СПИНОВЫЕ СОСТОЯНИЯ ИОНОВ Со И ПЕРЕХОД МЕТАЛЛ–ПОЛУПРОВОДНИК В СЛОИСТЫХ КОБАЛЬТИТАХ ${ m PrBaCo_2O_{5+\delta}}~(\delta=0.52,~0.74)$

Н. И. Солин^{*}, С. В. Наумов, А. В. Королев, В. Р. Галахов

Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

> Поступила в редакцию 24 октября 2022 г., после переработки 21 июня 2023 г. Принята к публикации 22 июня 2023 г.

Из исследований магнитных свойств определены спиновые состояния ионов Со в $\mathrm{PrBaCo_2O_{5+\delta}}$ с учетом парамагнитного вклада ионов Pr^{3+} для содержаний кислорода $\delta=0.52$ и $\delta=0.74.$ Результаты, полученные без учета парамагнитного вклада ионов Pr^{3+} , не согласуются с известными экспериментальными данными. При понижении температуры переход типа металл-изолятор в $\mathrm{PrBaCo_2O_{5.52}}$ происходит резко при резком изменении спинового состояния ионов Co^{3+} из HS/LS- в LS/IS-состояние. При этом в октаэдрах ионы Co^{3+} переходят из высокоспинового состояния (HS, S=2) в низкоспиновое (LS, S=0), а в пирамидах — из LS-состояния в промежуточное спиновое состояние (IS, S=1) в согласии с известными структурными данными. В $\mathrm{PrBaCo_2O_{5.74}}$ переход металл-полупроводник происходит плавно из HS/LS- в HS/IS-состояние при плавном изменении спиновых состояний ионов Co^{3+} (HS, S=2) и Co^{4+} (LS, S=1/2) в октаэдрах.

DOI: 10.31857/S004445102311007X **EDN:** PKISYU

1. ВВЕДЕНИЕ

Упорядоченные слоистые оксиды кобальта $\operatorname{RBaCo}_2\operatorname{O}_{5+\delta}$, где R — редкоземельный ион, а δ определяет содержание кислорода, демонстрируют множество интересных явлений, включая переход металл-изолятор (MI) [1, 2], парамагнитный (PM), ферромагнитный (FM),антиферромагнитный (AFM) переходы [1–7] и метамагнитное поведение [8]. Упорядоченность состоит в том, что ионы R и Ва образуют не твердый раствор, а упорядочены в чередующихся плоскостях вдоль направления [001]. Движущей силой катионного упорядочения является различие ионных радиусов Ba^{2+} и R^{3+} : редкоземельные ионы R³⁺ имеют размеры меньшие, чем ионы Ba²⁺. Оксиды имеют слоистую кристаллическую структуру перовскита, в которой слои RO_δ и BaO перемежаются слоями CoO.

В зависимости от содержания кислорода $0 \leq \delta \leq 1$ валентное состояние иона кобальта в $RBaCo_2O_{5+\delta}$ меняется от Co^{2+} до Co^{4+} . В $\operatorname{RBaCo}_2\operatorname{O}_{5+\delta}$ при $\delta = 0.5$ присутствуют только ионы Со³⁺, которые расположены в кристаллической решетке, состоящей из равного числа октаэдров СоО₆ и квадратных пирамид СоО₅ [1]. Необычные свойства $RBaCo_2O_{5+\delta}$, как и $LaCoO_3$, в основном обусловлены тем, что ионы кобальта могут находиться в трех разных спиновых состояниях: в низкоспиновом (LS, S = 0), промежуточноспиновом (IS, S = 1) и высокоспиновом (HS, S = 2). Физическая природа происходящих в этих материалах процессов при переходе металл-изолятор до сих пор не выяснена. Основным вопросом в этих материалах является определение движущих сил перехода металл-изолятор.

В стандартной зонной схеме электропроводности в диэлектриках и полупроводниках заполненные зоны отделены от пустых запрещенной зоной энергетической щелью. Переход металл-изолятор в большинстве случаев связан с исчезновением энергетической щели [9]. В отличие от манганитов, пе-

^{*} E-mail: solin@imp.uran.ru

реход металл-изолятор в кобальтитах не связан с магнитным упорядочением. В слоистых кобальтитах разности энергий между разными спиновыми состояниями ионов Со малы. Вследствие этого при изменении параметров среды (температуры, давления, магнитного поля и др.) в кобальтитах могут легко происходить переходы ионов Со из одного спинового состояния в другое [10]. Эти переходы сопровождаются структурным фазовым переходом, исчезновением энергетической щели, изменением транспортных свойств и переходом к квазиметаллическому состоянию. Однако одного исчезновения энергетической щели для определения перехода металл-изолятор недостаточно. Фазовый переход металл-изолятор предполагает значительное изменение величины и вида электросопротивления: с ростом температуры электросопротивление в диэлектриках и полупроводниках сильно уменьшается, в металлах — растет [9].

В настоящее время наиболее подробно изучены соединения RBaCo₂O_{5+ δ} при $\delta \simeq 0.5$ с малыми размерами ионов из середины ряда редкоземельных элементов R=Eu, Gd, Tb и др. [1–7]. Наименее изучены соединения RBaCo₂O_{5.5} с большими размерами ионов, где R= Nd, Pr и немагнитный ион La³⁺. Они показывают свойства, отличные от других кобальтитов. В соединениях PrBaCo₂O_{5.50} [11], LaBaCo₂O_{5.50} [12] и NdBaCo₂O_{5.48} [8] ниже температуры Нееля $T_N \approx 230-250$ К в магнитном поле сохраняется FM-состояние, в то время как другие кобальтиты остаются в AFM-состоянии [1–7,13]. Предполагается, что эти особенности связаны с большим размером ионов R³⁺ [11,14].

Слоистый кобальтит NdBaCo₂O_{5.48} ниже $T \simeq 20 \,\mathrm{K}$ в небольшом магнитном поле переходит из AFM-состояния в метамагнитное — в смешанное FM/AFM-состояние [8]. Результаты объяснены влиянием размера иона Nd³⁺ и магнитного поля на AFM-состояние NdBaCo₂O_{5.48}. Исходя из метамагнитной модели Ландау [15] предполагалось, что FM-связь внутри слоев Со сильная, а AFMсвязь между слоями Со, разделенными слоями NdO₆, ослаблена из-за большого размера ионов Nd^{3+} . Bume $T \simeq 20 \mathrm{K}$ соединение $\mathrm{NdBaCo_2O_{5.48}}$ представляет смесь обменно-связанных FM- и АFM-фаз, что подтверждается обнаружением обменного смещения [8]. Неоднородное магнитное состояние $NdBaCo_2O_{5.48}$ согласуется с нейтронными данными для близкого по составу соединения $NdBaCo_2O_{5,47}$ [16].

Магнитные и транспортные свойства рассматриваемых соединений в большой степени определяются и содержанием кислорода [3,17]. О свойствах соединений RBaCo₂O_{5+ δ} с более высоким содержанием кислорода $\delta > 0.5$ в настоящее время известно мало (см. ссылки в работе [18]). В монокристаллах GdBaCo₂O_{5+ δ} свойства электронных ($\delta < 0.5$) и дырочных ($\delta > 0.5$) соединений асимметричны. С увеличением концентрации носителей тока в электронных соединениях электросопротивление увеличивается, намагниченность уменьшается, а в дырочных — электросопротивление уменьшается, намагниченность увеличивается [3].

