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In this paper, we theoretically study the nonlinear dynamics of Wannier – Stark states in a dissipative system

of interacting optical resonators whose resonant frequencies depend linearly on their number. We show that

negative losses in some resonators can switch the system to a lasing regime with Wannier – Stark states acting

as working modes. Our extensive numerical simulations show that single-frequency stationary regimes can exist

in such a system as well as multi-frequency ones. In the latter case, Bloch oscillations can appear in the system.

We investigate selective excitation of Wannier – Stark states enabled by an appropriate dissipation profile. A

simple perturbation theory describing the quasi-linear regimes is developed and compared with the numerical

results.
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1. INTRODUCTION

Wannier – Stark ladders (WSLs) continue to be of
great interest to scientists in different areas of physics,
such as solid-state physics, condensed matter, and
quantum magnets [1–3]. The WSL effect consists in
the presence of equidistant lines in the spectrum, which
correspond to the eigenmodes of the system (Wannier –
Stark states) [4,5]. Beating between these states in time
may result in periodic motion, i.e. Bloch oscillations
(BOs) [6–8].

BOs were first predicted in solid-state physics.
However, their experimental observation in solids is
quite challenging, and it took many years to confirm
the effect experimentally [9]. BOs turned out to be a
very common phenomenon, and they were found in a
large variety of physical systems such as atomic systems
[10–15], lasers [16], coupled LC circuits [17], mechani-
cal systems [18–21], and plasmonic [22–27] or exciton-
polariton systems [28–30].

* E-mail: alexey.verbitskiy@metalab.ifmo.ru

The advantage of optical systems over solid-state
ones is that optical experiments for observation of the
aforementioned effects are more feasible. Therefore,
theoretical prediction of optical WSLs and BOs [31–42]
was quickly followed by experimental demonstrations.

One of the first experimental observations of an op-
tical WSL was reported in [43]. Here, the Wannier –
Stark (WS) states are realized using a chirped Moire
grating. Another evidence of the existence of WSLs is
presented in the work [44], where a spatial tilt of the
minibands occurs due to a linear gradient of the op-
tical thickness of the superlattice layers. In addition,
WS states were observed in photonic lattices formed in
a photorefractive material using relatively strong light.
For this purpose, the formed lattices were irradiated
with laser beams with a WS profile retrieved from a
hologram [45]. Moreover, strongly localized WS states
in a curved photonic lattice were obtained due to a
large gradient of the refractive index and weak interac-
tion between the waveguides [46]. BOs were also exper-
imentally detected in the optical range, see, for example
[47,48]. In these works, under the influence of tempera-
ture or by changing the waveguides’ width, a linear gra-
dient of the refractive index was created in a waveguide
array, which led to periodic spatial oscillations of the
light beam due to Bragg and total internal reflections
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Fig. 1. (Color online) Sketch of the considered system

at the opposite edges of the array. In addition, BOs
were observed in porous silicon structures, in which, to
incline the optical band authors used a cavity whose
width increased linearly across the structure [49, 50].
Besides, by bending a waveguide array, BOs can also
be achieved in optical systems [51–53]. Another impor-
tant system supporting BOs are parity-time synthetic
photonic lattices [54, 55]. A comprehensive review of
the research on BOs and related phenomena is provided
in [56].

The presence of dissipation, pump, and nonlinear ef-
fects in optical systems (for example, arrays of interact-
ing nonlinear optical cavities) calls for generalization of
the BOs theory to nonlinear dissipative systems. Let us
note that optical systems such as microlaser arrays are
promising sources of coherent radiation [57–62]. Thus,
the study of these systems is not only of fundamental,
but also of practical interest.

Active systems of microcavities with WS states and
BOs have not yet been realized experimentally. How-
ever, currently, other optical and waveguide systems
are actively studied in practice, in which interesting
phenomena from the physics of WS states are also ob-
served [21,30,63]. These advances in not only theoreti-
cal but also experimental demonstration of BOs in dif-
ferent optical systems stimulate further research of this
effect in photonics and, in particular, in laser systems.

Experimental implementation of microlaser systems
with WS modes is indeed not an easy task. First,
the manufacturing of such systems requires cutting-
edge precise technologies that are not readily available.
Second, the quality factors of typical optical microres-
onators are low, and thus, high linear gain is required

to achieve lasing in these resonators. These are serious
issues, but the advances of modern technologies allow
us to expect that systems with the required param-
eters could be manufactured in near future. In par-
ticular, new materials such as perovskites demonstrate
fascinating properties in laser devices [60], including
very high linear gain. Dielectric resonators with a high
quality factor based on bound states in the continuum
(BICs), which have been actively developed recently
[64, 65], are another promising platform for creating
active microresonators with WS modes. The third pos-
sible platform for experimental observation of BOs is
polariton lasers based on micropillars [66]. Consider-
ing these prospects, theoretical investigation of optical
systems supporting WS states and BOs is of great phys-
ical interest, and the respective theoretical findings can
boost further experimental activity in this direction.

