ДИНАМИКА ЯН-ТЕЛЛЕРОВСКОГО УПОРЯДОЧЕНИЯ В ПАРАЭЛЕКТРИЧЕСКОЙ ФАЗЕ ВіМп₇О₁₂: ЗОНДОВАЯ МЕССБАУЭРОВСКАЯ ДИАГНОСТИКА НА ЯДРАХ ⁵⁷Fe

А. В. Соболев^а, В. И. Ниценко^а, А. А. Белик^b, Я. С. Глазкова^{а*}, М. С. Кондратьева^c,

И. А. Пресняков а,с

^а Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

^b Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba 305-0044, Ibaraki, Japan

> ^c Shenzhen MSU-BIT University Shenzhen 518115, Guangdong province, China

Поступила в редакцию 27 апреля 2023 г., после переработки 27 апреля 2023 г. Принята к публикации 2 мая 2023 г.

Представлены результаты мессбауэровского исследования электрических сверхтонких взаимодействий зондовых ядер ⁵⁷Fe, стабилизированных в структуре манганита $\operatorname{BiMn_7O_{12}}$. Измерения спектров проводились в параэлектрической области температур, включающей структурные фазовые переходы $I2/m \leftrightarrow Im\overline{3}$ ($T_1 \approx 600$ K) и $Im \leftrightarrow I2/m$ ($T_2 \approx 450$ K). Расчет параметров тензора градиента электрического поля с учетом дипольных вкладов от катионов Bi^{3+} в области первого фазового перехода позволил подтвердить случайную ориентацию дипольных моментов p_{Bi} в кубической фазе манганита ($Im\overline{3}$). На основании анализа мессбауэровских спектров при $T_2 < T < T_1$ в рамках релаксационной двухуровневой модели рассмотрены различные сценарии проявления динамического эффекта Яна–Теллера, приводящего к «плавлению» орбитального порядка в подрешетке марганца.

DOI: 10.31857/S0044451023090158 **EDN:** KENEEI

1. ВВЕДЕНИЕ

Повышенный интерес исследователей к двойному манганиту висмута $\operatorname{BiMn_7O_{12}}[1-4]$ и соединениям на его основе, например, $\operatorname{BiMn_7-xCu_xO_{12}}(0 < x \leq 1)$ [5, 6] связан с большим числом проявляемых этими перовскитоподобными системами структурных и магнитных фазовых переходов. Предполагается, что подобное разнообразие разных по своей природе переходов во многом связано с входящими в состав этих оксидов двух «активных», с точки зрения структурной неустойчивости, катионов $\operatorname{Mn^{3+}}$ и $\operatorname{Bi^{3+}}$ [7–10]. Высокоспиновые ян-теллеровские ка

тионы $Mn^{3+}(d^4)$ в идеальном октаэдрическом анионном окружении имеют двукратно вырожденную конфигурацию e_a^1 , для которой характерно не только локальное искажение полиэдров MnO₆, сохраняющее их центр симметрии, но и кооперативное взаимодействие самих ян-теллеровских центров, которое часто приводит к орбитальному упорядочению [7, 8, 11, 12]. Именно с орбитальным упорядочением часто связано образование при низких температурах необычных типов магнитного упорядочения катионов Mn^{3+} [2, 6, 13, 14]. В случае легко поляризуемых катионов $Bi^{3+}(6s^2)$, имеющих стереохимически активную неподеленную 6s²-электронную пару, индуцируемые искажения кристаллической решетки приводят к исчезновению центросимметричных позиций. В большинстве случаев с этими типами искажений связаны переходы кристаллов в ферроэлектрическое состояние [15, 16]. Сосуществование в одном соединении магнитного порядка и элек-

^{*} E-mail: janglaz@bk.ru

трической поляризации является характерной особенностью «собственных» мультиферроиков, имеющих большое фундаментальное и практическое значение [17].

В последнее время для исследования рассматриваемых манганитов и схожих классов соединений все чаше применяются локальные ядернорезонансные методы диагностики [18-24]. Получаемые с помощью этих методов температурные зависимости сверхтонких магнитных полей B_{hf} и главных компонент V_{ii} тензора градиента электрического поля (ГЭП) отражают аналогичные зависимости спонтанных намагниченности и электрической поляризации [9, 18-24]. Ранее нами уже были опубликованы результаты исследования BiMn₇O₁₂ методом зондовой мессбауэровской спектроскопии ядер ⁵⁷Fe в температурных областях со спонтанной электрической поляризацией $T_N < T < T_2$ (где $T_N \approx 60 \,\mathrm{K}$ и $T_2 \approx 450 \,\mathrm{K}$) [25]. На основании полученных экспериментальных данных и разработанных модельных подходов впервые были построены температурные зависимости электрической поляризации $P_{\rm S}(T)$, по которым удалось установить природу наблюдаемых структурных фазовых переходов.