поликристаллах В $NdBaCo_2O_{5+\delta}$ при $0.37 \leq \delta \leq 0.65$ FM-состояние сохраняется ниже T_N при всех значениях δ и объяснено влиянием размера иона Nd³⁺ на AFM-состояние [18]. При увеличении δ температуры транспортных и магнитных переходов $(T_{MI}, T_N \ \text{и} \ T_C)$ уменьшаются примерно на 100-150 К. Сильная зависимость температур Кюри T_C, Нееля T_N и перехода металл-изолятор T_{MI} от содержания кислорода объяснена возникновением ионов Со⁴⁺ и влиянием их на обменные взаимодействия. Для всех значений δ переход металл-изолятор в кобальтитах NdBaCo₂O₅₊₆ происходит при изменении спинового состояния ионов Co³⁺ из HS/LS-состояния в металлической фазе в IS/LS-состояние в полупроводниковой фазе, при этом с увеличением δ спиновое состояние ионов Co^{3+} увеличивается от IS/LS- к HS/LS-состоянию. При значениях $\delta \simeq 0.65$ происходит переход типа «сильнолегированный полупроводник-плохой металл» без резкого изменения спинового состояния ионов Co^{3+} [18].

Цель данной работы — выяснение влияния содержания кислорода δ на электрические, магнитные свойства и спиновое состояние ионов Со в PrBaCo₂O_{5+ δ} вблизи переходов металл–изолятор. Известные данные спиновых состояний ионов Co³⁺ оксида PrBaCo₂O_{5.5} не согласуются его структурными данными [19–22], а для PrBaCo₂O_{5.75} изменение спиновых состояний ионов Со при переходе в металлическое состояние не обнаружено [17]. Влияние ионов Co⁴⁺ на спиновое состояние ионов Co³⁺ также не выявлено.

Данная работа является продолжением цикла наших работ [8, 18, 23, 24] по исследованию влияния вида редкоземельного иона на спиновое состояние ионов Со при переходе металл–изолятор в кобальтитах RBaCo₂O_{5+ δ}, $\delta \simeq 0.50$. В настоящее время многие исследователи полагают, что в кобальтитах RBaCo₂O_{5.50} ионы Co³⁺ переходят из HS/IS-состояния в металлической фазе в LS/IS-состояние в полупроводниковой фазе. Однако структурные ис-

следования соединений RBaCo₂O_{5,5} на основе Gd [4], Тb [5], Рг [20] не согласуются с этим предположением. Парамагнитные свойства слоистых кобальтитов, из исследований которых определяются спиновые состояния ионов Со, обусловлены РМ-вкладами ионов Со и R³⁺. Но большинство исследователей не учитывают или неправильно определяют РМ-вклад редкоземельного иона R³⁺ (см. ссылки в [24]). Некоторые авторы предполагают, что ионы \Pr^{3+} в соединениях PrBaCo₂O_{5+δ} немагнитны [17]. Наши исследования RBaCo₂O_{5+ δ}, где $\delta \simeq 0.50$, R=Gd, Tb, Nd [8, 18, 23, 24], показывают, что при учете РМвклада ионов R³⁺ переход металл-изолятор происходит при изменении спинового состояния ионов Co^{3+} из HS/LS- в LS/IS-состояние в согласии с известными структурными данными [4,5,20]. Ниже показано, что ионы Pr^{3+} в соединениях $PrBaCo_2O_{5+\delta}$ обладают магнитным моментом и РМ-видом температурного поведения намагниченности.

В данной работе впервые показано, что переход из металлического в полупроводниковое состояние в слоистых кобальтитах PrBaCo₂O_{5+δ} при $\delta\simeq 0.75$ происходит при изменении спинового состояния ионов Со, и предложена модель спинового перехода металл-полупроводник с учетом ионов Со³⁺ и Со⁴⁺. Переход металл-полупроводник в PrBaCo₂O_{5 74} происходит при изменении спинового состояния ионов Co³⁺ в пирамидах из HS/LSв HS/IS-состояние, без изменения спинового состояния ионов Co³⁺ и Co⁴⁺ в октаэдрах. Предполагается, что ионы Co^{4+} в слоистых кобальтитах всегда находятся в LS(S = 1/2)-состоянии из-за сильного кристаллического поля [25]. Предложенная модель спинового перехода хорошо согласуется с экспериментом и объясняет отрицательный коэффициент объемного расширения PrBaCo₂O_{5.74} [26].

2. ОБРАЗЦЫ И МЕТОДИКИ ИССЛЕДОВАНИЙ

Поликристаллические образцы PrBaCo₂O_{5+ δ} синтезированы твердофазным методом из исходных компонентов Pr₆O₁₁, BaCO₃ и Co₃O₄ ступенчатым отжигом на воздухе при T = 900-1000 °C. Спрессованные в таблетки образцы спекали при температуре 1165 °C в течение 24 ч. Плотность образца составляла около 90 % от рентгеновской плотности. Абсолютное содержание кислорода $\delta \simeq 0.74$ определено методом восстановления образца в водороде. Содержание кислорода $\delta \simeq 0.52$ достигнуто дополнительным отжигом исходного

образца на воздухе при определенной температуре с последующей закалкой и определялось по изменению веса [3]. По данным порошковой дифракции рентгеновских лучей все образцы были однофазными. При комнатной температуре поликристаллы PrBaCo₂O_{5 74} имеют тетрагональную структуру Р4/ттт (№123) с элементарной ячейкой $a_p \times a_p \times 2a_p$, где a_p — параметр псевдокубической ячейки перовскита. Образец с $\delta \simeq 0.52$ имеет орторомбическую структуру и описывается пространственной группой Рттт (№ 47) с элементарной ячейкой $a_p \times 2a_p \times 2a_p$. Значения структурных параметров образцов согласуются с литературными данными [11]. Измерения электросопротивления проведены четырехконтактным методом.

3. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КОБАЛЬТИТОВ $\operatorname{PrBaCo_2O_{5+\delta}}, \delta = 0.52, 0.74$

C увеличением δ величина электросопротивления и вид его температурной зависимости $\rho(1/T)$ соединений $PrBaCo_2O_{5+\delta}$ заметно различаются (рис. 1). С увеличением δ электросопротивление сильно уменьшается. В температурном интервале 100-400 К величина электросопротивления PrBaCo₂O_{5.74} примерно на 2 порядка меньше, чем в PrBaCo₂O_{5.52}. В кобальтите PrBaCo₂O_{5.52} при $T_{MI} \simeq 350 \pm 2$ К происходит переход типа изолятор – «плохой» металл. Выше T_{MI} образец переходит в слабо зависящее от температуры состояние электросопротивления с $\rho \simeq 5 \cdot 10^{-3}$ Ом·см, что соответствует переходу к плохому металлу. Здесь знак производной электросопротивления $d\rho/dT$ остается отрицательным, свидетельствуя о полупроводниковом характере $\rho(T)$, связанном с вкладом межгранульных сопротивлений поликристалла.

При увеличении δ соединение PrBaCo₂O_{5.74} не испытывает перехода типа металл–изолятор, а происходит плавный переход из металлического в полупроводниковое состояние при $T_{MSC} \simeq 270 \pm 10$ К (вставка к рис. 1*b*). Температурная зависимость электросопротивления $\rho(T)$ при $T > T_{MSC}$ имеет металлическое поведение, величина электросопротивления увеличивается примерно на 15 % при нагреве до 400 К от минимального значения электросопротивления $\rho_{min} \simeq 5 \cdot 10^{-4}$ Ом·см при $T_{MSC} \simeq 270 \pm 10$ К. Приведенные данные электросопротивления PrBaCo₂O_{5.74} согласуются с металлическим поведением электросопротивления, обна-

Рис. 1. Температурные зависимости электросопротивления поликристаллов PrBaCo₂O_{5.52} (*a*) и PrBaCo₂O_{5.74} (*b*). Описание кривых 1 и 2 в тексте. На вставках приведены температурные зависимости электросопротивления образцов вблизи переходов металл-полупроводник

руженным в поликристалле $PrBaCo_2O_{5.70}$ [1]. С увеличением содержания кислорода температуры переходов уменьшаются примерно на 80 K (см. вставки к рис. 1).