In this paper, we aim to study the nonlinear dynam-
ics of WS states in one-dimensional systems of cou-
pled optical cavities, in which each of the resonators
supports only one mode defined by the material and
geometry of the resonator. The described system is
schematically shown in Fig. 1. To obtain a Bloch-type
system, we introduce linear dependence of the cavities’
frequency on their index (i. e., number). A similar sys-
tem driven by a train of coherent laser pulses is consid-
ered in [67], where the resonant excitation of WS modes
and chaotic BOs were demonstrated. The present pa-
per is focused on the dynamics of WS states in micro-
laser arrays with population inversion created either by
optical or electric pump.

Below, we consider in detail different regimes of WS
lasers, their switching from single-frequency to multi-
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frequency regimes, and the appearance of BOs. To
explain the behaviour of such systems near the las-
ing threshold, we develop a perturbation theory. We
consider this work as a proof of concept rather than
a discussion of the optimal experimental system, and,
therefore, we choose the simplest lasing cavity model.
We should acknowledge that for a real experiment, the
scheme and, consequently, the theoretical model might
require elaboration.

To describe the dynamics of light in microres-
onators, we use a well-known discrete model for slowly
varying complex amplitudes Un(t) of the modes of in-
dividual resonators [68–79]:

i∂tUn + σ(Un+1 + Un−1) + µnUn + iγnUn +

+iβn|Un|2Un = 0, (1)

where n is the index enumerating the resonators, σ is
the coupling strength between the resonators, µ ac-
counts for the dependence of the resonant frequency
on the resonator index, and γn and βn are the linear
and nonlinear losses, respectively. Both γn and βn can
differ for different resonators. Let us note that here we
consider a simple, but physically meaningful case: we
assume that the nonlinear effects change the effective
losses, but not the resonant frequencies of the individ-
ual resonators. We acknowledge that nonlinear correc-
tion of the resonant frequencies can be of importance,
but it requires a special consideration, which will be
done elsewhere.

A sufficiently strong incoherent pump can not only
change the linear losses, but also make them negative.
Thus, such a pump can transform an individual cav-
ity into a laser. However, as we consider a system of
resonators, we need to calculate the effective gain of
the supermodes of the system rather then the effective
gain of individual resonators. For a rough estimate, we
can consider the stationary states as a balance between
the effective gain and effective nonlinear losses calcu-
lated for the WS state. Importantly, nonlinear losses
might be present only in the pumped cavities, or in all
the resonators. Further, we will show that in these two
cases, the WS modes’ dynamics is different.

The parameters of a coupled waveguide array dif-
fer depending on their experimental implementations.
We use typical data from work [47]: σ = 125 m−1,
µ = 25 m−1, and γ ≈ 0.5 dB/cm, suitable for demon-
strating the discussed effects. However, the value of
linear losses γ in this work is significantly higher than
we need. In practice, this circumstance can be over-
come by using high-Q BIC-based systems [64, 65]. We
also assume the nonlinear parameter β to be equal to

125 m−1, which is determined by the effect of gain sat-
uration and selection of the appropriate absorber. For
the sake of mathematical convenience, we normalize the
coefficients of the equation (1) by the strength of the
coupling between the neighboring resonators σ, and as
a consequence, we obtain normalized time t, σ = 1,
µ = 0.2, and β = 1. We choose γ = 0.01 as an appro-
priate value for linear losses.

The paper is structured as follows. For a systematic
study of the problem, we start with the simplest case,
in which only one resonator is pumped (Section 2 of
the paper). In Section 3, we show that simultaneous
excitation of several resonators makes the system’s dy-
namics richer, giving rise to multi-frequency regimes,
including self-sustained BOs. In Section 4, mode se-
lection is considered. We show that the efficiency of
mode excitation depends on the pump profile, and by
controlling the pump shape, we can extend the range
of intensities where the single-frequency regime takes
place. The main findings of the work are briefly dis-
cussed in the Conclusion.

2. SYSTEMS EXCITED BY LINEAR GAIN IN
ONLY ONE RESONATOR

We start with a simple case where γn is negative
in only one resonator with n = 0, and in all other res-
onators, γn is a positive constant. This means that we
have a linear amplification in the resonator n = 0, and
the other resonators have linear losses.

