ПРЕЦИЗИОННАЯ СПЕКТРОСКОПИЯ РИДБЕРГОВСКИХ СОСТОЯНИЙ ЩЕЛОЧНОЗЕМЕЛЬНЫХ АТОМОВ ДЛЯ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК СВЧ ИЗЛУЧЕНИЯ

И.Л. Глухов^{а*}, А.А. Каменский^а, В.Д. Овсянников^а, В.Г. Пальчиков^{b,c}

^а Воронежский государственный университет 394018, Воронеж, Россия

^b Федеральное государственное унитарное предприятие "ВНИИФТРИ" 141570, Московская область, Менделеево, Россия

^с Национальный исследовательский ядерный университет МИФИ 115409, Москва, Россия

> Поступила в редакцию 12 марта 2023 г., после переработки 18 апреля 2023 г. Принята к публикации 18 апреля 2023 г.

Определены условия расщепления резонанса электромагнитно-индуцированной прозрачности (ЭИП) полем микроволнового излучения и рассчитаны частоты и амплитуды радиационных переходов между ридберговскими состояниями атомов щелочноземельных элементов группы IIa, необходимые для прецизионных измерений напряженности сверхвысокочастотного (СВЧ) электрического поля. Численные значения частот и матричных элементов аппроксимированы асимптотическими полиномами и табулированы для дипольных переходов между синглетными *n*S-, *n*P-, *n*D- и *n*F-состояниями с большими значениями главных квантовых чисел *n*.

Статья представлена в рамках публикации материалов конференции «Физика ультрахолодных атомов» (ФУХА-2022), Новосибирск, декабрь 2022 г.

DOI: 10.31857/S0044451023080059 **EDN:**HZNBAC

1. ВВЕДЕНИЕ

Современный арсенал лабораторной лазерной техники позволяет детектировать высоковозбужденные ридберговские состояния атомов с помощью одного или нескольких достаточно интенсивных излучений с частотами, настроенными в резонанс с энергиями внутриатомных переходов. Наиболее распространенным и эффективным практическим методом здесь является использование эффекта электромагнитно-индуцированной прозрачности (ЭИП) [1–5], в котором можно наблюдать расщепление резонанса ЭИП, обусловленное эффектом Аутлера–Таунса (АТ) [6,7]. Эффект АТ соответствует расщеплению двух вырожденных квазиэнергетических состояний атома полем резонансной частоты [8,9]. На практике расщепление АТ трансформируется в расщепление резонансного максимума ЭИП в спектре пробного излучения. По этому расщеплению можно однозначно определить количественные параметры СВЧ-излучения (напряженность электрического поля, частоту и амплитуду вынужденного резонансного перехода между ридберговскими состояниями атома) [10], опираясь на высокую чувствительность ридберговских состояний к внешним полям. Диапазоны частот СВЧ-излучений (радиочастотных, терагерцовых, микроволновых) совпадают с диапазоном частот $\omega_{\rm R}$ радиационных переходов между ридберговскими нейтральных атомов.

Если на атом, возбужденный в ридберговское состояние лазерными полями, подействовать полем СВЧ-излучения с частотой, совпадающей с частотой дипольного перехода в близкое ридберговское состояние, то эффект Аутлера–Таунса приведет к рас-

⁶ E-mail: GlukhovOfficial@mail.ru

щеплению энергии резонансно взаимодействующих квазиэнергетических состояний. Это расщепление трансформируется в расщепление резонанса ЭИП для детектирующей пробной волны, которое может служить основой для определения напряженности электрического поля СВЧ. В работах [10-14] продемонстрирована возможность создания приборов прецизионного измерения метрологических характеристик СВЧ-излучений на основе эффекта расщепления резонанса ЭИП на ридберговских состояниях атомов рубидия и цезия. Очевидно, эффекты СВЧ-индуцированного расщепления резонанса можно наблюдать и на других атомах. Таким образом, традиционные антенные методы измерения напряженностей электрических полей излучений в широком диапазоне частот от радиочастотных сотен мегагерц до микроволновых и терагерцовых вполне возможно заменить квантово-оптическими методами измерений, точность которых ограничена лишь неопределенностями численных значений частот и амплитуд радиационных переходов между ридберговскими состояниями атомов.

