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We generalize the notion of Einstein –Rosen bridge by defining it as a space-ilke connection between two universes

with regions of asymptotically minkowskian space-time infinities. The corresponding symmetry and asymmetry

properties of the generalized Einstein – Rosen bridge are considered at the cases of Reissner – Nordström and

Kerr metrics. We elucidate the versatility of intriguing symmetry and asymmetry phenomena outside and inside

black holes. For description of the test particle (planet and photon) motion it is used the Kerr –Newman metric

of the rotating and electrically charged black hole. It is demonstrated the symmetry and asymmetry of the

one-way Einstein – Rosen bridge inside black hole space-time toward and through the plethora of endless and

infinite universes.
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1. INTRODUCTION

In this paper, we generalize the notion of Einstein –
Rosen bridge by defining it as a space-ilke connection
between two universes with regions of asymptotically
minkowskian space-time infinities. The corresponding
symmetry and asymmetry properties of the generalized
Einstein – Rosen bridge are considered at the cases of
Reissner – Nordström and Kerr metrics. We elucidate

the versatility of intriguing symmetry and asymmetry

phenomena outside and inside black holes. For descrip-

tion of the test particle (planet and photon) motion

it is used the Kerr – Newman metric of the rotating

and electrically charged black hole. It is demonstrated

the symmetry and asymmetry of the one-way Einstein –

Rosen bridge inside black hole toward and through the

plethora of endless and infinite universes.

It seems that the original idea of an infinite series

of bridges between universes in the Kerr metric be-

longs to Boyer and Lindquist [1]. The Reissner – Nord-

ström and Kerr one-way bridge is discussed in Chap-

ter 6.5 of Carroll’s textbook [2] and also in Chapters 3.5

and 4.4 of Ullmann’s textbook [3]. The last book also

points to the physical obstacles to the existence of such

a bridge between universes, which can be associated
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with various types of instabilities (including quantum

ones), which are discussed for example in [4,5] and more

modern attempts [6]. However, the problem still re-

mains open. Recently symmetrical geodesic motion,

bound and unbound orbits and the possibility of pass-

ing through the Reissner – Nordström and Kerr bridge

are also analyzed in [7] and [8] respectively.

2. BASICS OF THE KERR – NEWMAN METRIC

The famous Kerr – Newman metric or geometry (see

e. g., [9–13]), which is the exact solution of Einstein’s

equations [14–20] for a rotating and electrically black

hole, is

ds2= − ∆

Σ
[dt− a sin2 θdϕ]2 +

+
sin2 θ

Σ
[(r2 + a2)dϕ− adt]2 +

Σ

∆
dr2 +Σdθ2, (1)

where (r, θ, φ) are spherical coordinates and t is the

time of static distant observer at the asymptotically

radial infinity. In this metric

∆ = r2 − 2Mr + a2 + q2, (2)

Σ = r2 + a2 cos2 θ, (3)

M — black hole mass, q — black hole electric charge,

a = J/M — specific black hole angular momentum

(spin). The two roots of equation ∆ = 0 are

r+ =M +
√
M2 − a2 − q2, (4)
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the event horizon of the black hole and

r− =M −
√
M2 − a2 − q2, (5)

the internal Cauchy horizon of the black hole. In this

paper we consider Kerr metric with the black hole event

horizon, corresponding to a2 + q2 ≤M .

For simplification of equation and presentation of

Figures we will often use units G = 1, c = 1, M = 1,

and corresponding dimensionless parameters: radius

r ⇒ r/M , time t ⇒ t/M , black hole spin a ⇒ a/M

and black hole charge q ⇒ q/M .

In the Kerr – Newman metric there the following in-

tegrals of motion for test particles [10]: µ — parti-

cle mass, E — particle total energy, L — particle

azimuthal angular moment and Q — the so-called

Carter constant, related with the non-equatorial parti-

cle motion.

The corresponding equations of test particle motion

in the Kerr – Newman metric in the differential form are

[10–13]

Σ
dr

dτ
=

√
R, (6)

Σ
dθ

dτ
=

√
Θ, (7)

Σ
dϕ

dτ
= −

(
aE − L

sin2 θ

)
+
a

∆
P, (8)

Σ
dt

dτ
= −a(aE sin2 θ − L) +

(
r2 + a2

) P
∆
. (9)

Here

P = E(r2 + a2)− aL+ ǫqr, (10)

τ — the proper time of a test massive particle or

an affine parameter along the trajectory of a massless

particle (µ = 0) like photon, ǫ — the electric charge of

test particle. Respectively, the effective radial potential

R(r) is

R(r) = P 2 −∆
[
µ2r2 + (L− aE)2 +Q

]
, (11)

and the effective polar potential Θ(θ) is

Θ(θ) = Q− cos2 θ
[
a2(µ2 − E2) + L2 sin−2 θ

]
. (12)

Trajectories of massive particles (µ 6= 0) depend

on three parameters: γ = E/µ, λ = L/µ and Q/µ2.