We choose the linear losses to be γn = γ for n 6= 0

and γ0 = γ − a, where a is the pump amplitude, and
study the dynamics of the system numerically. Our nu-
merical simulations reveal that only the trivial solution
Un = 0 is possible as long as the linear gain a is lower
than the lasing threshold, which depends on the pa-
rameters of the system γ and µ. If the gain exceeds the
threshold, the eigenmodes emerge in the system. If the
dissipative and nonlinear terms are small, then these
emerging modes can be very accurately approximated
by the WS states, which are known analytically for the
equation (1) in the conservative limit γn → 0, [33].
The eigenvalues of the WS states form an equidistant
spectrum ωm = µm with eigenfunctions

Wn−m = Jn−m

(
2σ

µ

)
,

where the index m enumerates the eigenstates. We use
WS states normalized so that

∑

n

W 2
n−m = 1.
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Fig. 2. (Color online) a — Effective linear gains −Γm of the Wannier – Stark states with the fastest-growing amplitudes (m = ±8)

vs. the pump amplitude a: obtained by numerical simulation (red circles), the perturbation method (dash-dotted blue line), and

the eigenvalues (dashed green line). b — Effective linear gains −Γm of Wannier – Stark states with m = ±8 (red circles), m = ±9

(brown circles), and m = ±2 (magenta circles) vs. the pump amplitude a, obtained by numerical simulation. The solid lines are

guides for eyes. The used parameters are: µ = 0.2, γ = 0.01

If the dissipation is so low that it does not affect
the spatial structure of the eigenstates, a simple per-
turbation theory can be developed. The quantity

E =
∑

n

|Un|2

(energy of the field in the system) is conserved if γn = 0

and βn = 0. If γn and βn are nonzero, but small, the
field in the system can be found in the form

U (m)
n = Am(t)Wn−m exp(iµmt),

where Am(t) is the time-dependent complex amplitude
of the m-th WS state. Substituting this into (1), mul-
tiplying by Wn−m, and calculating the sum over n, we
obtain ordinary differential equations for Am:

∂tAm = −ΓmAm − Bm|Am|2Am, (2)

where

Γm =
∑

n

γnW
2
n−m, Bm =

∑

n

βnW
4
n−m

are the effective linear and nonlinear losses for the m-th
mode.

For a purely dissipative nonlinearity (i. e., affecting
only the effective losses, but not the resonant frequency
of the cavities), the equations (2) can be re-formulated
as a set of equations for the intensities Im = |Am|2:

∂tIm = 2(−ΓmIm − BmI
2
m). (3)

For our choice of γn = γ−aδ0n (δij is the Kronecker
symbol), the sum in the expression for the effective lin-
ear losses Γm can be easily calculated analytically:

Γm = γ − aW 2
−m. (4)

The intensity distributions of the WS states are sym-
metric and have two main maxima, located symmetri-
cally with respect to the center of the mode. There-
fore, if the system is excited by linear gain only in one
resonator, then there are two modes with the fastest-
growing amplitudes and the same increment. For the
parameters used in the numerical simulations, the in-
dexes of such modes are mmax = ±8.

Now let us compare the results of the perturbation
theory with those of the direct numerical simulations
of the master equation (1). It is natural to introduce
the effective linear gain of a mode as −Γm. Figure 2 a

shows the effective linear gains extracted from the nu-
merical simulations and calculated by formula (4) as
functions of the pump amplitude a. One can see that
in the vicinity of the lasing threshold, where the dis-
sipative terms can be considered as small corrections,
the results of the perturbation theory are in very good
agreement with the numerical simulations.

The complex frequencies of the modes can also be
found by analyzing the linearized equation for the am-
plitudes Un:

i∂tUn + σ(Un+1 + Un−1) + µnUn + iγnUn = 0. (5)

Then, by choosing a solution in the form

Un(t) = Vn exp(iωt),

we obtain an eigenvalue problem:

ωVn = σ(Vn+1 + Vn−1) + µnVn + iγnVn. (6)
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The real part of ω is the eigenmode frequency, the imag-
inary part is its dissipation rate, and the eigenvector Vn
describes the structure of the eigenmode. If there are
no dissipative terms, the eigenstates are the conserva-
tive WS states discussed above. The solution of the
spectral problem allows us to find the exact solutions
for the eigenstates in the dissipative case. We solved
the spectral problem numerically to confirm that the
dissipative terms do not significantly affect the struc-
ture of the eigenmodes.

Comparing effective linear gains of different WS
states can also be useful. The numerically found −Γm

for the six modes with the fastest-growing amplitudes
are shown in Fig. 2 b as a function of the pump ampli-
tude a. One can see that for our parameters, the modes
with the fastest-growing amplitudes and the lowest las-
ing threshold are the modes with m = ±8; the second
and the third fastest-growing modes have the indexes
m = ±9 and m = ±2, respectively.