К настоящему времени численные расчеты частот и амплитуд выполнены для наиболее доступных на практике nS-, nP-, nD- и nF-серий ридберговских состояний щелочных атомов [14, 15]. Однако интерес и возможности экспериментальных исследований ридберговских состояний в атомах щелочноземельных элементов, возникшие в 1980-1990х годах, [1, 16, 17], позволяют предполагать, что и эти двухвалентные атомы являются вполне подходящими объектами для электрометрии радиочастотных и микроволновых полей. Несмотря на более сложную структуру энергетического спектра, в этих атомах имеются хорошо выраженные одноэлектронные серии ридберговских состояний с малыми орбитальными моментами высоковозбужденного электрона. В настоящей работе рассмотрены только одноэлектронные состояния высоковозбужденного атома без учета влияния каких-либо состояний с двумя возбужденными валентными электронами или с возбуждением электронов из внутренних оболочек щелочноземельного атома, поскольку энергии большинства из таких состояний располагаются выше потенциала одноэлектронной ионизации и являются автоионизационными.

Для определения основных характеристик расщепления резонанса ЭИП в спектре пробного (детектирующего) излучения необходимо знать главные характеристики вынуждаемого действием СВЧ-излучения радиационного перехода между близкими состояниями ридберговского электрона. Такими характеристиками являются частота и амплитуда вероятности перехода. Для определения этих величин можно использовать хорошо развитый для расчетов амплитуд и восприимчивостей одноэлектронный метод квантового дефекта (МКД).

Ниже, в разд. 2 рассматривается зависимость расщепления частоты резонанса ЭИП пробного излучения от напряженности и частоты СВЧизлучения, индуцирующего резонансное дипольное взаимодействие ридберговского состояния с ближайшим по энергии состоянием противоположной четности и расщепляющего энергию ридберговского резонанса. Демонстрируется отсутствие влияния на расщепление линейного доплеровского эффекта при коллинеарном распространении связывающего и пробного излучений.

В разд. 3 представлены численные значения ридберговских констант Ry_A , потенциалов одноэлектронной ионизации ІрА и коэффициентов асимптотического разложения для квантовых дефектов *n*S-, nP-, nD- и nF-серий синглетных ридберговских состояний атомов щелочноземельных элементов группы IIa, собранных из имеющихся данных литературы и/или полученных из существующих данных таблиц энергетических уровней [18, 19]. Поскольку с ростом главного квантового числа *п* потенциалы ионизации и расстояния между ближайшими уровнями на шкале энергий быстро убывают (как $1/n^2$ и $1/n^3$ соответственно), точность численных значений энергии, приводимых в таблицах, быстро убывает. Поэтому представление энегии связи уровня с помощью известной формулы Ридберга-Ритца

$$E_{nL} = Ip_{\rm A} - \frac{Ry_{\rm A}}{(n-\mu_L)^2}$$
(1)

предоставляет возможность существенно снизить неопределенность численных значений частот CBЧпереходов между близкими ридберговскими состояниями. При больших значениях n квантовый дефект μ_L серии состояний с фиксированным значением орбитального момента L становится практически независимой от n константой, снижая таким образом неопределенность энергии (1) до не зависящих от n неопределенностей численных значений констант Ip_A и Ry_A и позволяя получать численные значения энергии связи для неограниченного количества ридберговских уровней с произвольными значениями n.