В настоящей работе зондовый вариант мессбауэровской спектроскопии на ядрах ⁵⁷Fe применен для исследования двух высокотемпературных областей, в первой из которых ($T > T_1 \approx 600$ K) BiMn₇O₁₂ находится в разупорядоченном параэлектрическом состоянии, а во второй ($T_1 > T > T_2 \approx 450$ K), как предполагается в некоторых работах [3, 5, 6], переходит в состояние с орбитальным упорядочением в подрешетке марганца. Цель настоящей работы состоит в построении общей картины наблюдаемых для манганита BiMn₇O₁₂ структурных и электрических фазовых переходов, демонстрирующих взанимосвязь между так называемыми орбитальными, зарядовыми и спиновыми степенями свободы в фазах с сильной электронной корреляцией.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика синтеза легированного манганита Ві $Mn_{6.96}Fe_{0.04}O_{12}$ при высоких давлениях была подробно описана в наших предыдущих публикациях [3,25]. Контроль однофазности полученных образцов и структурные исследования проводились с помощью порошковой дифракции на синхротронном источнике рентгеновского излучения в температурном диапазоне 300–650 K в большой камере Дебая–Шеррера на линии BL15XU (SPring-8) в интервале 2θ от 3 до 60° с шагом 0.003°. Использовали монохроматическое излучение с длиной волны $\lambda = 0.65298$ Å. Интерпретация диффрактограмм и уточнение параметров кристаллической решетки проводились методом Ритвельда с помощью пакета RIETAN-2000 [26].

Кривые дифференциальной сканирующей калориметрии (ДСК) измеряли в алюминевых капсулах с помощью калориметра Mettler Toledo DSC1 STAR^e при скорости нагрева/охлаждения 10 К/мин в токе азота и температурном диапазоне от 140 до 673 К.

Мессбауэровские спектры измерялись на спектрометре электродинамического типа MS-1104Em, работающем в режиме постоянного ускорения. В качестве источника мессбауэровского у-излучения 57 Co(Rh). использовали Значения изомерных сдвигов приводятся относительно *α*-Fe (298 K). Расшифровка экспериментальных мессбауэровских спектров осуществлялась с использованием программного пакета SpectrRelax [27]. Расчет параметров тензора ГЭП проводился с помощью программы GradientNCMS, разработанной в НИЛ ядерно-химического материаловедения химического факультета МГУ.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Кристаллографические и термодинамические данные

Дифрактограммы полученного манганита Ві $Mn_{6.96}Fe_{0.04}O_{12}$ не выявили присутствия какихлибо дополнительных рефлексов, которые могли бы относиться к примесным фазам (рис. 1). При T = 615 K все наблюдаемые рефлексы относятся к кубической фазе ($Im\overline{3}$) Ві Mn_7O_{12} , стабильной при $T > T_1$ (рис. 1*a*). При переходе в область $T_2 < T < T_1$ происходит расщепление рефлексов, соответствующее моноклинной сингонии I2/m(рис. 1*b*) Дифрактограммы Ві $Mn_{6.96}Fe_{0.04}O_{12}$ практически не отличаются от недопированного манганита Ві Mn_7O_{12} при тех же температурах [3].

На кривых ДСК образца $BiMn_{6.96}Fe_{0.04}O_{12}$ (рис. 2) в области 350–650 К наблюдаются два фазовых перехода. Один из них (420–440 К) отвечает структурному превращению $Im \leftrightarrow I2/m$, подробному описанию которого была посвящена наша предыдущая работа [25]. Интенсивные сигналы при более высоких температурах (580–600 К) относятся к структурному переходу $I2/m \leftrightarrow Im\overline{3}$,

Рис. 1. (В цвете онлайн.) Рентгенограммы манганита $\operatorname{BiMn}_{6.96}{}^{57}\operatorname{Fe}_{0.04}\operatorname{O}_{12}$, измеренные при T = 615 K $(T > T_1)$ (a) и T = 480 K $(T_2 < T < T_1)$ (b). На вставках изображены структурные фрагменты кубической $Im\overline{3}$ и моноклинной I2/m модификаций двойного манганита $\operatorname{BiMn}_7\operatorname{O}_{12}$, устойчивых при соответствующих температурах [3]

Рис. 2. (В цвете онлайн) ДСК-кривые манганита ${\rm BiMn_{6.96}}^{57}{
m Fe_{0.04}O_{12}}$, полученные в режимах нагревания и охлаждения

ранее наблюдавшемуся для незамещенного образца $\operatorname{BiMn_7O_{12}}$ при $T_1 = 608 \,\mathrm{K}$ [3]. Сравнение кривых ДСК, измеренных в режимах охлаждения и нагревания, демонстрирует гистерезис шириной $\Delta T \approx 6 \,\mathrm{K}$, который сопоставим с соответствующей величиной для $\operatorname{BiMn_7O_{12}}$ (около 18 K) [3]. Небольшое уменьшение величины точки фазового перехода $T_1 \approx 590 \,\mathrm{K}$ для $\operatorname{BiMn_{6.96}Fe_{0.04}O_{12}}$ по сравнению с незамещенным образцом $\operatorname{BiMn_7O_{12}}$ ранее наблюдалось для других манганитов $\operatorname{BiMnO_3}$ [28] и

469

 AMn_7O_{12} (A = Sr, Cd) [29] и, таким образом, может служить косвенным подтверждением локализации атомов ⁵⁷Fe в структуре исследуемого манганита.