Отметим различный — резкий и плавный — характер поведения $\rho(T)$ этих двух образцов при переходе в непроводящее состояние. Такая особенность $\rho(T)$ согласуется с резким изменением спинового состояния ионов Co³⁺ в PrBaCo₂O_{5.52} и с плавным в PrBaCo₂O_{5.74} вблизи температур перехода (см. ниже). Эти результаты качественно подтверждают влияние спинового состояния на электросопротивление. Температурная зависимость электросопротивления PrBaCo₂O_{5.74} в небольшом интервале температур (около 100 K) ниже T_{MSC} описывается активационным выражением (кривая 1 на рис. 1b)

$$\rho = \rho_0 \exp(\Delta E/kT) \tag{1}$$

с энергией активации электросопротивления $\Delta E \simeq 30$ мэВ и предэкспоненциальным коэф-

Рис. 2. Температурные зависимости намагниченности $\mathrm{PrBaCo_2O_{5.52}}$ (a) и $\mathrm{PrBaCo_2O_{5.74}}$ (b) в магнитном поле $H=1,10,\,50\,$ кЭ. Вставка к рис. 2b— полевые зависимости намагниченности (символы) при 10 К. Штриховые линии — РМ-вклад ионов Pr^{3+} , определенный из выражения (2) при $H=50\,$ кЭ

фициентом $\rho_0 \sim 10^{-4}$ Ом·см, присущими сильно легированным полупроводникам. Близкие значения ΔE и ρ_0 были найдены в NdBaCo₂O_{5.65} [18].

Обнаружено нестационарное поведение электросопротивления оксида PrBaCo₂O_{5 74}: электросопротивление не возвращается в исходное состояние и увеличивается после температурных изменений (штриховая кривая 2 на рис. 1b). Можно предположить, что переход металл-полупроводник $\rm PrBaCo_2O_{5.74}$ при $T_{MSC}=270\pm10~\rm K$ сопровождается структурным переходом, которым можно объяснить нестационарное поведение электросопротивления оксида PrBaCo₂O_{5.74}. В пользу этого предположения свидетельствуют изменения спиновых состояний и
онов Co^{3+} при $T\,<\,T_{ST}\,\simeq\,280~\mathrm{K}$ (см. ниже). Для проверки этого предположения мы провели измерения $\rho(T)$ при двух способах изменения температуры образца. Сначала образец был измерен при температуре от 77 до 400 К и охлажден до комнатной температуры. При нагреве выше T_{MSC} (нагрев от комнатной температуры $T_{RT} = 293$ К до 400 К и охлаждение до T_{RT}) электросопротивление возвращается в исходное значение (кривая 1 на рис. 1b). При охлаждении образца ниже T_{MSC} (от T_{RT} до 77 К и обратно до T_{RT}) электросопротивление не возвращается к исходному значению и увеличивается на 10–15 % (кривая 2 на рис. 1b).

Нестационарное поведение электросопротивления может быть связано с влиянием размера иона Pr^{3+} . Кобальтиты $\operatorname{RBaCo}_2\operatorname{O}_{5+\delta}$ с большими размерами ионов (R = Nd, Pr, La) демонстрируют метастабильные состояния [27]. Кислородные вакансии в соединениях RBaCo₂O_{5.50} с малыми размерами ионов R упорядочены, места кислорода упорядочены в плоскости RO_{δ} вдоль оси a, и ионы Со³⁺ расположены в кристаллической решетке из равного числа октаэдров CoO₆ и квадратных пирамид СоО₅ [1]. Согласно нейтронным исследованиям, соединения $PrBaCo_2O_{5+\delta}$ при $\delta \simeq 0.75$ склонны к разупорядочению. В соединениях PrBaCo₂O_{5.75(1)} упорядочение кислородных вакансий, как в соединениях RBaCo₂O_{5.50}, не наблюдается [17]. Неупорядоченность кислородных вакансий также может быть причиной нестационарного поведения электросопротивления.

4. МАГНИТНЫЕ СВОЙСТВА КОБАЛЬТИТОВ $PrBaCo_2O_{5+\delta}, \ \delta=0.52, \ 0.74$

На рис.2 приведены температурные зависимости намагниченности PrBaCo₂O_{5.52} и PrBaCo₂O_{5.74} при T = 10-400 К в магнитном поле H = 1, 10, 50 кЭ при охлаждении без магнитного поля (ZFC). Стрелками указаны температуры Кюри T_C , определенные из производной намагниченности dM/dT, температуры AFM-упорядочения (T_N) соединений, оцененные из температуры максимума намагниченности M(T). Как и в других слоистых кобальтитах [1–7], при H = 1 кЭ намагниченность обоих соединений резко возрастает при температуре Кюри Т_C, достигает максимума при температуре Нееля T_N , ниже которой уменьшается, что свидетельствует о переходе образца в AFM-состояние (рис. 2a). В отличие от RBaCo₂O_{5.50} с малыми размерами ионов R [1–7], FM-намагниченность PrBaCo₂O_{5 74} и PrBaCo₂O_{5 52} ниже T_N не исчезает, увеличивается при увеличении магнитного поля, сохраняется до самых низких температур.

Температура Кюри $PrBaCo_2O_{5.52}$ не зависит от напряженности магнитного поля до 50 кЭ,

 $T_C = 243 \pm 2$ К. Температура T_N перехода в АFM-состояние сильно зависит от напряженности магнитного поля. С увеличением магнитного поля до 50 кЭ величина T_N уменьшается примерно на 80 К: от 223 до 145 К. Эти результаты показывают, что магнитное поле в основном влияет на AFMсостояние, подавляет его и усиливает FM-состояние. Фактически это означает, что PrBaCo₂O_{5.52} является метамагнетиком при высоких температурах, как GdBaCo₂O_{5.50} и TbBaCo₂O_{5.50} [3,7,8].

В отличие от PrBaCo₂O_{5 52}, в PrBaCo₂O_{5 74} при увеличении магнитного поля до 50 кЭ величина $T_N = 67 \pm 2$ К практически не меняется, а T_C увеличивается от 113 до 144 К. Результаты свидетельствуют о преобладании в этом соединении FMвзаимодействий. На это же указывает уменьшение T_N и T_C примерно на 100 К и большая намагниченность ($M \simeq 1.8 \mu_B$) при увеличении содержания кислорода δ от 0.52 до 0.74. Аналогичные изменения T_N и Т_С в зависимости от содержания кислорода обнаружены в NdBaCo₂O_{5+ δ} [18]. Эти результаты для $PrBaCo_2O_{5+\delta}$, как и для NdBaCo_2O_{5+\delta} [18], объяснены увеличением содержания ионов Со⁴⁺, уменьшением косвенного обмена Co³⁺-O-Co³⁺ и усилением FM-взаимодействий по эмпирическому правилу Гуденафа-Канамори из-за FM-сверхобменных взаимодействий Co³⁺-O-Co⁴⁺ [28].

Сравнение магнитных и электрических свойств PrBaCo₂O_{5+ δ} и NdBaCo₂O_{5+ δ} [8,18] показывает, что свойства их близки. Ферромагнитное поведение ниже T_N в NdBaCo₂O_{5+ δ} [18] объяснено большим размером ионов Nd³⁺ в метамагнитной модели слоистых AFM [15]. Радиус иона Pr³⁺ даже больше, чем иона Nd³⁺. Можно полагать, что FM-состояние в кобальтитах PrBaCo₂O_{5+ δ} также вызвано большим размером иона Pr³⁺. Резкое увеличение намагниченности в магнитном поле $H \geq 1$ кЭ обнаружено в AFM-соединении PrBaCo₂O_{5.75} (см. вставку на рис. 2b в работе [17]). Результаты [17], как и в работе [8] для NdBaCo₂O_{5.75} из AFM-состояния в метамагнитное состояние.