Meantime, trajectories of massless particles like pho-

tons (the null geodesics) depend only on two parame-

ters: λ and Q.

The nontrivial specific feature of the rotating Kerr

black hole (a 6= 0) is the existence of so-called ergo-

sphere [12, 13, 17, 19, 20] with the outer boundary

rES(θ) = 1 +
√
1− q2 − a2 cos2 θ. (13)

Inside the ergosphere any test object is dragged into

insuperable rotation around black hole with infinite az-

imuthal winding by approaching the black hole event

horizon. Note that the winding effect was discussed

also in [8, 21].

In the following Sections we will describe the sym-

metry and asymmetry of test object motion in the grav-

itational field of the Kerr – Newman black hole. We use

equations of motion in the Kerr–Newman metric (6)–

(9) in our analytic and numerical calculations of test

particle geodesic trajectories [22–32].

3. ONE-WAY EINSTEIN – ROSEN BRIDGE
INSIDE BLACK HOLE

We start to elucidate the versatility of intriguing

symmetry and asymmetry phenomena outside and in-

side black holes by using the Carter – Penrose diagrams

(for details see, i. e., [12, 13, 17, 18]), describing in par-

ticular the global space-time structure of black holes.

The evident manifestation of symmetry of this global

structure is infinite space volumes as outside and inside

the black hole event horizon. See in Fig. 1 the corre-

sponding Carter – Penrose diagram for the Reissner –

Nordström black hole, which is a special spherically

symmetric case of Kerr – Newman black hole without

rotation, i. e., a = 0 but q 6= 0. From the pure ge-

ometric point of view this diagram is both left-right

and up-down symmetric. On the contrary, from the

physical or space-time point view this diagram is ab-

solutely asymmetric due to the inexorable upward flow

of time not only at this diagram but throughout the

whole universe. More precisely it means that in the

General Relativity all objects are allowed to move only

inside the upward directed light cones (at ±45◦ with

respect to the upward direction. The upward directed

light cone is the inexorable asymmetry of the world.

2D presentation of the voyage through the interiors

of Reissner – Nordström black hole with interiors by us-

ing the Einstein – Rosen bridge is shown in Fig. 2. The

electric charge of the black hole is e = 0.99. A test

planet (or spaceship) with the electric charge ε = −1.5

is periodically orbiting around black holes with orbital

parameters γ = 0.5, λ = 0.5, corresponding to the

maximal radius (apogee) rmax = 1.65 and minimal ra-

dius (perigee) rmin = 0.29, respectively, in dimensional

units.

The periodic planet geodesic trajectories (magenta

curves, both at Fig. 2 and Fig. 4), were calculated nu-

merically by using equations of motion (6)–(9) for mas-
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Fig. 1. Carter – Penrose diagram for the spherically symmetric

Reissner –Nordström black hole with electric charge q = 0.99.

The spaceship starts from the point A at R+-region toward

its multi-planetary future inside the black hole. The astro-

nauts are planning to use the Einstein – Rosen bridge (magenta

curve) and intersect both the black hole event horizon r+ and

Cauchy horizon r− at finite their proper time. After appear-

ing near the black hole singularity at r = 0, the spaceship

uses its powerful engines to change the direction of motion

and escape the tidal destruction at small radii. In result, the

voyage is happily finishing at point B (may be at the Earth-

like planet) in another infinite universe. The symmetry is in

possibility to repeat the complete route of this voyage staring

from the point B but only in the forward direction in time to-

ward another multi-planetary future. It is impossible to return

the native Earth due to impossibility of any motion beyond

the light cone. This is the motion asymmetry on the one-way

Einstein –Rosen bridge inside black hole

rp

ra

r+

r-

A

B

Fig. 2. 2D presentation of the voyage through the Reissner –

Nordström black hole interiors by using the Einstein –Rosen

bridge. This picture is geometrically absolutely symmetric or,

in other words, it is nicely symmetric. At the same time, this

picture is misleading and physically controversial: Indeed. the

voyage is starting at apogee ra from the position at point A,

then reach the perigee rp and return the apogee ra at the

point B for a finite proper time, demonstrating the absolute

geometric symmetry. Meanwhile, there is a crucial hitch: this

apogee ra at the point B is not in the native universe, but in

the other quite distant universe, as it is clearly viewed at the

Carter – Penrose diagram in Fig. 1. The apogee ra and perigee

rp radii are shown by dashed circles. Respectively, the event

radii of event horizon r+ and Cauchy horizon r− are shown by

solid circles. The magenta curve here and in the Fig. 4 is nu-

merically calculated geodesic trajectory with using equations

of motion (6)–(9) for massive test particles (µ 6= 0)