3.2. Мессбауэровские данные для диапазона $T>T_1$

На рис. 3а представлен характерный мессбауэровский спектр ядер ⁵⁷Fe в манганите ВіМп_{6.96}Fe_{0.04}O₁₂, измеренный в «высокотемпературном» диапазоне $T > T_1 \approx 600 \,\mathrm{K}$. Для всего указанного диапазона спектры представляют собой уширенный дублет с небольшим и практически не зависящим от температуры квадрупольным расщеплением $\Delta \approx 0.26$ мм/с (рис. 3 ϵ). Полученное нами среднее значение изоиерного сдвига $\langle \delta \rangle_{633\mathrm{K}} \approx 0.17$ мм/с соответствует катионам Fe³⁺ [30], изовалентно замещающим Mn³⁺ в октаэдрических позициях. Несмотря на то, что при $T > T_1$ манганит ВіМп_{6.96}Fe_{0.04}O₁₂ обладает кубической структурой (пр. гр. $Im\overline{3}$), частные октаэдрические позиции Mn2, в которых стабилизируются зондовые катионы Fe³⁺, имеют более низкую локальную симметрию, что объясняет тем самым ненулевое значение ГЭП

Рис. 3. (В цвете онлайн.) Характерные мессбауэровские спектры ядер 57 Fe в манганите ${\rm BiMn_{6.96}}^{57}$ Fe $_{0.04}O_{12}$, измеренные в диапазонах $T > T_1$ (a) и $T_2 < T < T_1$ (b). Справа на рис. а и б приведены распределения $p(\Delta)$ квадрупольных расщеплений Δ . На рис. в приведены полученные экспериментальные (черные точки) и теоретические (цветные звездочки) значения квадрупольных расщеплений Δ

и, как следствие, наблюдаемое квадрупольное расщепление дублета. Для подтверждения этого предположения нами был проведен расчет радиальной зависимости парциальных вкладов всех сортов ионов в главную компоненту V_{ZZ} тензора ГЭП. Расчет проводился в рамках «ионной модели» с учетом только монопольных вкладов V_{ZZ}^{mon} ионов, заряды которых принимались равными их формальным степеням окисления (Bi³⁺, Mn³⁺ и O²⁻) (рис. 4). Параметры кристаллической решетки были взяты для нелегированного BiMn₇O₁₂ при T = 630 K [3]. Как видно на рис. 4, основной вклад в V_{ZZ} для кубической фазы дают катионы ${\rm Bi}^{3+}$ ($V_{ZZ}^{mon} > 0$) и ${\rm Mn}^{3+}$ ($V_{ZZ}^{mon} < 0$). Однако из-за практически полной взаимной компенсации этих противоположных по знаку вкладов решающее влияние на результирующее значение V_{ZZ} также могут оказывать ионы ${\rm O}^{2-}$ ($V_{ZZ,O}^{mon} > 0$). Несмотря на то, что проведенные расчеты позволяют качественно объяснить происхождение ГЭП в позициях Mn2 кубической фазы ${\rm BiMn}_{6.96}{\rm Fe}_{0.04}{\rm O}_{12}$, полученное теоретическое значение $\Delta^{theor} \propto V_{ZZ}$ все же заметно отличается от экс-

Рис. 4. Радиальные зависимости вкладов подрешеток висмута, марганца и кислорода в манганите ${\rm BiMn_7O_{12}}$ в главную составляющую ГЭП V_{ZZ}

периментальной величины $\Delta \approx 0.26$ мм/с. Кроме того, несмотря на эквивалентность всех позиций марганца Mn2, занимаемых зондовыми катионами Fe³⁺, экспериментальные спектры не могут быть удовлетворительно описаны в виде единственного квадрупольного дублета с неуширенными компонентами, что свидетельствует о некотором распределении $p(V_{ZZ})(\sim p(\Delta))$ значений $V_{ZZ}(\sim \Delta)$ на ядрах ⁵⁷Fe.

Мы предполагаем, что причина отмеченных выше расхождений может быть связана с необходимостью учета при расчете параметров тензора ГЭП не только монопольных V_{ZZ}^{mon} , но и дипольных V_{ZZ}^{dip} вкладов от ионов, находящихся в нецентросимметричных позициях структуры. Точное решение этой задачи невозможно из-за отсутствия надежных данных о значениях дипольных моментов ионов и их ориентации в кристалле. Однако в нашем случае основной вклад в V_{ZZ} связан только с катионами Bi³⁺ (см. рис. 4), имеющими стереохимически активную неподеленную $6s^2$ -пару [1, 3]. Наличие такой пары вызывает смещение катионов Bi³⁺ из центросимметричных позиций, что фактически равносильно индуцированию у них электрического дипольного момента *p*_{Bi}. Поэтому в дальнейших вычислениях V_{ZZ} учитывались дипольные вклады $V_{ZZ,\mathrm{Bi}}^{dip}$ только от катионов Bi³⁺, при этом сами дипольные моменты $p_{\rm Bi}$ выступали в качестве варьируемых параметров. Кроме того, поскольку при высоких температурах $T > T_1$ манганит BiMn₇O₁₂ является параэлектриком, мы предполагали, что дипольные моменты *p*_{Bi} случайным образом разориентированы в кубической решетке манганита [3]. Детали расчетов приведены в нашей работе [25].

