О ТЕПЛОЕМКОСТИ КВАНТОВОЙ СИСТЕМЫ ТВЕРДЫХ СФЕР

C. M. Cmuuos^{a*}

^а Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

> Поступила в редакцию 3 июля 2023 г., после переработки 2 августа 2023 г. Принята к публикации 4 августа 2023 г.

Обсуждаются термодинамические свойства больцмановской системы твердых сфер. Как оказалось, нулевая энергия системы уменьшается с температурой настолько медленно, что является почти постоянной добавкой к классической величине. В результате теплоемкость системы мало отличается от классического значения 3/2k везде, кроме узкой области низких температур, где теплоемкость падает до нуля. Предсказываемый линейный температурный вклад в теплоемкость, как это имеет место в идеальном ферми-газе, обнаруживается в системе квантовых твердых сфер при самых низких температурах.

DOI: 10.31857/S0044451023120155 **EDN:** MXZOFX

1. ВВЕДЕНИЕ

При достаточно высоких температурах или в системах с сильным отталкивающим взаимодействием, когда обмен частицами практически невозможен, эффектами статистики Бозе и Ферми можно пренебречь. Однако система может быть квантовомеханической из-за «эффектов дифракции», связанных с волновой природой частиц. Более того, эффекты квантовой статистики экспоненциально затухают с ростом температуры, а «эффекты дифракции» исчезают как обратная степень температуры при $T \to \infty$. Таким образом, в квантовой системе твердых сфер существует значительный диапазон температур, где эффекты квантовой статистики играют лишь незначительную роль [1]. Далее мы обсудим поведение энергии и теплоемкости больцмановской системы твердых сфер.

2. ДИСКУССИЯ И РЕЗУЛЬТАТЫ

Система классических твердых сфер представляет собой простейшую нетривиальную систему с взаимодействием вида:

$$\Phi(r) = 0, \ r > \sigma,$$

$$\Phi(r) = \infty, \ r < \sigma.$$
(1)

Рис. 1. Зависимость безразмерной энергии E/kT жидкости квантовых твердых сфер от приведенной длины волны де Бройля $\lambda^* = h/(2\pi m kT \sigma^2)^{1/2}$, кружки — результаты расчетов [7], линия — аппроксимация

Однако, в отличие от классической системы твердых сфер, в квантовом случае в силу принципа неопределенности происходит межчастичное отталкивание, обеспечивающее существование «возвращающей» силы по отношению к длинноволновым акустическим деформациям [1]. Модель твердых сфер широко используется для описания сильно взаимодействующих систем. Вспомним теорию критических явлений Ван-дер-Ваальса, в которой оттал-

E-mail: stishovsm@lebedev.ru

Рис. 2. Зависимость энергии квантовой (1) и классической (2) систем твердых сфер от температуры

Рис. 3. Теплоемкость квантовой (1) и классической (2) систем твердых сфер

Рис. 4. Теплоемкость квантовой системы твердых сфер при низкой температуре

кивательное взаимодействие между частицами описывается потенциалом твердых сфер. Впоследствие было затрачено много усилий на разработку теории жидкостей с использованием модели твердых сфер в качестве нулевого приближения в рамках теории возмущений [2]. Квантовая модель твердых сфер использовалась при анализе поведения квантовых систем с короткодействующими взаимодействиями, в частности, гелия [3,4].

Теперь обратим внимание на одно конкретное исследование термодинамических свойств квантовых твердых сфер, опубликованное много лет назад в [5]. Неожиданным результатом этого исследования стало утверждение о ферми-жидкостной линейной температурной зависимости теплоемкости системы $C_v \, \backsim T$, возникающей из-за фактора «физической непрницаемости», а не «статистики» [5]. Однако реальная физика этой ситуации не ввполне ясна.

Действительно, в системе плотных твердых сфер частицы заключены в некоторую ячейку (клетку), образованную соседними частицами. Следовательно, энергия тведых частиц является квантованой. Однако из-за неправильных форм яячеек в системе соответствующие энергетические уровни должны быть различными для каждой конкретной клетки. Любопытно, что расчеты [6] удельной теплоемкости квантовой частицы в ящике не показывают линейного поведения при низкой температуре. Тем не менее, результаты расчетов термодинамических свойств квантовой системы твердых сфер методом Монте-Карло, проведенных в работе [7], могут служить подтверждением правильности цитируемого исследования [5]. Автор [7] представил значения безразмерной энергии E/kT жидкого состояния системы в зависимости от приведенной плотности $\rho^* = \rho \sigma^3$ (диаметр σ -сферы) вдоль направлений с постоянной $\lambda^* (\lambda^* = h/(2\pi m k T \sigma^2)^{1/2}$ — отношение тепловой длины волны де Бройля к диаметру твердой сферы). Для настоящего анализа выбраны результаты расчета энергии при плотности $\rho^* = 0.3$, охватывающей наибольший диапазон приведенных длин де Бройля λ^* . Соответствующие данные показаны на рис. 1. Как видно из рис. 1, расчетные данные явно экстраполируются классическому значению E/kT = 1.5, при $\lambda^* \to 0$ к что подтверждает справедливость результатов расчетов. Отметим, что полная энергия квантовых твердых сфер включает только кинетическую энергию поступательного движения частиц и нулевую энергию, связанную с принципом неопределенности. Аппроксимационная формула, описывающая численные данные [7],