The intensity of the stationary states Im formed in
the system can be easily found from (3):

Im =
−Γm

Bm
. (7)

Figure 3 shows the dependencies of the stationary in-
tensities of three pairs of WS states with the highest
effective linear gains on the pump a for two cases: (a)
when the nonlinear losses are nonzero only in the ex-
cited resonator with n = 0: β0 = β and (b) for spatially
uniform nonlinear losses: βn = β. The stationary in-
tensities can be higher for the modes with lower effec-
tive linear gains, see Fig. 3 a. The possible reason is,
if the nonlinear losses are nonzero only in the excited
resonator, the modes with the highest effective linear
gains have the highest nonlinear losses, and their ra-
tio (7) is lower than that of the modes with the lower
effective linear gains.

Our numerical simulations reveal that for small
pump intensities, only one pair of the WS states with
the highest effective linear gain is dynamically stable.
The dependencies of the stationary intensities of the
WS states extracted from the numerical simulations
are shown in Fig. 3. The perturbation theory and the
numerical simulations are in good agreement for low
pump intensities.

It can be interesting to study the dynamics when
the initial conditions have the form of low-intensity
noise. As we mentioned above, the modes are formed
when the pump exceeds a certain threshold. We choose
the pump exceeding only the threshold for the modes
with the largest increment. Thus, for the parameters
we chose, only the amplitudes of the modes m = ±8

grow. The numerical simulations show that if there are
nonlinear losses only in the pumped resonator, a single-
frequency stationary state is formed as a WS state with
m = 8 or m = −8. The probability of the formation of
each of the states is 1/2. The formation of the station-
ary states is illustrated in Fig. 4 a, b, d and e.

If nonlinear losses are distributed evenly in the sys-
tem, there are different regimes of stationary states for-
mation. The excitation thresholds, of course, remain
the same, but the stationary state forming from a weak
noise varies periodically in time. Very close to the exci-
tation threshold, the stationary state can be considered
as a superposition of the WS states with m = 8 and
m = −8; consequently, the stationary state contains
temporal harmonics with frequencies equal to the WS
states’ eigenfrequencies. The formation of such a state
is illustrated in Fig. 4 c, f.

To explain such a behaviour of the system, we ex-
pand the perturbation theory described above by writ-
ing the equations for the amplitudes A± of two inter-
acting modes m = ±m̃ with the highest effective linear
gains. Thus, we seek the field in the form

Un = A+Wn−m̃ exp(im̃t) +A−Wn+m̃ exp(−im̃t).

Substituting this ansatz into (1) and projecting the
equation on the eigenstates, we obtain equations for
A±. These equations can be reduced to equations for
the intensities I± in a similar way to (3):

∂tI+ = −2(Γ + BI+ + B̃I−)I+, (8)

∂tI− = −2(Γ + BI− + B̃I+)I−, (9)

where

B̃ = 2
∑

n

βnW
2
n−m̃W

2
n+m̃, Γ = Γ±m̃.

As we derived these equations, we assumed that the dif-
ference between the eigenfrequencies of these states is
large, and we can safely neglect the quickly oscillating
terms.

Let us analyse the fixed points of the dynamical
system (8)–(9). For Γ > 0, there is only a trivial solu-
tion I± = 0. For negative losses (and, correspondingly,
positive gain), there are four solutions:

I± = 0;

I+ = 0, I− =
−Γ

B ;

I− = 0, I+ =
−Γ

B ;

I± =
−Γ

B + B̃
.
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Fig. 3. (Color online) Stationary intensities Im of different Wannier – Stark states vs. the pump amplitude a, obtained with the

perturbation method (dash-dotted lines) and by numerical simulation (circles) for (a) nonzero nonlinear losses only in the excited

resonator with n = 0, i. e., β0 = β, and (b) spatially uniform nonlinear losses, i. e., βn = β. The used parameters are: µ = 0.2,

γ = 0.01, β = 1
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Fig. 4. (Color online) Stationary states |Un| in the form of WS states with m = −8 (a), m = 8 (b), m = −8 (c) and m = 8