Полученные результаты показали, что даже в рамках сделанных приближений учет дипольного вклада от катионов Bi³⁺ позволяет достичь практи-

Рис. 5. (В цвете онлайн.) Зависимости квадрупольного расщепления Δ^{theor} (черные точки) и дисперсии квадрупольного расщепления D_p^{theor} (синие точки) от дипольного момента $p_{\rm Bi}$ катионов ${\rm Bi}^{3+}$. Горизонтальные линии соответствуют экспериментальным значениям Δ^{exp} и D_p^{exp} с учетом погрешности

Рис. 6. Схема, поясняющая модель двухуровневой релаксации: E_i — энергии состояний «1» и «2»; n_i — их заселенности; Ω_{ij} — частоты перехода между соответствующими состояниями; E_A — энергия активации

чески полного совпадения теоретического и экспериментального значений квадрупольного расщепления (рис. 5). Полученная в расчетах величина электрического дипольного момента $p_{\mathrm{Bi}} \approx 1.2 \cdot 10^{-29} \ \mathrm{Kr} \cdot \mathrm{m}$ попадает в диапазон соответствующих значений для других оксидных соединений Bi(III) [10]. Наиболее важный результат вычислений состоит в том, что даже при случайной ориентации дипольных моментов *p*_{Bi} позиции Mn2 становятся неэквивалентными с точки зрения индуцируемого в них решеточного вклада в ГЭП. По сути, это и служит основной причиной наблюдаемого уширения спектров, т.е. появления распределения $p(\Delta)$ (см. рис. 3*a*). Используя рассчитанные теоретические значения Δ^{theor} для каждой из позиций Mn2, различающихся лишь относительной ориентацией окружающих их моментов $p_{\rm Bi}$, было смоделировано распределение $p^{theor}(\Delta)$, дисперсия которого $D_p^{theor}=0.020~{
m Mm}^2/{
m c}^2$ оказалась

Рис. 7. (В цвете онлайн.) а) Мессбауэровские спектры $\operatorname{BiMn_{6.96}}^{57}\operatorname{Fe_{0.04}O_{12}}(T_2 < T < T_1)$, обработанные в рамках двухуровневой модели. б) Полученные зависимости логарифма $\ln\Omega_R$ средней частоты релаксации и логарифма $\ln(n_1/n_2)$ отношения заселенностей n_1 и n_2 от обратной температуры. в) Аналогичные зависимости параметров дисторсии D_d октаэдров $\operatorname{Mn4O_6}$ и $\operatorname{Mn5O_6}$, рассчитанные с использованием структурных данных [3]. Линии красного цвета соответствуют линейной аппроксимации в выбранных диапазонах

очень близкой к дисперси
и $D_p^{exp}=0.017(1){\rm MM}^2/{\rm c}^2$ экспериментального распределения
 $p(\Delta)$ (рис. 5).

Таким образом, представленные выше мессбауэровские данные свидетельствуют о том, что в параэлектрической кубической фазе $\operatorname{BiMn}_{6.96}\operatorname{Fe}_{0.04}O_{12}$ (при $T > T_1$) катионы Bi^{3+} , оставаясь в локально искаженном кристаллическом окружении, сохраняют электрические дипольные моменты p_{Bi} , разориентрованные случайным образом в кубической решетке. В этом случае фазовые переходы при более низких температурах ($T < T_2$) в антиферро- или ферроэлектрическое состояние будут сопровождаться упорядочением диполей $p_{\rm Bi}$, т.е. являются фазовыми переходами типа порядок-беспорядок [31] как альтернатива фазовым переходам типа смещения [32]. В некоторых работах статические дипольные моменты $p_{\rm Bi}$ связывают с наличием у катионов ${\rm Bi}^{3+}$ неподеленной sp^x -гибридной электронной пары, направленной в противоположную сторону от направления смещения катиона висмута из его условной центросимметричной позиции. В рамках такого подхода можно качественно объяснить отмеченный в работах [1,3] для $BiMn_7O_{12}$ ($T > T_1$) аномально большой по объему эллипсоид тепловых колебаний катионов Bi³⁺. Можно предположить, что этот эллипсоид является результатом наложения разнонаправленных sp^{x} -гибридных электронных пар, вершины которых образуют сферу, «воспринимаемую» дифракционными методами как аномально объемные позиции висмута. Следует однако отметить, что подобный подход, основанный на теории гибридизации валентных 6*s*- и 6*p*-орбиталей катионов Bi^{3+} , является наглядной, но все же очень упрощенной моделью, которая для большинства известных оксидных фаз Bi(III) не нашла теоретического и экспериментального подтверждения [33–35].