В разд. 4 проводится численный расчет амплитуд дипольных радиационных переходов СВЧ-диапазона из *n*S- и *n*D-состояний, возбуждаемых связывающим излучением частоты

Рис. 1. (а) Принципиальная схема распространения пробного (р), связывающего (с) и СВЧ (R) (расщепляющего частоту ЭИП резонанса) пучков излучений, (б) схема энергетических уровней щелочноземельного атома в эксперименте по измерению напряженности электрического поля СВЧ-волны

 $\omega_{\rm c} = E_{n{
m S}({
m D})} - E_{n_0{
m P}}$, обеспечивающим просветление (ЭИП) среды, интенсивно поглощающей пробное излучение на частоте $\omega_{\rm p} = E_{n_0{
m P}} - E_{n_0{
m S}}$ резонансного перехода из основного $|n_0{
m S}\rangle$ в возбужденное состояние $|n_0{
m P}\rangle$.

Раздел 5 содержит основные выводы и перспективы дальнейшего использования выполненных работ для создания новых методов прецизионной спектроскопии ридберговских состояний щелочноземельных атомов и измерений основных характеристик СВЧ-излучения. В работе используется, если не оговорено специально, атомная система единиц $e = m_e = \hbar = 1$, в которой скорость света c = 137.036совпадает с обратной величиной постоянной тонкой структуры $\alpha = 1/137.036$.

2. РАСЩЕПЛЕНИЕ РЕЗОНАНСА ЭИП ИЗЛУЧЕНИЕМ СВЧ

Резонансная атомарная среда поглощает пробное излучение, переводя нормальные атомы в возбужденное состояние. При включении дополнительного достаточно сильного излучения накачки, связывающего возбужденное состояние с ридберговским состоянием, происходит сдвиг возбужденного состояния, приводя к отстройке резонанса поглощения пробной волны и превращая поглощающую среду в прозрачную. Этот эффект ЭИП имеет свой резонанс для частоты пробного излучения. Если изменить энергию связанного полем накачки ридберговского состояния, то произойдет одновременное изменение частоты резонанса ЭИП и для пробной волны.

Под действием СВЧ-излучения с частотой $\omega_{\rm R} = \omega_{nn'} + \epsilon$, близкой к частоте $\omega_{nn'} = E_n - E_{n'}$ дипольно-разрешенного перехода (ϵ — отстройка от резонанса, $|\epsilon| \ll \omega_{\rm R}$) между ридберговскими

состояниями $|n\rangle (|n\rangle \equiv |n^1 S_0\rangle$ или $|n\rangle \equiv |n^1 D_2\rangle)$ и $|n'\rangle (|n'\rangle \equiv |n'^1 P_1\rangle$ или $|n'\rangle \equiv |n'^1 F_3\rangle)$ происходит расщепление двукратно вырожденного квазиэнергетического состояния в поле СВЧ, определяемое решением секулярного уравнения [8, 14, 15]

$$E_n^{\pm} = E_n \pm \Delta E(\epsilon, \Omega), \qquad (2)$$

где

$$\Delta E(\epsilon, \Omega) = \frac{1}{2}\sqrt{\epsilon^2 + \Omega^2}.$$
 (3)

Здесь $\Omega = F\mathcal{R}$ — амплитуда электродипольного СВЧ-перехода между ридберговскими вырожденными квазиэнергетическими состояниями, F — напряженность электрического поля излучения СВЧ, $\mathcal{R} = \langle n'L'|z|nL \rangle$ — матричный элемент электрического дипольного перехода между состояниями $|nL \rangle$ и $|n'L' \rangle$, z — оператор проекции дипольного момента на направление вектора напряженности поля (ось z). Это расщепление неизбежно трансформируется в расцепление частоты резонанса ЭИП для пробного излучения.