5. СПИНОВЫЕ СОСТОЯНИЯ ИОНОВ Со В КОБАЛЬТИТАХ $PrBaCo_2O_{5+\delta}, \delta = 0.52, 0.74$

Ниже приведены результаты исследований спиновых состояний ионов Со соединений PrBaCo₂O_{5.52} и PrBaCo₂O_{5.74} вблизи переходов металл-полупроводник, определенные с учетом и без учета PM-вклада ионов Pr. Магнитные свойства соединений RBaCo₂O_{5+δ} определяются вкладами двух магнитных ионов: редкоземельного иона R и ионов Со. Из исследований полевых зависимостей намагниченности GdBaCo₂O_{5 45} и GdBaCo₂O₅ при 2 К установлено, что намагниченность насыщения обоих соединений очень близка к моменту свободного иона Gd³⁺. Был сделан вывод, что в этих соединениях ион Gd³⁺ действует как невзаимодействующий редкоземельный парамагнитный ион [29]. Это предположение было распространено и на другие ионы. Для выделения вклада иона Со из намагниченности слоистого кобальтита вычитали РМ-вклад редкоземельного иона R, предполагая его невзаимодействующим [3, 6, 7]. Намагниченность невзаимодействующих парамагнитных ионов описывается функцией Бриллюэна $B_S(x)$ [30]:

$$M = N_A g \mu_B J B_S(x), \tag{2}$$

где N_A — число Авогадро, $x = g\mu_B JH/kT$, μ_B — магнетон Бора, g — фактор Ланде ионов \mathbb{R}^{3+} , J — суммарный магнитный момент ионов \mathbb{R}^{3+} , H — напряженность магнитного поля, k — постоянная Больцмана.

Штриховыми линиями на рис. 2 показаны температурные зависимости РМ-вклада невзаимодействующего иона \Pr^{3+} в магнитном поле 50 кЭ, рассчитанные из выражения (2). Видно (рис. 2), что РМ-вклад иона \Pr^{3+} почти 2 раза превышает величину намагниченности для $\Pr BaCo_2O_{5.52}$ и определяет значительную часть намагниченности для $\Pr BaCo_2O_{5.74}$ при $T \simeq 10-20$ К. На вставке к рис. 2b показаны (символы) полевые зависимости намагниченности соединения $\Pr BaCo_2O_{5.74}$ и вклад ионов \Pr^{3+} (штриховая линия), рассчитанный из выражения (2) при 10 К.

Намагниченность насыщения $M_S \simeq (1.3-1.4)\mu_B$, полученная экстраполяцией намагниченности при $H \to 0$, показывает, что PM-вклад ионов Pr^{3+} значительно меньше рассчитанного. Меньшие, чем расчетные значения для свободных ионов, PM-вклады обнаружены в соединениях RBaCo₂O_{5+ δ} при $\delta \simeq 0.5$ для (R = Gd, Tb, Nd) [8,18,23,24]. Полученные выше зависимости M(H), по-видимому, означают, что ионы Pr^{3+} в соединениях PrBaCo₂O_{5+ δ} нельзя считать невзаимодействующими с соседними ионами. Кроме того, в работе [17] вообще считается, что ионы Pr^{3+} в соединениях PrBaCo₂O_{5+ δ} находятся в немагнитном (LS, S = 0) состоянии, так как их вклад не заметен.

Для определения РМ-вклада ионов ${\rm Pr}^{3+}$ мы провели измерения магнитных свойств соединениях ${\rm PrBaCo}_{2}{\rm O}_{5+\delta}, \ \delta \simeq 0.03$. В литературе

мы не нашли никаких сведений о магнитных свойствах $PrBaCo_2O_{5.0}$. Мы ожидали, что соединение $PrBaCo_2O_{5+\delta}$, как и $RBaCo_2O_{5+\delta}$, где R = Tb, Dy, Ho, является антиферромагнетиком при $\delta = 0$ [31], и из измерений намагниченности в магнитном поле можно выделить PM-вклад ионов Pr^{3+} . Ниже приведены результаты исследований намагниченности поликристалла $PrBaCo_2O_{5.03}$ от 2 до 300 K в магнитном поле до 90 кЭ.

На вставке к рис. З приведены полевая зависимость намагниченности $M_{\rm Pr}{}^{3+}(H)$ свободных ионов ${\rm Pr}^{3+}$ (кривая 1), определенная из выражения (2), и экспериментальные значения намагниченности $M_{exp}(H)$ кобальтита ${\rm PrBaCo_2O_{5.03}}$ (символы) при 2 К. Видно, что значения $M_{exp}(H)$ почти в 3 раза меньше намагниченности $M_{{\rm Pr}^{3+}}(H)$ и не описываются выражением (2). Полевая зависимость намагниченности $M_{exp}(H)$ до $H \leq 60$ кЭ может быть описана выражением (3) при $\Theta = -34$ К (кривая 2):

$$M = N_A g \mu_B J B_S(x), \tag{3}$$

где $x = g\mu_B JH/k(T - \Theta).$

На рис. 3 показана температурная зависимость экспериментальных значений намагниченности M_{exp} кобальтита $PrBaCo_2O_{5.03}$ при H = 50 кЭ в интервале T = 2–300 К. Видно, что поведение намагниченности имеет парамагнитный характер: намагниченность монотонно увеличивается с уменьшением температуры. РМ-вклад ионов Pr^{3+} (кривая 1), определенный из выражения (2), явно не описывает поведение $M_{exp}(T)$. РМвклад ионов Pr^{3+} , определенный из выражения (3) при $\Theta = -34$ К (кривая 2), существенно меньше значений $M_{exp}(T)$.

Соединение PrBaCo₂O_{5.03} не является «чистым» антиферромагнетиком, так как для него $\delta \neq 0$. Вследствие этого, кроме РМ-вклада ионов Pr³⁺ в магнитном поле должны наблюдаться вклады от ионов Co²⁺ и Co³⁺. Кривая 3 показывает температурную зависимость величины ΔM , равной разности экспериментальных (кривая M_{exp}) и расчетных (кривая 2) значений намагниченности кобальтита $PrBaCo_2O_{5,03}$. Видно, что значения ΔM до $T \simeq 20 \text{ K}$ монотонно увеличиваются, при T = 50-300 К значения ΔM остаются почти постоянными, $\Delta M \simeq 0.06 \mu_B$. Можно предположить, что в кобальтите PrBaCo₂O_{5.03} при 2 K и соотношении количества разновалентных ионов ${\rm Co}^{2+}:{\rm Co}^{3+}\simeq 0.47:0.53$ формируется AFM-структура. В магнитном поле 50 кЭ образуется другая AFM-структура с равными количеством ионов Co²⁺ и Co³⁺, а при

Рис. 3. Температурные зависимости намагниченности кобальтита $\operatorname{PrBaCo_2O_{5.03}}$ в магнитном поле H = 50 кЭ (M_{exp}) : кривые 1 и 2 — расчет РМ-вклада ионов Pr^{3+} при $\Theta = 0, -34$ К, кривая 3 — вклад ионов Co^{2+} и Co^{3+} (см. текст). Вставка — полевые зависимости намагниченности кобальтита $\operatorname{PrBaCo_2O_{5.03}}$ при 2 К (символы): кривые 1 и 2 — расчет РМ-вклада ионов Pr^{3+} при $\Theta = 0, -34$ К

 $\delta = 0.03$ и $T = 50{\text{--}}300$ К возникает намагниченность $\Delta M \simeq 0.06 \mu_B$ с ионами Co³⁺ в промежуточном спиновом состоянии LS (S = 1) [31]. Эксперимент сравнительно неплохо подтверждает предположение.