3.3. Мессбауэровские данные для диапазона $T_2 < T < T_1$

понижении температуры При манганит $BiMn_{6.96}{}^{57}Fe_{0.04}O_{12}$ претерпевает структурный переход при $T_1 \approx 600$ K, сопровождающийся понижением симметрии кристаллической решетки из кубической (пр. гр. Im3) в моноклинную (пр. гр. I2/m) сингонию. Выше на рис. 36 приведен характерный мессбауэровский спектр зондовых ядер 57 Fe в моноклинной структуре $BiMn_7O_{12}$, представляющий собой уширенный симметричный квадрупольный дублет. Модельное описание подобных спектров очень неоднозначно из-за сильной корреляции параметров составляющих их компонент. Поэтому на первом этапе анализа было восстановлено распределение $p(\Delta)$ квадрупольных расщеплений Δ (см. рис. 3δ), линейно связанных с величиной изомерного сдвига δ [27]. На рис. 3δ видно, что, несмотря на понижение симметрии кристаллической решетки манганита, полученные распределения $p(\Delta)$ содержат единственный максимум, отвечающий квадрупольному расщеплению $\Delta(T)$, величина которого резко возрастает при понижении температуры измерения спектров (см. рис. 36). Данный результат кажется неожиданным, поскольку в моноклинной структуре BiMn₇O₁₂ имеются две неэквивалентные позиции (Mn4 и Mn5) катионов Mn³⁺ в октаэдрическом кислородном окружении (см. рис. 1б). Поскольку синтез манганита BiMn_{6.96}⁵⁷Fe_{0.04}O₁₂ требует использования высоких температур (около 1300 К), представляется маловероятным, что зондовые катионы Fe³⁺ избирательно замещают катионы ${\rm Mn^{3+}}$ лишь в одной из двух октаэдрических подрешеток. Если

же допустить, что катионы Fe³⁺ с равной вероятностью замещают в октаэдрической подрешетке изовалентные им катионы марганца, то в спектре ⁵⁷Fe должны присутствовать две парциальные компоненты. Кроме того, учитывая, что основной вклад в ГЭП на ядрах сферических катионов Fe³⁺ обусловлен искажением их кристаллического окружения (решеточный вклад), трудно объяснить наблюдаемое нами довольно резкое изменение с температурой квадрупольного расщепления.

В качестве второго этапа в анализе полученных мессбауэровских данных нами были проведены расчеты параметров тензора ГЭП с учетом монопольных вкладов от всех ионов (Bi³⁺, Mn³⁺ и O²⁻) и дополнительных дипольных вкладов от катионов Bi³⁺ и анионов O²⁻. При этом дипольный момент для Bi³⁺ ($p_{\text{Bi}} \approx 1.2 \cdot 10^{-29} \text{ Kл} \cdot \text{м}$) был взят из наших расчетов для высокотемпературной области ($T > T_1$). В расчетах использовались кристаллографические параметры для моноклинной решетки (пр. гр. I2/m) нелегированного манганита BiMn₇O₁₂ при разных температурах [3].

Согласно полученным данным, значения главной компоненты ГЭП (V_{ZZ}) для позиций Mn4 и Mn5 оказываются очень близкими друг к другу ($3.76 \cdot 10^{20}$ и $4.21 \cdot 10^{20}$ В/м² соответственно), что, по-видимому, объясняет наличие в распределениях единственного максимума (см. рис. 36). Как этого следовало ожидать, значения параметров ГЭП для обеих позиций марганца практически не зависят от температуры. Наконец, было установлено, что рассчитанные для Mn4 и Mn5 значения квадрупольных расщеплений $\Delta_{\text{Mni}}^{theor} \approx eQ_{\text{Fe}}V_{ZZ,\text{Mni}}^{theor}$ (где Q_{Fe} — квадрупольный момент ядра ⁵⁷Fe в возбужденном состоянии) существенно превышают соответствующие экспериментальные расцепления $\Delta_{\text{exp}}^{exp}$ (см. рис. 36).

Мы предполагаем, что отмеченное расхождение рассчитанных и экспериментальных значений квадрупольных расщеплений, $\Delta^{theor} > \Delta^{exp}$, а также аномально резкая зависимость от температуры решеточного вклада в ГЭП на ядрах зондовых катионов Fe³⁺ могут быть связаны с проявлением в данной области температур динамического эффекта Яна-Теллера (ЯТ) катионов Mn³⁺ [36]. Взаимодействие ян-теллеровских центров Mn³⁺ в структуре BiMn₇O₁₂ приводит к так называемому орбитальному упорядочению (или кооперативному эффекту ЯТ), которое также наблюдалось для других перовскитоподобных оксидных систем Mn(III): $RMnO_3$ [37, 38]; $R_{1-x}A_xMnO_3$ [11]; AMn_7O_{12} [14, 23] (R — редкоземельный элемент (РЗЭ), A = Ca, Sr, Pb). Для этих соединений переход в область высоких температур $(T > T_{JT})$ часто сопровождается структурным переходом с повышением симметрии их кристаллической решетки, который связывают с динамическим эффектом ЯТ или, как говорят, плавлением кооперативного ян-теллеровского искажения [36].

Подобные переходы могут осуществляться либо за счет постепенного повышения симметрии искаженных полиэдров Mn³⁺O₆ до полного «выравнивания» заселенностей e_a -орбиталей катионов Mn^{3+} , либо за счет ориентационного разупорядочения искаженных полиэдров Mn³⁺O₆ с сохранением вплоть до высоких температур ($T \gg T_{JT}$) поляризации e_q орбиталей [39]. В ряде работ отмечалось, что локальное разупорядочение полиэдров Mn³⁺O₆ может начинаться при температуре T^* , существенно меньшей, чем температура самого структурного фазового перехода, $T_{JT} \gg (T^*)$ [40–42]. Предполагается, что переход в область ян-теллеровского разупорядочения протекает через образование двухфазной области, в которой сосуществуют упорядоченная и разупорядоченная фазы. Ширина «переходной области» $T^* < T < T_{JT}$ в существенной степени зависит от структурных факторов [39, 43]. В частности, для семейства RMnO₃ (R = P3Э) протяженность данной области растет с уменьшением фактора толерантности τ Гольдшмидта [39]. Однако до сих пор отсутствуют надежные экспериментальные данные о том, какие структурные и электронные изменения манганитов происходят в «переходной области» температур.