Покажем, что расщепление (3) в точности совпадает с расщеплением резонанса ЭИП для пробного излучения. Для этого выберем пробное и связывающее излучения с такими частотами, чтобы суммарная энергия их фотонов соответствовала условию резонанса ЭИП, то есть совпадала с энергией возбуждения синглетного ридберговского $|nL\rangle$ состояния (L = 0 или 2):

$$\omega_{\rm p} + \omega_{\rm c} = E_n. \tag{4}$$

При включении излучения СВЧ резонансная сумма энергий фотонов должна совпадать с энергией одного из расщепленных состояний (2) E_n^{\pm} . Очевидно, при неизменной энергии фотона связывающего излучения ω_c резонансными для ЭИП

станут фотоны пробного излучения с частотами $\omega_{\rm p}^{\pm} = \omega_{\rm p} \pm \Delta \omega^{\pm}$. С учетом расщепления энергии ридберговского состояния (2) и линейного доплеровского сдвига для коллинеарного распространения пучков пробного и связывающего излучений при поперечном направлении излучения CBЧ (см. рисунок), условие резонанса (4) преобразуется к виду

$$\omega_{\rm p}^{\pm} \left(1 + \frac{v}{c} \right) + \omega_{\rm c} \left(1 \pm \frac{v}{c} \right) = E_n^{\pm}, \tag{5}$$

где c — скорость света в вакууме, v — проекция вектора скорости теплового движения атома на направление пробного луча, знак «плюс» перед v во втором слагаемом в левой части (5) соответствует сонаправленному распространению связывающего излучения относительно пробного, «минус» — противоположно направленному. Оставив в левой и правой частях уравнения (5) только верхний (+) или только нижний (-) знак верхнего индекса резонансной частоты $\omega_{\rm p}^{\pm}$ ($\Delta \omega^{\pm}$) и энергии E_n^{\pm} , а также воспользовавшись условием (4), записанным для атома в собственной системе отсчета (где v = 0), получим два отдельных уравнения (пренебрегая квадратичными доплеровскими поправками и произведениями малых величин порядка $v^2/c^2 \approx \Delta \omega^{\pm} v/c \approx \Delta E v/c$):

$$\Delta \omega^{+} = \Delta E - \frac{v}{c} (\omega_{\rm p} \pm \omega_{\rm c})$$

$$\Delta \omega^{-} = \Delta E + \frac{v}{c} (\omega_{\rm p} \pm \omega_{\rm c})$$
 (6)

Сумма двух выражений (6) определяет полное расщепление резонанса как расстояние между резонансными частотами пробного излучения

$$\Delta \omega = \Delta \omega^+ + \Delta \omega^- = 2\Delta E = \sqrt{\epsilon^2 + \Omega^2}$$

Таким образом, расщепление резонанса ЭИП для пробного излучения $\Delta \omega$ в точности совпадает с расщеплением квазиэнергии смешанных резонансным излучением СВЧ ридберговских состояний $E^+ - E^- = 2\Delta E$. При этом линейные доплеровские сдвиги частот пробного и связывающего излучений не оказывают влияние на расщепление $\Delta \omega$. При точном совпадении частоты СВЧ-излучения с частотой перехода между ридберговскими состояниями ($\epsilon = 0$) расщепление резонанса ЭИП для пробной волны совпадает с частотой Раби, пропорциональной напряженности F электрического поля СВЧ-излучения $\Delta \omega = \Omega = F\mathcal{R}$, откуда следует выражение для F:

$$F = \frac{\Delta\omega}{\mathcal{R}}.$$
 (7)

Следовательно, расщепление резонанса ЭИП в спектре пробного излучения может служить осно-

вой для электрометрии радиочастотных и микроволновых полей, позволяющей создавать приборы для прецизионных измерений напряженности электрического поля СВЧ-излучений на основе спектрометрии ридберговских состояний атомов. Для осуществления этой цели необходимо знать основные характеристики — часто́ты $\omega_{\rm R}$ и амплитуды \mathcal{R} радиационных переходов между ридберговскими состояниями атомов. Последовательное решение этих задач, полученное к настоящему времени для атомов щелочных металлов [10–15], выполняется далее в разд. 3 и 4 настоящей работы для атомов щелочноземельных элементов группы Па: Mg, Ca, Sr и Ва.