(time-averaged field); figs. d, e and f show the respective evolutions of the field module |Un(t)|. The pump amplitude slightly

exceeds the excitation threshold. Nonlinear losses are nonzero only in the excited resonator with n = 0, i.e., β0 = β, for a, b, d,

and e; nonlinear losses are spatially uniform, i.e., βn = β, for c and f. The blue circles correspond to the resonators, the solid

blue lines are guides for eyes, and the dashed red lines correspond to the pumped resonator with n = 0. The used parameters

are: µ = 0.2, γ = 0.01, a = 0.1, β = 1

We can directly explore the stability of these states
by writing linearized equations for small perturbations
ξ± of the intensities I± and finding the eigenvalues gov-
erning the evolution of the perturbations. The triv-
ial state is, of course, always unstable λ1,2 = −2Γ.
The second and the third states have the eigenvalues
λ1 = −2Γ(1−B̃/B) and λ2 = 2Γ; λ2 is always negative

for Γ < 0, λ1 is negative for B < B̃ and positive other-
wise. Therefore, this state can be either a stable node
for B < B̃ or a saddle for B > B̃. The last state

I± =
−Γ

B + B̃
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has the eigenvalues

λ =
2Γ

B + B̃

(
B ± B̃

)
.

From this, we can conclude that this state is stable (a
stable node) for B > B̃ or unstable (saddle) for B < B̃.

Thus, the stability analysis tells us that if B > B̃,
then for the system (8)–(9), there is only one stable
stationary state,

I± =
−Γ

B + B̃
.

For B < B̃, there are two stable states:

I+ = 0, I− =
−Γ

B ,

and

I+ =
−Γ

B , I− = 0.

Now let us estimate the values B̃ and B. When only
β0 6= 0, then

B =
∑

n

βnW
4
n−m̃ =W 4

m̃

and
B̃ = 2

∑

n

βnW
2
n−m̃W

2
n+m̃ = 2W 4

m̃.

This means that B̃ = 2B, and, as our stability analysis
shows, in this case, the stable stationary states are

I+ = 0, I− =
−Γ

B ,

and

I+ =
−Γ

B , I− = 0.

In numerical simulations, only a stable state can be
observed as a stationary state, which explains why for
the chosen βn, we see the formation of either one or the
other WS state.

When βn = β, the ratio between B and B̃ can be
different. The coefficient B̃ depends on the overlap of
the intensity distributions of the states Wn±m̃, and this
overlap decreases with increasing width of the WS state
defined as

H =

√∑

n

W 2
n(n− nc)2,

where nc is the center of the WS state. Figure 5 shows
the dependencies of B and B̃ on the width of the states
H (a state width H is determined by µ).

For µ = 0.2 used in our direct modelling, the coef-
ficients are B = 0.07 and B̃ = 0.04. Therefore, in this
case, there is only one stable stationary state

I± =
−Γ

B + B̃
.

Thus, we can expect that in this case, the final state
consists of two WS states of the same intensity, os-
cillating with different frequencies. This perfectly
agrees with the results of our numerical simulations,
see Fig. 4 c. In addition, for µ > 0.6, there are regions
where B̃ > B, see Fig. 5 a. Hence, in these bands, there
should be two stable states:

I+ = 0, I− =
−Γ

B ,

and

I+ =
−Γ

B , I− = 0,

instead of the previously observed single state. This is
confirmed by numerical calculations.

We would like to note that the developed perturba-
tion theory not only gives a qualitative explanation of
the observed effect, but also allows determining the in-
tensities of the two-component states with a good preci-
sion. The intensity I±(t) dependencies extracted from
numerical simulations overlap with those calculated by
formulas (8)–(9). For low linear gain a, the simulated
and calculated results are in good agreement.

3. LASING WITH LINEAR GAIN IN SEVERAL
RESONATORS

To increase the radiation power, it seems reason-
able to introduce linear gain in several resonators. Let
us first consider nonlinear losses present only in the
pumped resonators. If the gain is uniformly distributed
in the pumped resonators, we expect lasing to begin at
lower pump amplitudes for a larger number of pumped
resonators. Thus, Fig. 6 a shows the total energy E of
the single-mode stationary state as a function of the
pump amplitude a for different numbers of pumped
neighbouring resonators M . In this figure, the sta-
tionary energy values E obtained via the perturbation
method (solid line) and by numerical simulations (cir-
cles) are in good agreement for different M .

The single-frequency state is the only possible solu-
tion within the pump range ath1 < a < ath2, where ath1
is the excitation threshold for the pair of WS modes
with the fastest-growing amplitudes, and ath2 is the
excitation threshold of the second fastest-growing pair.
The simulations show that if the number of the pumped
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Fig. 6. (Color online) a — Total energy E of the single-mode stationary state as a function of the pump amplitude a obtained via

the perturbation method (solid line) and by numerical simulation (circles) for different numbers of pumped adjacent resonators

M : 1R, 2R, 3R and 4R. Dashed lines show the threshold pump amplitudes at which the next pair of Wannier – Stark states

is excited. b — Maximum pump amplitude amax providing single-frequency lasing vs. the number of pumped resonators M .