Рис. 5. Функции вида $Y = X^n$ в окрестности x=0

имеет вид

Рис. 6. Нормированные теплоемкости модельных систем (1 — C_v идеального бозе-газа, $T^* = T_c$ — температура фазового перехода, 2 — C_v идеального ферми-газа, $T^* = T_{Fermi}$, 3 — C_v оf Debye solid, $T^* = T_{\Theta}$ — температура Дебая, 4 — C_v квантовой системы твердых сфер, $T^* = \frac{\hbar^2}{m\sigma^2} = 5.7 \cdot 10^{-1} K$)

$$E/kT = 1.5 + 1.5645(\lambda^*)^{2.1169}.$$
 (2)

Подставив численные данные в выражение λ^* ($\sigma = 3.5$ Å, m=28.0134 а.е. [7]), получим для энергии и теплоемкости:

$$E = 1.5T + 1.395T^{-0.06},\tag{3}$$

Рис. 7. Приведенная теплоемкость квантовой системы твердых сфер (1) по сравнению с теплоемкостью идеального ферми-газа (2)

$$C_v = 1.5 - 0.084T^{-1.06}.$$
 (4)

Отметим, как следует из соотношения (4), C_v обращается в нуль при небольшой, но конечной температуре, равной $5.7 \cdot 10^{-2}$, что, очевидно, является результатом расчетных ошибок и приближений. Это несоответствие исправляется при необходимости.

Из выражений (3) и (4) следуют весьма неожиданные результаты. Нулевая энергия уменьшается с температурой так медленно, что оказывается почти постоянной прибавкой к классическому значению, рис.2. Поведение квантового вклада в энергию системы твердых сфер (рис. 2) подтверждает вывод работы [8] о том, что, вопреки наивным ожиданиям, квантовые эффекты оказываются весьма важными, даже когда тепловая длина волны де Бройля составляет лишь небольшую часть диаметра твердой сферы. В силу указанной специфики квантового вклада теплоемкость системы мало отличается от классического значения 3/2 к везде, кроме узкой области низких температур, где теплоемкость системы падает до нуля (рис. 3).

Низкотемпературная часть теплоемкости квантовой системы твердых сфер изображена на рис. 4. Как видно, зависимость $C_v(T)$ заведомо содержит низкотемпературную линейную составляющую. Конечное значение производной dC_v/dT в начале координат, как это имеет место в случае ферми-газа, явно подтверждает этот вывод. Рисунок 5 хорошо иллюстрирует это положение. Напомним, что линейная температурная зависимость теплоемкости ферми-газа возникает только при T/T_f << 1, где T_f — энергия Ферми. При более высоких температурах поведение теплоемкости существенно нелинейно (см. [9]). Такая же ситуация ожидается и в нашем случае, и при $T/\varepsilon << 1$ наблюдается линейное поведение теплоемкости, где ε — некоторый энергетический барьер, препятствующий свободному движению частиц. Из рис.4 можно заключить, что $\varepsilon \approx 10^{-2} K$. В связи с этим полезно проанализировать рис.6, где представлены четыре кривые $C_v(T)$, описывающие поведение теплоемкости в зависимости от температуры идеальных бозе- и ферми-газов, квантовых больцмановских и дебаевских тел. На рис.6 видно, что кривые ведут себя поразному вблизи нуля температуры, что, безусловно, связано с разным характером возбуждений, ответственных за теплоемкость. Вероятно, именно одночастичный характер тепловых возбуждений в флюидной системе твердых сфер и идеальном фермигазе определяет их линейную зависимость теплоемкости от температуры. Отчетливое сходство кривых теплоемкости идеального ферми-газа и жидкости с твердыми сферами показано на рис.7. В этой связи не будет удивительным, что теплоемкость жидкого гелия при температуре, далекой от вырождения ведет себя подобным образом [10, 11].

3. ЗАКЛЮЧЕНИЕ

Поведение теплоемкости больцмановской флюидной системы квантовых твердых сфер, следующее из расчетов методом квантового Монте-Карло, оказалось подобным поведению теплоемкости идеального ферми-газа. Мы предполагаем, что причина такого сходства кроется в особенностях одночастичной природы возбуждений, ответственных за характеристики теплоемкости в обеих средах.

Благодарности. Автор выражает признательность А.М. Белемуку и А.Е. Петровой за помощь в работе.

ЛИТЕРАТУРА

- K. J. Runge and G. V. Chester, Phys. Rev. B 38, 135 (1988).
- J. A. Barker and D. Henderson, J.Chem.Phys. 47, 2856 (1967).
- J.-P. Hansen, D. Levesque, and D. Schiff, Phys. Rev. A 3, 776 (1971).
- M. H. Kalos, D. Levesque, and L. Verlet, Phys.Rev. A 9, 2178 (1974).
- 5. R. K. Cole, Jr., Phys.Rev. 155, 114 (1967).
- 6. H. B. Rosenstock, Am. J. Phys., 30, 38 (1962).
- 7. L. M. Sesé, J. Chem. Phys. 136, 244504 (2012).
- R. K. Bhaduri, W. wan Dijk, and M. K. Srivastava, Europ. J. Phys. 27, 1323 (2006).
- R. K. Pathria and P. D. Beale, *Statistitical Mechanics*, Third Edition, Elsevier (2011).
- 10. S. M. Stishov, JETP letters, 31, 272 (1980).
- E. V. Lebedeva, A. M. Dyugaev, and P. D. Grigor'ev, Low Temp. Phys. 40, 475 (2014).