Известно, что при учете ангармонизма вибронных взаимодействий на поверхности адиабатического потенциала возможных ядерных конфигураций анионов О²⁻, образующих октаэдрические полиэдры Mn³⁺O₆, возникают локальные минимумы, которым отвечают определенные орторомбические искажения соответствующих полиэдров. При повышении температуры кристаллическое окружение янтеллеровских катионов Mn³⁺ стохастически релаксирует между этими минимумами за счет туннельного эффекта или активационных возбуждений [44]. Несмотря на то, что сами зондовые катионы Fe³⁺ не принимают участия в вибронных взаимодействиях, из-за кооперативного характера эффекта ЯТ их локальное кристаллическое окружение также будет испытывать динамические флуктуации.

Таким образом, можно предположить, что наблюдаемое для диапазона $T_2 < T < T_1$ существенное занижение значений Δ^{exp} по сравнению с теоретическими расчетами может быть связано с релаксационным характером мессбауэровских спектров. В работах [44, 45] было показано, что в пределе «быстрой релаксации», т.е. при условии $\Omega_R \gg \Omega_0$ (где Ω_R и Ω_0 — частоты релаксации окружения и квадрупольной прецессии ядерного спина ⁵⁷Fe соответственно), мессбауэровские спектры могут быть описаны в рамках двухуровневой модели [45]. В этой модели в качестве варьируемых параметров выступают частоты прямого Ω_{12} и обратного Ω_{21} переходов из состояний «1» и «2» релаксирующей системы, связанные друг с другом в соответствии с принципом «детального равновесия» $n_1\Omega_{12} = n_2\Omega_{21}$, где n_1 и n_2 — заселенности состояний (рис. 6) [45].

Спектры $BiMn_{6.96}{}^{57}Fe_{0.04}O_{12}$, обработанные в рамках ДУМ, представлены на рис. 7а. На основании полученных результатов можно сделать вывод о том, что средняя частота релаксации $\Omega_R = \Omega_{12} \Omega_{21} / (\Omega_{12} + \Omega_{21}) \approx (2 - 7) \cdot 10^7$ Гц в указанном диапазоне температур (рис. 7б) значительно превышает частоту квадрупольной прецессии $\Omega_0 \approx 8.5 \cdot 10^6$ Гц ядерного спина ⁵⁷Fe. Увеличение температуры приводит к постепенному выравниванию заселенностей $(n_1 \approx n_2)$, что в пределе быстрой релаксации ($\Omega_R \gg \Omega_0$) должно проявляться в виде резкого уменьшения видимого квадрупольного расщепления и лишь небольшого уширения линий самого дублета [45]. Именно такой сценарий полностью воспроизводит изменение всех экспериментальных спектров при $T_2 < T < T_1$ (рис. 7*a*). Из линейной аппроксимации температурной зависимости $\ln(n_1/n_2) = f(1/T)$ (рис. 76) была оценена средняя разница энергий $\Delta E = 69(2)$ мэВ двух состояний, между которыми происходит релаксация, а энергия активации составила $E_A = 220(9)$ мэВ, что коррелирует с другими перовскитоподобными манганитами Mn(III) [46]. Любые другие варианты аппроксимации всей совокупности спектров при T₂ < T < T₁ в предположении изотропной релаксации между вырожденными по энергии уровнями адиабатического потенциала приводят к неудовлетворительному описанию спектров и физически неразумному изменению параметров сверхтонких взаимодействий.

Необходимо отметить, что некоторое отклонение зависимостей средней частоты релаксации и соотношения заселенностей (рис. 76) может быть связано с температурной эволюцией энергетического профиля релаксирующей системы вследствие изменения значений параметров дисторсии Δ_d полиэдров MnO₆:

$$\Delta_{d} = \frac{1}{6} \sum_{n=1}^{6} \left[\frac{l_{n} - \frac{1}{6} \sum_{n=1}^{6} l_{n}}{\frac{1}{6} \sum_{n=1}^{6} l_{n}} \right]^{2} = \frac{1}{6} \sum_{n=1}^{6} \left[\frac{l_{n} - l_{med}}{l_{med}} \right]^{2}, \qquad (1)$$

где l_n — длина *n*-й связи Mn–O_(n), l_{med} — среднее значение длины соответствующих связей в полиэдре MnO₆. Полученные зависимости этого параметра для области $T_2 < T < T_1$ с использованием более «быстрого» метода — рентгеновской дифракции (рис. 7*в*), качественно согласуются с полученными экспериментальными зависимостями релаксационных параметров.