Circles are analytical data, the dashed line is a guide for eyes. The nonlinear losses are nonzero only in the pumped resonators

βM = β = 1. The used parameters are: µ = 0.2, γ = 0.01

resonators M increases, the range of the existence of a
single-frequency solution narrows, see Fig. 6 a.

At sufficiently large pump amplitudes a, the single-
frequency stationary state obviously becomes unstable
and collapses. It is essential to study how the maximum
pump amplitude amax providing the single-frequency
regime depends on the number of pumped resonators
M . Figure 6 b shows this dependence: we can see that
the critical pump amplitude decreases with increasing
M . A possible reason is that for wide pumps, the over-
lap integrals defining the effective gain of modes weakly
depend on the modes’ indexes. Hence, the modes have
very similar excitation thresholds. Thus, the single-
frequency regime exists only in a small pump range
between the excitation thresholds of the modes with
the fastest and the second fastest-growing amplitudes.

Let us now consider in more detail the dynamics
of the system when three neighbouring resonators are
pumped. The numerical simulations show that near the
threshold (a ≈ 0.043), the radiation is monochromatic,
see Fig. 6 a. Stationary states similar to those shown in
Figs. 4 a and b are formed with equal probabilities.

When the pump amplitude exceeds the threshold
value for the next pair of WS states (a ≈ 0.044), a
multi-frequency regime appears in the system. For
pump slightly above this threshold, the stationary state
can be seen as a superposition of two WS states with
different frequencies. Due to nonlinearity, the temporal
spectrum of the stationary state contains the entire set
of frequency combinations, but for a weak nonlinearity,
there are two dominating frequencies corresponding to
the eigenfrequencies of the modes. Thus, this scenario
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Fig. 7. (Color online) Evolution of the field module |Un(t)| and its spectrum, defined as Un s(ω) =
∑

n
|
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for the multi-frequency stationary state: M = 3, a = 0.06 (a, e); M = 3, a = 0.2 (b, f); M = 7, a = 0.17 (c, g); and M = 21,

a = 0.06 (d, h). The dashed red lines show the pump area. In panel (c), the solid white line corresponds to Bloch oscillations in

a linear conservative system. The nonlinear losses are nonzero only in the pumped resonators βM = β = 1. The used parameters

are: µ = 0.2, γ = 0.01

is very similar to that with gain present in only one
resonator and nonlinear losses in all the resonators of
the system, see Fig. 4 c.

At higher pump levels, the multimode regime
changes. Numerical simulations reveal that complex
states resembling BOs appear, see Figs. 7 a, b. Their
temporal spectra are shown in Figs. 7 e, f: there are four
harmonics for the pump a = 0.06 corresponding to WS
states with the indexes m = ±8 and m = ±9, see
Fig. 7 e. For higher pumps, more temporal harmonics
appear, see the spectrum for a = 0.2 in Fig. 7 f.

For pumps exceeding a threshold level (a ≈ 0.13

for our parameters), the intensity distribution becomes
asymmetric, compare Figs. 7 a and b. After the sym-
metry breaking, a pair of frequencies remains almost
unchanged, but the other pair transforms into several
spectral lines, indicating the excitation of many WS
states. The winding patterns on the right in Fig. 7 b

contain more harmonics, see Fig. 7 f, and thus, the BOs
produced by the eigenstates in this part of spectrum
become smoother.

For larger numbers of the excited resonators, the
BOs become smoother and have a wider temporal spec-
trum, see Figs. 7 c, d, g, h showing the evolutions of the
field amplitude and the temporal spectra for M = 7

and M = 21 excited resonators. To prove that the
winding patterns in panels (a)–(d) are related to BOs,
we analytically calculated the trajectory of BOs for the
linear conservative system and superimposed this curve

on Fig. 7 c. The amplitude and period of the BOs in the
conservative counterpart of the considered system are
very similar to those obtained from direct numerical
simulations.

We verified that the multi-frequency regimes are
qualitatively the same no matter if nonlinear losses are
present in all the resonators or only in the excited ones.
For this reason, we do not discuss the case of evenly
distributed nonlinear losses in this paper.

4. MODE SELECTION

For practical purposes, increasing the pump range
providing the single-frequency regime can be useful.
This is especially important when the linear gain is cre-
ated in many resonators, which allows increasing the
output power of the working mode. To stabilize the
single-frequency regime, we suggest profiling the pump.
Profiling provides control over the effective gain for dif-
ferent modes, and thus allows one of the modes to have
an increment significantly higher than that of the other
modes.