3. КВАНТОВЫЕ ДЕФЕКТЫ РИДБЕРГОВСКИХ СОСТОЯНИЙ

Численные значения частот радиационных переходов между связанными состояниями $|n\rangle$ и $|n'\rangle$ можно получить из численных значений энергий ридберговских состояний $\omega_{\rm R} = E_n - E_{n'}$. Для этого можно использовать имеющиеся в настоящее время таблицы энергетических уровней, в первую очередь, наиболее надежные данные таблиц [18,19]. Однако эти данные ограничены небольшими значениями главных квантовых чисел. Кроме того, ограничена и точность представленных данных (не более 8-9 десятичных знаков, из которых 4-5 знаков взаимно сокращаются в разности для ридберговских частот $\omega_{\rm R}$). Поэтому для уточнения и расширения информации о частотах $\omega_{\rm R}$ целесообразно использовать выражение (1) вместе с имеющимися в литературе наиболее точными данными для постоянной Ридберга. Отсутствующие в литературе численные значения Ry_A можно определить по универсальной константе $R_{\infty} = 109737.3156853 \text{ см}^{-1}$ и массе атома М_А, выраженной в атомных единицах (в единицах массы электрона):

$$Ry_{\rm A} = \frac{R_{\infty}}{1 + 1/M_{\rm A}}.\tag{8}$$

Численные значения квантовых дефектов μ_L можно представить в виде обычно используемой в литературе асимптотической формулы (см., например, [20,21])

$$\mu_{nL} = \mu_0 + \frac{\mu_2}{(n-\mu_0)^2} + \frac{\mu_4}{(n-\mu_0)^4},$$
 (9)

Серия			Ат	Атом			
$n^{1}L_{J}$	μ_{2q}	Mg	Ca	Sr	Ba		
	μ_0	1.525367	2.34348	3.26919	4.21785		
$n^{1}S_{0}$	μ_2	-0.031	-1.28187	-0.1671	-7.49786		
	μ_4	1.364	50.7498	1.29955	235.476		
	μ_0	1.051333	1.88558	2.7295	3.72973		
$n^{1}P_{1}$	μ_2	-0.3679	-3.2409	-44.67	-2.32714		
	μ_4	0.874	-23.75	-157	15.0540		
	μ_0	0.61211	1.3405	2.3807	2.66969		
$n^{1}\mathrm{D}_{2}$	μ_2	-3.147	-129.61	-39.41	-0.237472		
	μ_4	8.25	6014.4	-1090	-32.14157		
	μ_0	0.052167	0.096579	0.10061	0.1684204		
$n^{1}\mathrm{F}_{3}$	μ_2	-0.253	-0.38546	-7.76224	-1.84912		
	μ_4	2.64	-44.44	767.83	17.34		
$Ry_{\rm A}, {\rm cm}^{-1}$		109734.8389	109735.8137	109736.6286	109736.8773		
$Ip_{\rm A},$ ci	M^{-1}	61671.05	49305.924	45932.2036	42034.910		

Таблица 1. Численные значения постоянной Ридберга Ry_A , потенциалов ионизации Ip_A и констант, определяющих квантовые дефекты (9) синглетных ридберговских состояний атомов группы IIa

Таблица 2. Частоты электродипольных переходов между ридберговскими состояниями в атомах *магния*: из $n^{1}S_{0}$ в $(n-1)^{1}P_{1}$ состояние, $\Delta E_{nSP} = E_{n^{1}S_{0}} - E_{(n-1)^{1}P_{1}}$; из $n^{1}P_{1}$ в $n^{1}S_{0}$ состояние, $\Delta E_{nPS} = E_{n^{1}P_{1}} - E_{n^{1}S_{0}}$; из $n^{1}D_{2}$ в $n^{1}P_{1}$ состояние, $\Delta E_{nDP} = E_{n^{1}D_{2}} - E_{n^{1}P_{1}}$; из $n^{1}D_{2}$ в $(n-1)^{1}F_{3}$ состояние, $\Delta E_{nDF} = E_{n^{1}D_{2}} - E_{(n-1)^{1}F_{3}}$; из $n^{1}D_{2}$ в $n^{1}D_{2}$ состояние, $\Delta E_{nFD} = E_{n^{1}D_{2}} - E_{(n-1)^{1}F_{3}}$; из $n^{1}D_{2}$ в $n^{1}D_{2}$ состояние, $\Delta E_{nFD} = E_{n^{1}D_{2}} - E_{(n-1)^{1}F_{3}}$; из $n^{1}D_{2}$ в $n^{1}D_{2}$ состояние, $\Delta E_{nFD} = E_{n^{1}F_{3}} - E_{n^{1}D_{2}}$