Эти эксперименты показывают, что ионы ${\rm Pr}^{3+}$ в соединениях PrBaCo₂O_{5.0+δ} не являются свободными ионами; они обладают магнитным моментом, взаимодействуют с соседними ионами и имеют PMхарактер температурного поведения намагниченности. РМ-вклад и
онов Pr^{3+} (до $H\leq 50~\mathrm{k} \Im)$ хорошо описывается выражением (3) при $\Theta = -34$ K. Расчеты показывают, что симметричная петля гистерезиса $\rm PrBaCo_2O_{5.74}$ при 10 К может быть получена, если РМ-вклад иона Pr³⁺ описывается выражением (3) при $\Theta = -34$ К. Полевая зависимость намагниченности редкоземельных ионов R = Gd, Tb, Nd в слоистых кобальтитах RBaCo₂O_{5+ δ}, где $\delta \simeq 0.5$, также описывается выражением (3) при $\Theta = -1.4, -8,$ -18 К соответственно [8, 18, 24]. РМ-вклад редкоземельных ионов значительно меньше рассчитанного. Малые магнитные моменты обнаружены в редкоземельных соединениях и солях, что характеризует отклонения от закона Кюри [32]. Одной из причин отклонения от закона Кюри может быть влияние кристаллического поля соседних ионов на орбитальный момент ионов [32]. В случае с Gd, который не имеет орбитального момента, значение Θ минимально. Малые магнитные моменты качественно можно объяснить тем, что валентные электроны в редкоземельных соединениях проявляют иные магнитные свойства, чем в металле.

Спиновое состояние ионов Со нами рассмотрено для обоих случаев. Для определения вклада ионов Со из намагниченности кобальтита PrBaCo₂O_{5.0+ δ} вычитали PM-вклад как для свободных ионов Pr из выражения (2), так и для взаимодействующих ионов из выражения (3) при $\Theta = -34$ K. На рис. 3 видно, что кривые 1 и 2 с повышением температуры приближаются, но никогда не сойдутся. Наши расчеты показывают, что спиновое состояние ионов Co³⁺ для взаимодействующих ионов выше, чем для свободных ионов, но это различие не превышает экспериментальной ошибки определения эффективного магнитного момента $\Delta \mu_{eff} \simeq 0.1 \mu_B$, и влиянием Θ на точность определения спиновых состояний можно пренебречь.

На рис. 4а и 4b (кривые 1 и 2) приведены экспериментальные значения обратной РМвосприимчивости $\chi_{exp}^{-1}(T)$ и полученные после вычета РМ-вклада свободных ионов Pr³⁺ значения $\chi^{-1}(T)$ для поликристаллов $PrBaCo_2O_{5,52}$ и PrBaCo₂O_{5.74}. Значения эффективного магнитного момента ионов Со, полученные из описания поведения $\chi(T) \simeq \mu_{eff}^2/(T - \Theta_{PM})$ законом Кюри–Вейса с учетом и без учета РМ-вклада ионов Pr, обозначены ниже как μ_{eff} и μ_{exp} соответственно; здесь Θ_{PM} — парамагнитная температура Кюри–Вейса. Видно, что почти линейная зависимость $\chi^{-1}(T)$ в металлической фазе меняется на нелинейное поведение $\chi^{-1}(T)$ в непроводящей фазе ниже T_{MI} и T_{MSC} (кривые 1 на рис. 4a и 4b) в обоих образцах. Это означает, что поведение $\chi^{-1}(T)$ невозможно описать законом Кюри-Вейса при постоянном значении $\mu_{eff}(T)$, и переход сопровождается изменениями $\mu_{eff}(T)$ с температурой. Для определения особенностей перехода металл-изолятор были найдены значения $\chi^{-1}(T)$ и $\chi^{-1}_{exp}(T)$ с интервалом $\Delta T = 3$ К, и для каждого участка определены дифференциальные значения μ_{eff}^{diff} /Со и μ_{exp}^{diff} /Со (кривые 1 и 2 на рис. 4c и 4d).

Температурная зависимость $\chi^{-1}(T)$ соединения PrBaCo₂O_{5.52} типична для слоистых кобальтитов RBaCo₂O_{5.52} при $\delta \simeq 0.5$ [1–7]. Ниже 400 К значения $\chi^{-1}(T)$ меняются с температурой приблизительно линейно (рис. 4*a*). Линейное поведение $\chi^{-1}(T)$ соединения PrBaCo₂O_{5.52} в металлической фазе (символы 1 на рис. 4*a*) описывается законом Кюри– Вейса значениями $\mu_{eff}/\text{Co} = (3.28 \pm 0.05)\mu_B$ и парамагнитной температурой Кюри $\Theta_{PM} = -27$ К. Отрицательное значение Θ_{PM} соответствует ответственности AFM-взаимодействий в этой области температур [1–7]. В непроводящей фазе (ниже T_{MI}) только в небольшом интервале температур (от T = 280-320 K) наблюдается линейное поведение $\chi^{-1}(T)$, которое можно описать законом Кюри-Вейса со значениями $\mu_{eff}/\text{Co} = (1.8 \pm 0.05)\mu_B$ и $\Theta_{PM} = 263$ K для соединения PrBaCo₂O_{5.52}.

Дифференциальные значения μ_{eff}^{diff} /Со KOбальтита $PrBaCo_2O_{5.52}$ (символы 1 на рис. 4c) показывают немонотонное поведение: значение их постоянны, μ_{eff}^{diff} /Co $\simeq (3.2 \pm 0.1)\mu_B$, в интервале температур от 400 до 370 K, резко уменьшаются до μ_{eff}^{diff} /Co $\simeq 1.2\mu_B$ ниже $T_{ST} \simeq 356 \pm 2$ K, далее монотонно увеличиваются до μ_{eff}^{diff} /Co $\simeq 1.8\mu_B$. Температура T_{ST} , при которой происходит резкое изменение наклона кривой $\chi^{-1}(T)$ (чему соответствует резкое уменьшение $\mu_{eff}^{diff}/\text{Co}$) считается температурой перехода металл-изолятор, определенной из спинового состояния. Эта температура $(T_{ST} \simeq 356 \pm 2 \,\mathrm{K})$ примерно на 5 K превышает температуру $T_{MI} \simeq 350 \pm 2 \,\mathrm{K}$ при $\delta = 0.52$ (см. рис. 1а). Эти расхождения объясняются влиянием межгранульного сопротивления поликристаллов. Аналогичные результаты получены для NdBaCo₂O_{5+ δ} [18]. Температурные зависимости μ_{eff} /Со и μ_{eff}^{diff} /Со согласуются в пределах указанных выше ошибок определения значений μ_{eff} /Co. В металлическом состоянии (T = 370-400 K) значению μ_{eff} /Co $\simeq (3.2 \pm 0.10)\mu_B$ из всех возможных состояний ионов Co^{3+} (рис. 4c) ближе всех соответствует смесь состояний ${
m HS}^{'}(t_{2g}^4e_g^2,\ S\ =\ 2)$ и LS $(t_{2g}^6 e_g^0, S = 0)$ c μ_{eff} /Co = $3.43 \mu_B$ в равном соотношении. В полупроводниковой фазе значению $\mu_{eff}/{\rm Co}\simeq(1.7\pm0.10)\mu_B$ ближе всех соответствует смесь состояний IS $(t_{2g}^5e_g^1,\,S=1)$ и LS $(t_{2g}^6e_g^0,\,S=0)$ в октаэдрах и пирамидах.