В моноклинной структуре BiMn₇O₁₂ искажение полиэдров MnO₆, соответствующее минимуму энергии ε^- адиабатического потенциала, описывается в виде «связывающей» $Q^{(-)}$ линейной комбинации орторомбической Q_2 и тетрагональной Q_3 мод колебаний [47]. В этом случае искажению с большей энергией ε^+ соответствует «разрыхляющая» мода колебания $Q^{(+)}$. В «локальном приближении» (т. е. с учетом только ближайшего анионного окружения металла) модам $Q^{(-)}$ и $Q^{(+)}$ соответствуют искажения с одинаковыми по величине, но противоположными по знаку компонентами V_{ZZ} тензора ГЭП на ядрах ⁵⁷Fe в позициях Mn4³⁺ и Mn5³⁺ [44]. Поэтому «выравнивание» при увеличении температуры заселенностей двух уровней, ε^+ и ε^- , проявляется в мессбауэровских спектрах зондовых ядер ⁵⁷Fe³⁺ в виде резкого уменьшения их квадрупольного расщепления $\Delta(T) \propto \langle V_{ZZ} \rangle$ (где $\langle V_{ZZ} \rangle$ — усредненное по энергетическим состояниям ε^+ и ε^- значение главной компоненты тензора ГЭП) [44]. С другой стороны, наблюдаемое монотонное уменьшение $\Delta(T)$ вплоть до точки T_1 может свидетельствовать о постепенном повышении симметрии полиэдров Fe³⁺O₆ по мере приближения к температуре структурного фазового перехода $Im\overline{3} \leftrightarrow I2/m$ (при T_1). Данный вывод согласуется с дифракционными исследованиями нелегированного манганита BiMn₇O₁₂ с использованием синхротронного излучения, которые также показывают постепенное уменьшение параметра дисторсии Δ_d полиздров Mn³⁺O₆ по мере приближения температуры к T_1 [3]. Подобное поведение, независимо проявляющееся в совершенно разных по своей физической сути методах диагностики, свидетельствует о ян-теллеровском фазовом переходе второго рода, механизм протекания которого можно отнести к структурным переходам типа смещения как альтернативы переходам типа порядок-беспорядок.

Важно отметить, что описанные выше структурные изменения $BiMn_7O_{12}$ в области температур ян-теллеровского перехода схожи со случаем изоструктурной фазы La Mn_7O_{12} [48], но принципиально отличаются от ставших уже «классическими» перовскитов R MnO_3 (R = P3Э), для которых кооперативный эффект ЯТ проходит по механизму типа порядок–беспорядок [31]. В случае этих оксидов даже при температурах, заметно превышающих T_{JT} , полиэдры $Mn^{3+}O_6$ остаются искаженными, однако направления этих искажений случайным образом разориентированы в кристалле, делая, таким образом, структуру «макроскопически» более симметричной, чем низкотемпературная орбитальноупорядоченная фаза.

4. ВЫВОДЫ

Впервые методом мессбауэровской спектроскопии на ядрах зондовых атомов ⁵⁷Fe исследована эволюция локальной кристаллической структуры манганита BiMn_{6.96}Fe_{0.04}O₁₂ в параэлектрической области температур $T_2 < T < T_1$. Установлено, что параметры электрических сверхтонких взаимодействий ядер ⁵⁷Fe отражают особенности симметрии кристаллического окружения катионов Mn³⁺ в этих позициях. Расчеты параметров тензора ГЭП с учетом монопольных и дипольных вкладов показали, что в параэлектрической кубической фазе манганита (при $T > T_2$) катионы Bi³⁺, оставаясь в локально искаженном кристаллическом окружении, сохраняют электрические дипольные моменты p_{Bi}, которые разориентрованы случайным образом в кубической решетке. Таким образом, фазовые переходы в ферроэлектрическое состояние будут сопровождаться упорядочением диполей *p*_{Bi}, т. е. являются фазовыми переходами типа порядок-беспорядок. Установлено, что наблюдаемое монотонное уменьшение квадрупольного расщепления $\Delta(T)$ вплоть до точки T₁ может свидетельствовать о постепенном повышении симметрии полиэдров Fe³⁺O₆ при приближении к температуре структурного перехода $Im\overline{3} \leftrightarrow I2/m$, что согласуется с синхротронными дифракционными исследованиями нелегированного манганита BiMn₇O₁₂. Подобное поведение, независимо проявляющееся в совершенно разных по своей физической сути методах диагностики, свидетельствует о ян-теллеровском фазовом переходе второго рода, механизм протекания которого можно отнести к структурным переходам типа смещения как альтернативы переходам типа порядок-беспорядок.

Финансирование. Исследование выполнено за счет гранта Российского научного фонда (проект № 19-73-10034-П).