n	$\Delta E_{n\mathrm{SP}}, \Gamma \Gamma$ ц	$\Delta E_{n \mathrm{PS}}, \Gamma \Gamma$ ц	$\Delta E_{n\mathrm{DP}},\Gamma\Gamma$ ц	$\Delta E_{n\mathrm{DF}},\Gamma\Gamma$ ц	$\Delta E_{n\rm FD},\Gamma\Gamma$ ц		
20	571.966	477.1218	416.9461	418.0746	477.4629		
50	30.87444	26.99313	24.37501	24.4245	30.00481		
100	3.652925	3.242916	2.965115	2.97086	3.71924		
150	1.062908	0.948387	0.870914	0.872584	1.09863		
200	0.444385	0.397506	0.365839	0.366538	0.462750		
Параметры интерполяционной формулы (10)							
d_0 , ТГц	3462.1	3119.583	2890.37	2895.9	3683.71		
\overline{d}_1	5.27845	3.82238	2.4609	2.4592	1.0209		
d_2	23.0984	12.97343	12.3934	12.793	-5.6515		

где μ_0 , μ_2 , μ_2 , — постоянные коэффициенты для заданной серии одноэлектронных состояний с фиксированым орбитальным моментом L конкретного атома. Численные значения этих констант, полученные из уравнения (1) путем интерполяции по имеющимся в [18,19] численным значениям энергий и хорошо согласующиеся с имеющимися в литературе данными для атомов группы IIa, приведены в табл. 1.

В расчетах констант μ_0 , μ_2 , μ_4 в формуле (9) использован стандартный метод полиномиальной интерполяции для квантовых дефектов, определяемых из выражений (1), (8), (9) по наиболее надежным численным значениям энергии, имеющимся в

Таблица 3.	Частоты	электродипольных	переходов	между	ридберговскими	состояниями	в атомах	кальция:	из $n^1\!\mathrm{S}_0$ в
$(n-1)^{1}\mathrm{P}_{1}$	состояние	, $\Delta E_{n\mathrm{SP}} = E_{n^1\mathrm{S}_0} -$	$E_{(n-1)^{1}\mathbf{P}_{1}};$	из $n^1\!\mathrm{P}_1$	$_{ m I}$ в $n^1\!{ m S}_0$ состояни	e, $\Delta E_{n\mathrm{PS}} = B$	$E_{n^{1}\mathrm{P}_{1}} - E_{r}$	_{а1S0} ; из (<i>n</i>	$(+1)^{1}$ Р1 в
$n^{1}D_{2}$	состояни	e, $\Delta E_{n\mathrm{PD}} = E_{(n+1)^3}$	$\mathbf{u}_{\mathbf{P}_1} - E_n \mathbf{u}_{\mathbf{D}_2}$; из (n -	$-1)^1\!\mathrm{F}_3$ в $n^1\!\mathrm{D}_2$ со	стояние, $\Delta E_{n!}$	$_{\rm FD} = E_{(n-1)}$	$_{1)^{1}\mathrm{F}_{3}} - E_{n}$	$^{1}\mathrm{D}_{2}$

n	$\Delta E_{nSP}, \Gamma \Gamma$ ц	$\Delta E_{nPS}, \Gamma \Gamma$ ц	$\Delta E_{n\text{PD}}, \Gamma \Gamma$ ц	$\Delta E_{n\rm FD},\Gamma\Gamma$ ц
20	668.536	533.621	134.423	-74.82507
50	33.4670	27.4886	22.6336	10.77464
100	3.86042	3.21369	3.00675	1.57442
150	1.11390	0.931695	0.895441	0.475588
200	0.463764	0.388840	0.377762	0.20156
	Параметры и	нтерполяциони	юй формулы (1	10)
d_0 , ТГц	3569.23	3016.92	2981.79	1592.87
d_1	7.70110	6.06633	4.25968	5.46546
d_2	45.3562	44.6778	-340.934	-659.629

