed of graphene or silicene

nanoribbons, the transmission function has a step form.

This is due to the effect of quantum interference, which

occurs due to the scattering of electron waves at the

6 ЖЭТФ, вып. 6
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junction of graphene and silicene nanoribbons due to

the mismatch of transmission modes in these locations.

In the transmission probability diagram, the resonant

peaks are symmetrically located around the Dirac point

(E = 0). In the absence of intrinsic spin-orbit interac-

tion (λSO = 0), the probability of transmission at the

Dirac point has a non-zero value, which indicates that

the system is conductive. By increasing the value of

λSO, it is observed that the probability of transmission

at the Dirac point decreases and λSO = 0.3ts reaches

zero and the gap in transmission function (the zero

range of the transmission function around the Dirac

point) appears. Thus, by increasing the λSO value, we

see the transition from conductive to semiconductor for

the system. Also, for λSO 6= 0 the probability of trans-

mission in the energy range ±0.5 eV< E < ±0.5 eV has

a valley, which is called the anti-resonance state and is

due to the destructive interference between the propa-

gated states along the nanoribbons for the presence of

spin-orbit interaction. As λSO increases, the amplitude

of these anti-resonance modes increases. The impor-

tant point is that for a system in which all parts (elec-

trodes and central region) are composed of graphene

nanoribbons, the transmission probability diagram has

no gaps and the system is conductive. It also remains

conductive for a system in which all parts are made

of silicene nanoribbons, even in the presence of an in-

trinsic spin-orbit interaction. Therefore, by connect-

ing graphene and silicene nanoribbons, a junction can

be designed that has the property of switching from

conductive to the semiconductor. We now interpret

the current-voltage characteristic in Fig. 2 b. ForλSO,

there is no threshold voltage to turn on the current

because of the lack of a gap in the transmission proba-

bility diagram. As λSO increases, the size of the current

decreases due to a decrease in the probability of trans-

mission near the Dirac point(−0.3 eV< E < 0.3 eV).As

the λSO increases due to the appearance of the emission

function gap, the magnitude of the threshold voltage to

turn on the current also increases.

3.2. The study of geometric factors

Figure 3 investigates the effect of nanoribbon length

on the electron transport properties for NW = 11,

λSO = 0.2ts values. In this case, we consider the length

of the graphene nanoribbons to be constant(NG = 5)

and the length of the silicene nanoribbons(NS) to be

variable. As it is shown in Fig. 3 a, The nearest res-

onance peaks to the Dirac point move towards the

Dirac point with the increase of NS and the width

of these peaks also decreases. However, the magni-
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Fig. 3. a — Transmission function as a function energy.

b — The current-voltage characteristic for different NS val-

ues with NW = 11, NG = 5, λSO = 0.2ts

tude of the probability of transmission near the Dirac

point (−0.27 eV< E < 0.27 eV) decreases with increas-

ing length. As a result of the gap, the probability of

transmission increases with the increase of NS . The ef-

fect of this gap increase is reflected in the diagram in a

way that the threshold voltage increases with increas-

ing NS (see Fig. 3 a).

In Fig. 4, we investigated the effect of nanoribbon’s

width (NW ) size on the system’s electronic transport

for NW = 11, NS = 5, λSO = 0.2ts values. Fig-

ure 4 a represents the diagram of the energy transmis-

sion probability in terms of energy for different widths

of the junction. As it is observed, as the width of

the junction increases, the magnitude of the trans-

mission probability decreases around the Dirac point

(−0.35 eV< E < 0.35 eV), and the magnitude of the

transmission probability gap increases (internal figure

of Fig. 4 a). Also, the transmission function valleys ap-

proach the Dirac point by increasing the width of the

nanoribbons. In Fig. 4 b, the effect of nanoribbon’s

width size on current-voltage characteristics is plot-

ted. It is observed that with increasing the width of

the nanoribbons, the threshold voltage increases, also
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Fig. 4. a — Transmission function as a function energy.

b — The current-voltage characteristic for different NW val-

ues with NG = 5, NS = 5, λSO = 0.2ts

the current size decreases. Therefore, by changing the

geometry (length and width) of the nanoribbons, the

electron transport characteristics of the system can be

controlled.

3.3. The effect of the strength of GNR-SiNR

coupling

Figure 5 investigates the effect of the strength of

GNR-SiNR coupling (tGS) on the electron transport

properties of the system for NW = 0, NG = 5, NS = 5,

λSO = 0.2ts. With the increase of tGS , the anti-

resonance dips become wider and smaller and approach

zero energy (see Fig. 5 a). Also the antiresonance dip

at the zero energy becomes smaller. As a result, the

current decreases with the increase of tGS as seen in

Fig. 5 b. This result shows how we can control the quan-

tum transport of the system by changing the strength

of GNR-SiNR coupling.

4. CONCLUSION

In this paper, the electron transport through the

graphene-silicene nanoribbons junction is investigated
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Fig. 5. a — Transmission function as a function energy.
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ues with NW = 0, NG = 5, NS = 5, λSO = 0.2ts

using the non-equilibrium Green’s function method and

tight-binding approximation in the Landauer-Büttiker

formalism. The results show that the electron trans-

port characteristics of the junction are very sensitive to

the power of the intrinsic spin-orbit interaction quan-

tity as well as the geometry (length and width) of the

junction. In the presence of an intrinsic spin-orbit in-

teraction quantity, the transmission function gap is cre-

ated and the conductor to the semiconductor transition

occurs. As the transmission function gap increases,

the threshold voltage magnitude in the current-voltage

characteristic increases. As the length of the junction

increases, the width of the nearest resonant peaks to

the Dirac point decreases and they move towards the

Dirac point. The transmission probability gap also in-

creases with increasing length, resulting in an increase

in the threshold voltage magnitude. As the width of

the nanoribbons increases, the magnitude of the trans-

mission probability around the Dirac point decreases,

the gap size of the transmission probability increases,

and the valleys of the transmission function approach

the Dirac point. Consequently, the magnitude of the

electric current decreases, and the magnitude of the

threshold voltage increases. These results can be used

to control electron transport in nanoelectronic devices.
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