We start with a positive linear gain only in one res-
onator; this resonator also has nonlinear losses. As we
discussed above, in this case, two different WS states
can be formed with equal probability. Let us show
that by choosing an appropriate pump, we can ensure
that stationary states are predefined by the gain shape
and thus do not depend on the initial conditions. For
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Fig. 8. (Color online) Evolutions of the field amplitude |Un(t)| and stationary distribution of the amplitudes for negative linear

losses γ0 = γ − a only in the resonator with n = 0 and additional losses γ̃ introduced to the resonator with n = 16, so that

γ16 = γ + γ̃. Nonlinear losses are nonzero only in the excited resonator with n = 0, i.e., β0 = β for (a), (c); nonlinear losses are

spatially uniform, i.e., βn = β for (b), (d). Panels (c, d) show evolutions from weak noise, and panels (a, b), the final distribution

of the amplitudes. The blue circles correspond to the resonators, the solid blue lines are guides for eyes. The red dashed line

marks the resonator with the gain, the dash-dotted magenta line shows the additional losses introduced for mode selection. For

nonlinear losses present in all resonators, there are no additional losses at t < 4 ·104. The formation of the hybrid state consisting

of two WS states is shown in (d). The additional losses are switched on at t = 4 · 104 in the resonator n = 16, suppressing

one of the WS states, and the stationary state becomes a single-frequency one, with the amplitude profile corresponding to the

fastest-growing WS state, see panel (b). The used parameters are: µ = 0.2, γ = 0.01, γ̃ = 0.03, a = 0.1, β = 1

this, we modify the effective losses in the individual res-
onators by adding some additional losses to a certain
resonator, see Figs. 8 a, c, showing the distribution of
the effective losses.

Without the added losses, there are two eigenmodes
with the same effective linear gain, but different fre-
quencies and field distributions. Then, we increase the
losses in the resonator where one of the modes has an
intensity maximum, but the other mode has a low in-
tensity. The added dissipation suppresses the effective
linear gain of the first mode, but barely affects the
growth rate of the second mode. As a consequence,
we can achieve a controllable excitation of the desir-
able WS state. The evolution of the mode growing
from weak noise is shown in Figs. 8 a, c.

In Sec. 2, we have shown that if there are nonlin-
ear losses in all the resonators, the stationary state is a
combination of two WS states with the fastest-growing
amplitudes and different frequencies. By introducing

additional losses into one of the resonators, we can
suppress one of the WS states. Therefore, a modifi-
cation of the pump profile can provide single-frequency
lasing. This is illustrated in Figs. 8 b, d, showing the
field evolution with weak-noise initial conditions. For
t < 4 · 104, there are no additional losses, and a sta-
tionary state is formed as a superposition of two WS
states. At t = 4 · 104, we switch on additional losses in
the resonator n = 16, immediately suppressing one of
the WS states, and a stable single-frequency WS state
is observed.

To increase the lasing mode power, it is natural to
increase the area and intensity of the pump. But, as
we discussed above, this makes single-mode regime dif-
ficult to observe. However, nonlinear losses located in
the excited resonators hamper single-frequency genera-
tion especially strongly. This issue can be overcome by
gain profiling: pumping only the resonators in which
the working mode has intensity maxima and adding
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threshold pump amplitudes ath1,2 for the gain distributions (a)–(c), respectively. The circles correspond to the data from the

perturbation method, the solid lines are guides for eyes. The used parameters are: µ = 0.2, γ = 0.01

losses to the resonators where the other, undesirable
modes have a large intensity. In numerical simulations,
we consider 7 pumped oscillators and different distri-
butions of the effective losses, see Figs. 9 a–c.

The effective gain created by these pumps depends
on the index of the WS state, which is shown in
Figs. 9 d–f. There, the effective gain for one of the
modes is much greater than the gain for the other
modes, see panels (e, f). Moreover, in a wide range
of pump amplitudes, only one mode has a positive in-
crement. Thus, the mode with the fastest-growing am-
plitude is expected to define the stationary state.

We used numerical simulations to test the hypothe-
sis that if only one mode has a positive increment, then
the final stationary state is a single-frequency one. Nu-
merical simulations fully confirm this prediction. At
the same time, as expected, for the pump profile shown
in Fig. 9 a, the single-frequency generation range is ex-
tremely small (Emax = 0.04).

However, in simulations, due to gain profiling,
single-frequency lasing regimes are maintained even at
sufficiently high pumps, where there are more than
one growing mode. Thus, if we pump only the res-
onators in which the working mode has intensity max-
ima, see Fig. 9 b, the existence range of the single-

frequency regime increases by two orders of magnitude
(Emax ≈ 4). This behavior can be explained by the
fact that this pump profiling provides a better selec-
tion of the working mode in terms of the effective gain
difference, see Fig. 9 e.