Дифференциальные значения μ_{exp}^{diff} /Со кобальтита PrBaCo₂O_{5.52}, полученные из поведения χ_{exp}^{-1} примерно в 1.2–1.3 раза выше значений μ_{exp}^{diff} /Со, полученных с учетом PM-вклада иона Pr (кривые 1 и 2 на рис. 4c). Значения μ_{exp} /Со = $(4.10 \pm 0.10)\mu_B$ в металлической фазе и значения μ_{exp} /Со от 2.35 μ_B до 2.2 μ_B в непроводящей фазе, полученные из линейного поведения χ_{exp}^{-1} на рис. 4b, согласуются с данными μ_{exp}^{diff} /Со. Без учета PM-вклада ионов Pr³⁺ в оксиде PrBaCo₂O_{5.52} ионы Co³⁺ должны находиться в металлической фазе в HS/IS-состоянии, а в полупроводниковой фазе в LS/IS-состоянии (кривая 2 на рис. 4c).

В работах [20–22] также полагают, что для кобальтита $PrBaCo_2O_{5.50}$ с учетом вклада Паули и примесей и без учета PM-вклада ионов Pr^{3+} ионы Co^{3+} находятся в HS/IS-состоянии в металлической фазе и LS/IS-состоянии в полупроводниковой фазе.

Магнитные данные не позволяют определить кислородное (октаэдрическое или пирамидальное) окружение ионов Co^{3+} . Синхротронные дифракционные данные сверхвысокого разрешения показывают расширение октаэдров и сжатие пирамид PrBaCo₂O_{5 50} при переходе в металлическую фазу [20]. Так как ионный радиус Со³⁺ увеличивается с увеличением спинового состояния, эти результаты можно трактовать как увеличение спинового состояния ионов Co³⁺ в октаэдрах и уменьшение их в пирамидах при переходе в металлическую фазу. Из двух методов определения спинового состояния ионов Со — с учетом (символы 1 на рис. 4с) или без учета (кривая 2 на рис. 4c) РМ-вклада ионов \Pr — только первый согласуется со структурными данными. Тогда переход металл-изолятор в PrBaCo₂O_{5.52} должен происходить из HS/LS- в LS/IS-состояние при изменении спинового состояния ионов Co³⁺ из HSв LS-состояние в октаэдрах, из LS- в IS-состояние в пирамидах.

Впервые использовать структурные данные расширение октаэдров и сжатие пирамид в металлической фазе — для определения кислородного окружения ионов Со³⁺ предложено в работе [4]. К сожалению, в этой работе РМ-вклад ионов Gd^{3+} был определен неточно [23, 24]. Авторы определили спиновое состояние ионов Со³⁺ в $GdBaCo_2O_{5.50}$ как HS/IS-состояние в металлической фазе, IS/LS-состояние в полупроводниковой фазе. Предполагалось, что переход металл-изолятор происходит при изменении спинового состояния ионов Co³⁺ из HS- в LS-состояние в октаэдрах без изменения IS-состояния в пирамидах в противоречии со своими структурными данными в кобальтитах GdBaCo₂O_{5.50} [4] и в PrBaCo₂O_{5.50} [20-22]. Эта модель нашла широкое признание, и многие исследователи придерживаются этой модели перехода металл-изолятор. Наши исследования RBaCo₂O_{5+δ}, где $\delta \simeq 0.5$, R = Gd, Tb, Nd, Pr [8,23,24] показывают, что при учете РМ-вклада ионов R переход металлизолятор происходит при изменении спинового состояния из HS/LS- в LS/IS-состояние в согласии с известными структурными данными. Только в соединении $LaBaCo_2O_{5.50}$, в котором ионы La^{3+} имеют наибольший размер из редкоземельных элементов. не обладают магнитным моментом и не вносят РМ-вклада в намагниченность, переход металлизолятор происходит при изменении спинового состояния из HS/IS- в LS/IS-состояние [12]. Размер редкоземельного иона влияет на кристаллическое поле на ионах Со, и, по-видимому, ионы La³⁺ оказывают влияние на спиновое состояние Со.

Рис. 4. Температурные зависимости обратной РМ-восприимчивости (χ^{-1}) кобальтитов $\operatorname{PrBaCo_2O_{5.52}}(a)$ и $\operatorname{PrBaCo_2O_{5.74}}(b)$ с учетом и без учета РМ-вклада ионов $\operatorname{Pr}^{3+}(кривые(1)$ и (2) соответственно), а также эффективного магнитного момента $\mu_{eff}^{diff}/\operatorname{Co}$ кобальтитов $\operatorname{PrBaCo_2O_{5.52}}(c)$ и $\operatorname{PrBaCo_2O_{5.74}}(d)$ с учетом и без учета РМ-вклада ионов $\operatorname{Pr}^{3+}(кривые(1)$ и (2) соответственно), а также эффективного момента $\mu_{eff}^{diff}/\operatorname{Co}$ кобальтитов $\operatorname{PrBaCo_2O_{5.52}}(c)$ и $\operatorname{PrBaCo_2O_{5.74}}(d)$ с учетом и без учета РМ-вклада ионов $\operatorname{Pr}^{3+}(кривые(1)$ и (2) соответственно)

На рис. 4b и 4d приведены результаты исследований спинового состояния ионов Со вблизи перехода металл-полупроводник оксида PrBaCo₂O_{5.74}. Во всем интервале температур T = 175-400 K (кривая 2 на рис. 4b) наблюдается линейное от температуры поведение $\chi_{exp}^{-1}(T)$, которое описывается законом Кюри-Вейса при постоянном значении μ_{eff} /Co = (3.67 ± 0.05) μ_B и Θ_{PM} = 135 K. Приблизительно такими же постоянными значениями $\mu_{eff}/{\rm Co}=(3.80\pm0.05)\mu_B$ и
 $\Theta_{PM}=135\pm10~{\rm K}$ описывается поведение $\chi_{exp}^{-1}(T)$ со
единений $PrBaCo_2O_{5.75(1)}$ в работе [17] при T = 150-300 К. Дифференциальные значения $\mu_{exp}^{diff}/\text{Co}(T)$, полученные из зависимости $\chi_{exp}^{-1}(T)$, показывают немонотонное поведение (кривая 2 на рис. 4d): значения μ_{exp}^{diff} /Со от 175 до 225 К уменьшаются, далее остаются почти постоянными до $T \simeq 300 \, {\rm K},$ затем снова возрастают. Значения $\mu_{exp}^{diff}/{
m Co}(T),$ полученные без учета РМ-вклада, не обнаруживают ни металлического состояния в интервале

400–280 К, ни перехода металл
–полупроводник при $T_{MSC}\simeq 270$ К (см. рис. 1
 b).

В зависимости от температуры значения $\chi^{-1}(T)$ для соединения PrBaCo₂O_{5.74} (символы 1 на рис. 4b) изменяется плавно, без резких изменений. В интервале от T = 400 K до $T \simeq 280$ K значения $\chi^{-1}(T)$ уменьшаются пропорционально температуре. Ниже $T \simeq T_{MSC} = 280$ K видно отклонение $\chi^{-1}(T)$ от линейной зависимости по температуре (линия 3). Дифференциальные значения эффективного момента в металлической фазе остаются приблизительно постоянными $(\mu_{eff}^{diff}/\text{Co} = (2.95 \pm 0.05)\mu_B)$ от 400 K до температуры $T_{ST} \simeq 280$ K, близкой к температуре перехода металл-полупроводник $T_{MSC} = 270 \pm 10$ K (см. рис. 1b).