ЛИТЕРАТУРА

- F. Mezzandri, G. Calestani, M. Calicchio et al., Phys. Rev. B 79, 100106 (2009).
- A. Gauzzi, G. Rousse, F. Mezzandri et al., J. Appl. Phys. 113, 043920 (2013).
- A. A. Belik, Y. Matsushita, Y. Kumagai et al., Inorg. Chem. 56, 12272 (2017).
- W. A. Slawinski, H. Okamoto, and H. Fjellwag, Acta Cryst. 73, 313 (2017).
- A. A. Belik, Y. Matsushita, and D. D. Khalyavin, Angew. Chem. Int. Ed. 56, 10423 (2017).
- D. D. Khalyavin, R. D. Johnson, F. Orlandi et al., Science 369, 680 (2020).
- 7. D. I. Khomskii, *Transition Metal Compounds*, Cambridge Univ. Press, Cambridge (2014).
- С. В. Стрельцов, Д. И. Хомский, УФН 187, 1205 (2017).
- A. V. Sobolev, V. S. Rusakov, A. M. Gapochka et al., Phys. Rev. B 101, 224409 (2020).
- 10. А. В. Соболев, А. В. Боков, В. И и др., ЖЭТФ 156, 972 (2019).
- 11. J. B. Goodenough, Phys. Rev. 100, 564 (1955).
- 12. P. G. Radaelli, D. E. Cox, M. Marezio et al., Phys. Rev. B. 55, 3015 (1997).
- R. D. Johnson, D. D. Khalyavin, P. Manuel et al., Phys. Rev. B 93, 180403 (2016).
- 14. R. D. Johnson, D. D. Khalyavin, P. Manuel et al., Phys. Rev. B 96, 054448 (2017).
- **15**. А. П. Пятаков, А. К. Звездин, УФН **182**, 593 (2012).
- 16. J. G. Park, M. D. Le, J. Jeong et al., J. Phys.: Condens. Matter 26, 433202 (2014).

- 17. D. Khomskii, Physics 2, 20 (2009).
- 18. E. Jo, S. Park, J. Lee et al., Sci. Rep. 7, 2178 (2017).
- M. Prinz-Zwick, T. Gimpel, K. Geirhos et al., Phys. Rev. B 105, 014301 (2022).
- 20. A. V. Zalessky, A. A. Frolov, T. A. Khimich et al., Europhys. Lett. 50, 547 (2000).
- M. Pregelj, P. Jeglič, A. Zorko et al., Phys. Rev. B 87, 144408 (2013).
- 22. A. M. L. Lopes, G. N. P. Oliveira, T. M. Mendonça, Phys. Rev. B 84, 014434 (2011).
- 23. A. A. Belik, Y. S. Glazkova, Y. Katsuya et al., J. Phys. Chem. C 120, 8278 (2016).
- 24. A. Sobolev, V. Rusakov, A. Moskvin et al., J. Phys.: Condens. Matter 29, 275803 (2017).
- В. И. Ниценко, А. В. Соболев, А. А. Белик и др., ЖЭТФ 163, 698 (2023).
- 26. F. Izumi, T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000).
- 27. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).
- 28. Я. С. Глазкова, А. А. Белик, А. В. Соболев и др., Неорг. материалы 52, 546 (2016).
- 29. Y. S. Glazkova, N. Terada, Y. Matsushita et al., Inorg. Chem. 54, 9081 (2015).
- D. P. E. Dickson and F. J. Berry, *Mössbauer Spectroscopy*, Cambridge Univ. Press, Cambridge (1986).
- M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford Univ. Press, Oxford (1977).
- 32. B. A. Strukov and A. P. Levanyuk, *Ferroelectric Phenomena in Crystals*, Springer, Berlin, Heidelberg (1998).
- 33. S. Hussain, S. K. Hasanain, G. H. Jaffari et al., J. Amer. Ceram. Soc. 96, 3141 (2013).
- 34. T. Lottermoser and D. Meier, Phys. Sci. Rev. 6, 20200032 (2021).
- 35. Z. C. Xia, L. X. Xiao, C. H. Fang et al., J. Magn. Magn. Mater. 297, 1 (2006).

- 36. M. D. Kaplan and B. G. Vekhter, Cooperative Phenomena in Jahn-Teller Crystals, Springer, New York (1995).
- 37. J. A. Alonso, M. J. Martinez-Lope, M. T. Casais et al., Inorg. Chem. 39, 917 (2000).
- 38. M. Tachibana, T. Shimoyama, H. Kawaji et al., Phys. Rev. B 75, 144425 (2007).
- 39. T. Chatterjee, Indian J. Phys. 80, 665 (2006).
- 40. L. Martín-Carrón and A. de Andrés, Eur. Phys. J. B 22, 11 (2001).
- 41. A. Trokiner, S. Verkhovskii, A. Gerashenko et al., Phys. Rev. B 87, 125142 (2013).

- 42. S. Schaile, H.-A. Krug von Nidda, J. Deisenhofer et al., Phys. Rev. B 90, 054424 (2014).
- 43. J. Rodríguez-Carvajal, M. Hennion, F. Moussa et al., Phys. Rev. B 57, R3189(R) (1998).
- 44. F. Ham, J. Phys. Colloq. 35, C6-121 (1974).
- 45. M. Blume and J. A. Tjon, Phys. Rev. 165, 446 (1968).
- 46. M. Capone, D. Feinberg, and M. Grilli, AIP Conf. Proc. 554, 395 (2001).
- **47**. I. Bersuker, *The Jahn–Teller Effect*, Cambridge Univ. Press, Cambridge (2006).
- 48. H. Okamoto, M. Karppinen, H. Yamauchi et al., Sol. St. Sci. 11, 1211 (2009).