Single-frequency range can be increased even fur-
ther by introducing additional losses to the resonators
where the intensity of the working mode has minima,
see the pump profile shown in Fig. 9 c. In this case,
it is interesting to study how the maximum values of
the pump amplitude and the energy of the single-mode
stationary state depend on the level of additional losses
γ̃. The numerical results are demonstrated in Fig. 10:
the pump range in which the lasing is monochromatic
drastically increases with γ̃ (by an order of magnitude).
Hence, the maximum achievable energy of the working
mode is much higher if additional losses are included.
Besides, a comparison of panels (a) and (b) shows that
the energy of single-frequency state depends almost lin-
early on the pump amplitude. We should also note that
for a pump amplitude a > 3, single-mode regime is still
supported, but the dissipative terms become compara-
ble to the conservative ones, and therefore the modes
in the system are no longer purely WS states.
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5. CONCLUSION

In this paper, we have studied the dynamics of Wan-
nier – Stark (WS) states in a discrete system, an ar-
ray of interacting optical resonators. Linear gain in
some of the resonators can switch the system to las-
ing regime, provided that the gain exceeds a threshold
value depending on the structure of the WS state and
the spatial distribution of the pump. The linear gain
is saturated by the nonlinear losses so that stationary
states can form in the system. In the suggested sys-
tem, the lasing modes are shown to be WS states. We
considered a system with nonlinear losses only in the
pumped resonators having linear gain (only these res-
onators are appropriately doped) and a system with
nonlinear losses present in all the resonators (all the
resonators are doped, but an external pump profile cre-

ates linear gain as a function of resonator index).
To study the dynamics of the system analytically,

we developed a simple perturbation theory and used
it to find the excitation thresholds and stationary am-
plitudes, and to explain the mode competition. The
comparison of the perturbation theory with the results
of direct numerical simulation shows that the perturba-
tion theory works well if the dissipative terms are small,
i.e. they do not significantly affect the structure of the
eigenmodes, but govern the dynamics of the complex
amplitudes of the modes.

We reveal that the nonlinear losses distribution can
seriously affect the dynamics of the excited WS states.
In particular, we show that for linear gain only in one
resonator, single-frequency lasing occurs in the vicinity
of the lasing threshold if nonlinear losses exist only in
the pumped resonator. However, if there are nonlin-
ear losses in all resonators, then even in the vicinity
of the lasing threshold, the stationary state is multi-
frequency, with two dominating spectral lines corre-
sponding to the frequencies of the two WS states with
the maximum linear growth rate. To explain this ef-
fect, we have calculated the coefficients determining the
nonlinear interaction between the modes. This analy-
sis shows that in the first case, the mode with a higher
amplitude successfully suppresses its competitor, but
in the second case, this suppression is insufficient to
prevent the excitation of the other mode.

We also consider linear gain present in several neigh-
boring resonators and show that single-frequency lasing
is still possible in the vicinity of the lasing threshold.
However, this regime occurs only within a small pump
range, and the energy of the lasing mode is low. If
the pump amplitude grows, a complex multi-frequency
regime is formed. Using such a pump, Bloch oscilla-
tions (BOs) can be generated in the dissipative sys-
tem. At relatively low pump amplitudes, evolution of
intensity distribution has a symmetric winding pattern,
which indicates BOs. For higher pumps, symmetry
breaks, and the evolution seems to indicate two dif-
ferent coexisting BOs.

We also study the problem of stabilization of single-
frequency lasing. By choosing an appropriate pump
profile, it is possible to extend the single-frequency
regime and significantly increase the lasing mode en-
ergy. By introducing additional losses to the system,
we can achieve an even better selection of the working
mode and thus realize single-frequency lasing of the
chosen WS mode in a wide pump range.

To summarize, we have examined for the first time
the generation of WS states in microlaser arrays. The
lasing mode has a wide profile, covering many excited
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resonators, which allows pump to create gain in many
cavities. This way, the maximum power of the emit-
ted radiation can be increased. In addition, we show
that a single WS state can be excited by an appropri-
ate pump, enabling single-frequency lasing. Remark-
ably, the WS frequencies depend on their position, and
therefore, the lasing frequency can be tuned by moving
the pump position. Moreover, all the WS states have
the same spatial structure, and thus, frequency tuning
does not affect the profile of the lasing mode. Speaking
of tunability, it is worth mentioning that the discussed
systems can be efficiently controlled by suitable heating
of the sample [47]. This opens an additional opportu-
nity for the fine tuning of the lasing frequency. Thus,
our work demonstrates a promising way to obtain co-
herent radiation with a wide lasing mode, which can
potentially be applied in various laser devices.
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