Ниже $T_{ST}\simeq 280~{\rm K}$ значения $\mu_{eff}^{diff}/{\rm Co}$ монотонно увеличиваются до $\mu_{eff}^{diff}/{\rm Co}\simeq 3.50\mu_B$ при $T\simeq 175~{\rm K}.$ В металлической фазе линейное по температуре поведение $\chi(T)$ хорошо описывается зако-

ном Кюри–Вейса с μ_{eff} /Со = $(2.95 \pm 0.05)\mu_B$. В небольшом интервале температур вблизи T = 175– 200 К линейное по температуре поведение $\chi^{-1}(T)$ описывается значением μ_{eff} /Со = $(3.41 \pm 0.05)\mu_B$ в согласии с данными μ_{eff}^{diff} /Со. Таким образом, в металлической фазе значение μ_{eff} /Со $\simeq 3\mu_B$ не зависит от температуры и увеличивается до μ_{eff} /Со $\simeq 3.5\mu_B$ ниже $T_{ST} = 280 \pm 10$ К при переходе в полупроводниковую фазу при уменьшении температуры.

Если принять во внимание три спиновых состояния как Co^{3+} , так и Co^{4+} и наличие двух типов координации (пирамиды и октаэдры), то возникает несколько возможностей спиновых состояний ионов Со. В общем случае эффективный магнитный момент ионов μ_{eff} /Со можно определить из следующего выражения [1,30]:

$$\begin{split} \mu_{eff}/\text{Co} &= g[N_{\text{Co}^{4+}}^{oct}S_{\text{Co}^{4+}}S_{\text{Co}^{4+}}(S_{\text{Co}^{4+}}+1) + \\ &+ N_{\text{Co}^{3+}}^{oct}S_1(S_1+1) + N_{\text{Co}^{4+}}^{pyr}S_{\text{Co}^{4+}}(S_{\text{Co}^{4+}}+1) + \\ &+ N_{\text{Co}^{3+}}^{pyr}S_2(S_2+1)]^{1/2}, \end{split}$$

где $g=2,\,N_{\rm Co}^{oct},\,N_{\rm Co}^{pyr},\,N_{\rm Co}^{oct},\,N_{\rm Co}^{pyr}$ — количество ионов Co $^{4+}$ и Co $^{3+}$ в октаэдрах и пирамидах, S_1 и S_2 — спиновые состояния ионов Co $^{3+}$ в октаэдрах и пирамидах соответственно, $S_{\rm Co}{}^{4+}$ — спиновое состояние ионов Co $^{4+}$ в октаэдрах.

Учтены некоторые факты и сделаны следующие предположения.

1. Ион Со⁴⁺ с большей степенью ковалентности предпочитает более крупную — октаэдрическую — координацию [17], ионы Со⁴⁺ присутствуют только в октаэдрах и отсутствуют в пирамидах, $N_{\rm Co}^{oct} = \delta - 0.5, N_{\rm Co}^{pyr} = 0.$

2. Четырехвалентный ион Co^{4+} в слоистых кобальтитах всегда находятся в LS-состоянии $(t_{2g}^5 eg^0, S = 1/2)$ из-за сильного кристаллического поля [25].

3. Количество и
онов ${\rm Co}^{3+}$ уменьшается за счет замещения их и
онами ${\rm Co}^{4+}.$

4. При $\delta \simeq 0.75$ ионы Со³⁺ и Со⁴⁺ сосуществуют в соотношении 3 : 1. Из условий электронейтральности следует, что $N_{\text{Co}^{3+}}^{oct} + N_{\text{Co}^{3+}}^{pyr} = 1.5 - \delta \simeq \delta$.

Тогда выражение (4) принимает вид

$$\mu_{eff}/\text{Co} = g[N_{\text{Co}^{4+}}^{oct}S_{\text{Co}^{4+}}(S_{\text{Co}^{4+}}+1) + N_{\text{Co}^{3+}}^{oct}S_1(S_1+1) + (\delta - N_{\text{Co}^{3+}}^{oct})S_2(S_2+1)]^{1/2}.$$
 (5)

При этих предположениях можно получить значение $\mu_{eff}/\text{Co} \simeq 3\mu_B$ в металлической фазе, если 1/4

мест ионов Со занимают ионы Co⁴⁺ в LS-состоянии (S = 1/2), примерно 0.35 ионов Co³⁺ в HS-состоянии (S = 2) занимают места в октаэдрах, а 0.40 ионов Co³⁺ в LS-состоянии (S = 0) расположены в пирамидах. Тогда переход металл-полупроводник объясняется изменением спинового состояния ионов Co³⁺ из HS/LS- в HS/IS-состояние при изменении их состояния из LS $(t_{2g}^6 e_g^0)$ в IS $(t_{2g}^5 e_g^1)$ в пирамидах без изменений спинового состояния ионов Co³⁺ и Co⁴⁺ в октаэдрах.

На рис. 4d показаны расчетные значения $\mu_{eff}/{\rm Co}=3.02\mu_B,\ 3.57\mu_B$ для HS/LS- и HS/IS-состояний ионов Co³⁺ при соотношении Co⁴⁺ : Co³⁺ = 1 : 3 ($\delta=0.75$) из выражения (5). Значения $\mu_{eff}/{\rm Co}=(2.95\pm0.05)\mu_B$ в металлической фазе, плавное возрастание $\mu_{eff}^{diff}/{\rm Co}(T)$ при понижении температуры, близость температур изменения спинового состояния $T_{ST}\simeq280~{\rm K}$ и перехода металл-полупроводник $T_{MSC}\simeq270~{\rm K}$ хорошо согласуются с предлагаемой моделью.

Предложенная схема спиновых переходов объясняет результаты отрицательного коэффициента объемного расширения в PrBaCo₂O_{5.74} [26]. Объем элементарной ячейки поликристаллов PrBaCo₂O_{5.74} от 300 K до $T \simeq 150$ K уменьшается, далее увеличивается [26]. Дифференцированием объема элементарной ячейки dV/dT обнаружен отрицательный коэффициент объемного расширения в интервале температур T = 100-150 К. Полагаем, что результаты согласуются с увеличением спинового состояния ионов Со при понижении температуры. Так как ионный радиус Со³⁺ увеличивается с увеличением спинового состояния, переход из LS- в IS-состояние приводит к расширению образца, что на фоне теплового уменьшения решетки приводит увеличению объема решетки и к отрицательному коэффициенту объемного расширения при низких температурах. Материалы с отрицательным тепловым расширением имеют большое промышленное значение.

Спонтанный момент при низких температурах $M \simeq 0.7 \mu_B/\text{Co}$, оцененный из намагниченности насыщения поликристаллов $\text{PrBaCo}_2\text{O}_{5.74}$ (см. вставку к рис. 2b), в предложенной модели спиновых состояний ионов Co можно объяснить ферримагнитным расположением ионов Co в октаэдрах и пирамидах и PM-вкладом ионов Pr^{3+} . В работе [17] не было обнаружено никаких особенностей в эволюции объема решетки в $\text{PrBaCo}_2\text{O}_{5.75}$, которые могли бы свидетельствовать об изменениях спинового состояния ионов Co. Это не удивительно, так как исследования проведены ниже температуры перехода металл-полупроводник $T_{MSC} \simeq 300$ К. В этой области температур спиновое состояние ионов Со меняется монотонно (кривая 1 на рис 4d). Мы полагаем, что при исследовании температурной зависимости объема решетки ниже $T \simeq 400$ К можно было бы обнаружить изменение спинового состояния ионов Со при $T \simeq 300$ К.