sive test particles (µ 6= 0). Note, that the periodical

motion of the test planet is limited in time due to en-

ergy losses in inevitable emission of the gravitational

waves.

The picture in Fig. 2 is geometrically absolutely

symmetric or, in other words, it is completely or nicely

symmetric. The geodesic trajectories of test planet

(µ 6= 0) in this Fig. 2 and in Fig. 3 (the red curves),

are numerically calculated [22–32], by using the cor-

responding equations of motion in the Kerr – Newman

metric (6)–(9).

At the same time, this picture is misleading and

physically controversial: Indeed, the voyage is starting

at apogee ra from the position at point A, then reach

the perigee rp and return the apogee ra at the point

B for a finite proper time, demonstrating the abso-
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A

B

Fig. 3. Embedding diagram for the voyage through black hole

interiors by using the Einstein –Rosen bridge. This bridge con-

nects two asymptotically flat universes like wormhole tunnel,

but with the only one-way motion from the initial point A to

the final point B. The geometrical symmetry of this embed-

ding diagram is deceptive. In fact, this embedding diagram

demonstrate the asymmetric space-time origin of the one-way

Einstein –Rosen bridge (remember about loss-cone)

Fig. 4. Both the geometrical and physical completely symmet-

ric picture of the periodic orbital motion of the test planet or

spaceship around the central singularity of the Reissner –Nord-

ström black hole inside the Cauchy horizon r−. The asymmet-

ric Reissner –Nordström bridge is only needed for penetration

into this very exotic region at 0 < r < r−, where exist the

nearly stable periodic orbits for test particles, which are very

similar to the periodic orbits outside the black hole event hori-

zon r+. The apogee ra and perigee rp radii are shown by

dashed circles. Respectively, the event radii of event horizon

r+ and Cauchy horizon r− are shown by solid circles

Fig. 5. Trajectory of the test planet (µ 6= 0) with orbital pa-

rameters γ = 0.85, λ = 1.7 and Q = 1 plunging into the

fast-rotating Kerr black hole with spin a = 0.9982. This test

planet starts from the upper hemisphere very far from the

black hole. Inside the ergosphere (13) this planet is wind-

ing up on the black hole event horizon higher the black hole

equatorial plane. Blue curve here is the numerically calculated

geodesic trajectory with using equations of motion (6)–(9) for

test particles

Fig. 6. Trajectory of the test planet (µ 6= 0) with orbital pa-

rameters γ = 0.85, λ = 1.7 and Q = 1 plunging into the

fast-rotating Kerr black hole with spin a = 0.9982. This test

planet starts from the lower hemisphere very far from the black

hole. Inside the ergosphere this planet is winding up on the

black hole event horizon higher the black hole equatorial plane.

Blue curve here is the numerically calculated geodesic trajec-

tory with using equations of motion (6)–(9) for test particles

4 ЖЭТФ, вып. 6
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Fig. 7. Photon trajectory with orbital parameters λ = 2 and

Q = 1. This photon is plunging into the fast-rotating Kerr

black hole with a = 0.9982 and is winding up on the black

hole event horizon below the equatorial plane. Multi-colored

curve is the numerically calculated geodesic trajectory with us-

ing equations of motion (6)–(9) for massless test particles like

photons (µ = 0)

Fig. 8. Numerically calculated photon (µ = 0) trajectory with

orbital parameters λ = −1.493 and Q = 12.99, which is plung-

ing into the fast-rotating Kerr black hole with spin a = 0.9982.

It must be stressed that at large distances from black hole

the test particle with negative azimuthal angular momentum

(λ = −2.811) rotates in opposite direction with respect to the

black hole. Meanwhile, by approaching the black hole (inside

the ergosphere) test particle is forced to rotate in the same

direction as black hole

lute geometric symmetry. Meanwhile, there is a crucial

hitch: this apogee ra at the point B is not in the na-

tive universe, but in the other quite distant universe,

as it is clearly viewed at the Carter – Penrose diagram

in Fig. 1. This hitch again destroys the Einstein–Rosen

bridge symmetry.