6. ЗАКЛЮЧЕНИЕ

В настоящее время роль редкоземельных ионов в FM-состоянии слоистых кобальтитов не выяснена. Эксперименты показывают, что редкоземельные ионы не являются свободными, они взаимодействуют с соседними ионами, обладают магнитным моментом и имеют РМ-вид температурного поведения намагниченности. В большинстве работ магнитные данные при низких температурах анализируются без учета влияния редкоземельных ионов [11, 17, 33, 34]. Известна только одна работа, в которой предполагается, что в NdBaCo₂O_{5.75} подрешетки как Nd, так и Со упорядочены FM-связью внутри подрешеток и AFM-связью между ними, образуя общую ферримагнитную структуру [35]. Возникновение FM-взаимодействий ниже T_C в слоистых оксидах $RBaCo_2O_{5+\delta}$ на основе R = Nd, Pr, La [8, 11, 12]показывает, что магнитное состояние в них гораздо сложнее, чем в других оксидах. Проблема усложняется при $\delta > 0.5$, когда одновременно сосуществуют ионы Co³⁺ и Co⁴⁺. Определение магнитного и спинового состояний таких соединений при низких температурах требует приготовления совершенных кристаллов и дополнительных (нейтронных, рентгеновских и магнитных) исследований.

Проведенные исследования позволяют предложить следующую схему спиновых переходов и
онов Со в ${\rm RBaCo_2O}_{5+\delta}$ при увеличении содержания кислорода.

1. Спиновое состояние ионов Co^{3+} в металлической фазе $\operatorname{PrBaCo}_2\operatorname{O}_{5+\delta},\ \delta=0.52,\ 0.74$ при увеличении содержания кислорода остается неизменным: ионы Co^{3+} остаются в HS-состоянии в октаэдрах и в LS-состоянии в пирамидах. Количество мест ионов Co^{3+} уменьшается за счет замещения их ионами Co^{4+} в LS-состоянии ($t_{2g}^5 e_g^0,\ S=1/2$).

2. Переход из металлического в полупроводниковое состояние в RBaCo₂O_{5+ δ} при $\delta \simeq 0.50$ происходит при изменении спинового состояния ионов Co³⁺ из HS (S = 2) в LS (S = 0) в октаэдрах и из LS (S = 0) в IS (S = 1) в пирамидах в согласии с известными структурными данными.

3. Переход из металлического в полупроводниковое состояние в RBaCo₂O_{5+ δ} при $\delta \simeq 0.75$ происходит при изменении спинового состояния ионов Co³⁺ из HS/LS- в HS/IS-состояние. При этом спиновые состояния ионов Co³⁺ (HS, S = 2) и Co⁴⁺ (LS, S = 1/2) в октаэдрах остаются неизменным, а в пирамидах при понижении температуры ионы Co³⁺ плавно переходят из LS-состояния (S = 0) в IS-состояние (S = 1).

Финансирование. Работа выполнена в рамках Государственного задания Министерства науки и высшего образования Российской Федерации (темы «Спин», № 122021000036-3 и «Электрон», № 122021000039-4). Работа выполнена с использованием оборудования ЦКП «Испытательный центр нанотехнологий и перспективных материалов» ИФМ УрО РАН. Благодарим А. С. Волегова за проведение некоторых магнитных измерений с использованием оборудования РРМЅ DynaCool Т9 УЦКП «Современные нанотехнологии» УрФУ (рег. № 2968), при поддержке Министерства науки и высшего образования РФ (Проект № 075-15-2021-677).

ЛИТЕРАТУРА

- A. Maignan, C. Martin, D. Pelloquin et al., J. Sol. St. Chem. 142, 247 (1999).
- C. Martin, A. Maignan, D. Pelloquin et al., Appl. Phys. Lett. 71, 1421 (1997).
- A. A. Taskin, A. N. Lavrov, and Yoichi Ando, Phys. Rev. B 71, 134414 (2005).
- 4. C. Frontera, J. L. García-Munoz, A. Llobet et al., Phys. Rev. B 65, 180405(R) (2002).
- Y. Moritomo, T. Akimoto, M. Takeo et. al., Phys. Rev. B 61, 13325(R) (2000).
- Z. X. Zhou and P. Schlottmann, Phys. Rev. B 71, 174401 (2005).
- M. Baran, V. I. Gatalskaya, R. Szymczak et al., J. Phys.: Condensed Matter 15, 8853 (2003).
- Н. И. Солин, С. В. Наумов, Письма в ЖЭТФ 114, 179 (2021).
- 9. Н. Ф. Мотт, *Переходы металл-изолятор*, Наука, Москва (1979).
- Н. Б. Иванова, С. Г. Овчинников, М. М. Коршунов и др., УФН 179, 837 (2009).

- S. Ganorkar, K. R. Priolkar, P. R. Sarode, and A. Banerjee, J. Appl. Phys. **110**, 053923 (2011).
- E.-L. Rautama, V. Caignaert, Ph. Boullay et al., Chem. Matter 21, 102 (2009).
- H. D. Zhou and J. B. Goodenough, J. Sol. St. Chem. 177, 3339 (2004).
- 14. A. Jarry, H. Luetkens, Y. G. Pashkevich et al., Physica B 404, 765 (2009).
- 15. L. Landau, Phys. Zs. Sowjet. 4, 675 (1933).
- 16. F. Fauth, E. Suard, V. Caignaert, and I. Mirebeau, Phys. Rev. B 66, 184421 (2002).
- 17. C. Frontera, J. L. García-Munoz, and A. E. Carillo, Phys. Rev. B 70, 18428 (2004).
- Н. И. Солин и С. В. Наумов, Письма в ЖЭТФ 115, 531 (2022).
- 19. P. Miao, X. Lin, S. Lee et al., Phys. Rev. B 95, 125123 (2017).
- 20. C. Frontera, J. L. García-Munoz, A. E. Carillo et al., Phys. Rev. B 74, 054406 (2006).
- 21. C. Frontera, J. L. García-Munoz, A. E. Carillo et al., JMMM 316, e731 (2007).
- C. Frontera, J. L. García-Munoz, O. Castaňo et al., J. Phys.: Condens. Matter 20, 104228 (2008).
- **23**. Н. И. Солин, С. В. Наумов, С. В. Телегин, Письма в ЖЭТФ **107**, 206 (2018).

- **24**. Н. И. Солин, С. В. Наумов, ЖЭТФ **157**, 824 (2020).
- 25. A. A. Taskin and Yoichi Ando, Phys.Rev. Lett. 95, 176603 (2005).
- 26. P. Miao, X. Lin, A. Koda et al., Adv. Mater. 29, 1605991 (2017).
- 27. E-L. Rautama and M. Karppinen, J. Sol. St. Chem. 183, 1102 (2010).
- **28**. Д. Гуденаф, *Магнетизм и химческая связь*, Металлургия, Москва (1966).
- 29. S. Roy, M. Khan, Y. Q. Guo, J. Craig, and N. Ali, Phys. Rev.B 65, 064437 (2002).
- Дж. Смарт, Эффективное поле в теории магнетизма, Мир, Москва (1968).
- 31. F. Fauth, E. Suard, V. Caignaert, B. Domengès, I. Mirebeau, and L. Keller, Eur. Phys. J. B 21, 163 (2001).
- **32.** С. В. Вонсовский, *Магнетизм*, Наука, Москва (1971), гл. 9.
- 33. Md. M. Seikh, V. Pralong, O. I. Lebedev, V. Caignaert, and B. Raveau, J. Appl. Phys. 114, 013902 (2013).
- V. Pralong, V. Caignaert, S. Hebert, A. Maignan, and B. Raveau, Solid State Ionics 177, 1879 (2006).
- 35. D. D. Khalyavin, O. Prokhnenko, N. Stüßer et al., Phys. Rev. B 77, 174417 (2008).