Fig. 9. A trivial but though very expressive trajectory of a test

planet (µ 6= 0) with parameters γ = 1, λ = 1 and Q = 0.5,

which is plunging into the spherically symmetric and nonro-

tating Schwarzschild black hole (with both the spin a = 0 and

electric charge q = 0). The starting point for this numerically

calculated crazy voyage is at the radial distance r = 6

Figure 3 shows the embedding diagram for the voy-

age through black hole interiors by using the Einstein –

Rosen bridge. The embedding diagram is very useful

for the training of intuitive understanding of the pe-

culiarities of the enigmatic black holes. In this em-

bedding diagram the Einstein – Rosen bridge connects

two asymptotically flat universes like wormhole tun-

nel [33, 34], but with the only one-way motion from

the initial point A to the final point B. The geo-

metrical symmetry of this embedding diagram is de-

ceptive. In fact, this embedding diagram demonstrate

the asymmetric space-time origin of the one-way Ein-

stein – Rosen bridge (remember about loss-cone).

The completely symmetric picture of the peri-

odic orbital motion of the test planet or spaceship

around the central singularity of the Reissner – Nord-

ström black hole inside the Cauchy horizon r− is shown

in Fig. 4. The electric charge of the black hole is

e = 0.99 and test planet (or spaceship) with the electric

charge ε = −1.5 is periodically orbiting around black

holes with orbital parameters γ = 1.7, λ = 0.1, corre-

sponding to the maximal radius (apogee) rmax = 0.75

and minimal radius (perigee) rman = 0.09, respectively.

The asymmetric Reissner – Nordström bridge is only

needed for penetration into this very exotic region at

0 < r < r−, where exist the nearly stable periodic

orbits for test particles [35–41], which are very simi-

lar to the periodic orbits outside the black hole event

horizon r+.
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4. SYMMETRY AND ASYMMETRY OF TEST
PARTICLE TRAJECTORIES NEAR ROTATING

BLACK HOLE

Figures 5–7 demonstrate both symmetry and asym-

metry features of massive and massless particle trajec-

tories plunging into rotating Kerr black hole with spin

a = 0.9982. Magenta arrows shows the direction of

the black hole rotation in accordance with the gim-

let rule. The multi-colored curves at Figs. 7 and 8

are the geodesic trajectories for massless test particles

like photons (µ = 0) numerically calculated with using

equations of motion (6)–(9). By approaching the black

hole, the trajectories of all particles, both massive and

massless ones, are infinitely winding up on the black

hole event horizon in the direction of the black hole ro-

tation and at the fixed latitudes. This winding up is a

manifestation of symmetry of behavior of all trajecto-

ries, plunging into rotating black hole. At the same the

direction of the black hole rotation is a corresponding

manifestation of asymmetry of the gravitational field of

the Kerr metric.

At last, for completeness of black hole symmetric

and asymmetric properties, at Fig. 9 is shown the tra-

jectory of the test planet (µ 6= 0) with parameters

γ = 1, λ = 1 and Q = 0.5. This test planet is

plunging into the spherically symmetric and nonrotat-

ing Schwarzschild black hole (with both the spin a = 0

and electric charge q = 0), starting from the radial dis-

tance r = 6. It must be especially checked that the

traversable (though only one-way in time and direc-

tion) Einstein – Rosen bridge is absent at all inside the

Schwarzschild black hole (see for details, e. g., [12,14]).

5. CONCLUSION AND DISCUSSION

It is demonstrated the symmetry and asymmetry of

the voyage on one-way Einstein – Rosen bridge inside

black hole toward the endless multiplanetary future.

The apparent symmetry of both the Carter – Penrose

and embedding diagrams is mainly related with a pure

geometrical vision of this phenomenon. Quite the con-

trary, the physical (space-time) vision elucidates the

absolute asymmetry of the Einstein – Rosen bridge due

to existence of the light-cone limitation for possible mo-

tions.

Note, that the traversable (though only one-way in

time and direction) Einstein – Rosen bridge exist only

in the case of both rotating Kerr a 6= 0 and electrically

charged Reissner – Nordström q 6= 0 black holes. It is

absent at all inside the Schwarzschild black hole (see

for details, e. g., [12, 14])

The infinite winding up of trajectories of all parti-

cles on the black hole event horizon is a manifestation

of symmetry behavior of all trajectories, plunging into

rotating black hole. At the same time, the fixed direc-

tion in space of the black hole rotation axis is a strict

manifestation of the Kerr metric both symmetry and

asymmetry.
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