Таблица 4. Частоты электродипольных переходов между ридберговскими состояниями в атомах *стронция*: из $n^{1}S_{0}$ в $(n-1)^{1}P_{1}$ состояние, $\Delta E_{nSP} = E_{n^{1}S_{0}} - E_{(n-1)^{1}P_{1}}$; из $n^{1}P_{1}$ в $n^{1}S_{0}$ состояние, $\Delta E_{nPS} = E_{n^{1}P_{1}} - E_{n^{1}S_{0}}$; из $(n+1)^{1}P_{1}$ в $n^{1}D_{2}$ состояние, $\Delta E_{nPD} = E_{(n+1)^{1}P_{1}} - E_{n^{1}D_{2}}$; из $n^{1}D_{2}$ в $n^{1}P_{1}$ состояние, $\Delta E_{nDP} = E_{n^{1}D_{2}} - E_{n^{1}P_{1}}$; из $(n-2)^{1}F_{3}$ в $n^{1}D_{2}$ состояние, $\Delta E_{nPD} = E_{(n-2)^{1}F_{3}} - E_{n^{1}D_{2}}$

n	$\Delta E_{nSP}, \Gamma \Gamma$ ц	$\Delta E_{nPS}, \Gamma \Gamma$ ц	$\Delta E_{n\text{PD}}, \Gamma \Gamma$ ц	$\Delta E_{n\mathrm{DP}}, \Gamma \Gamma$ ц	$\Delta E_{n\text{FD}}, \Gamma \Gamma$ ц		
20	644.9847	744.404	594.143	574.582	183.868		
50	29.9807	34.3302	37.9279	22.4285	16.0398		
100	3.36669	3.89413	4.53420	2.50609	1.94882		
150	0.962801	1.11830	1.3199112	0.719223	0.568275		
200	0.399119	0.464555	0.551681	0.298911	0.237589		
Параметры интерполяционной формулы (10)							
<i>d</i> ₀ , ТГц	3030.51	3567.56	4245.84	2337.46	1798.65		
d_1	10.35021	8.05610	7.97186	4.0283	11.5648		
d_2	75.0531	106.588	-111.685	306.042	-304.176		

литературе, в частности, в таблицах энергетических уровней [18, 19].

Данные табл. 1 позволяют рассчитать часто́ты переходов между синглетными ридберговскими состояниями, численные значения которых представлены в табл. 2-5 для атомов Mg, Ca, Sr и Ba. Наряду с численными значениями для переходов между ридберговскими состояниями с конкретными значениями главных квантовых чисел (n = 20, 50, 100, 150 и 200), приводятся и численные значения коэффициентов асимптотического разложения для частот дипольных переходов между состояниями ридберговских серий со смежными орбитальными моментами

$$\Delta E_{nLL'} \equiv E_{nL} - E_{n'L'} = \frac{d_0}{n^3} \left(1 + \frac{d_1}{n} + \frac{d_2}{n^2} \right), \quad (10)$$

где $L' = L \pm 1$, $n' = n, n \pm 1, n \pm 2$ — орбитальное и главное квантовые числа ближайшего по энергии ридберговского состояния, в которое возможен дипольный радиационный переход из $|n^1S_0\rangle$ или $|n^1D_2\rangle$ состояния, возбуждаемого связывающим излучением из резонансного состояния $|n_0^1P_1\rangle$, в которое атом переходит из основного $|n_0^1S_0\rangle$ состояния при поглощении фотона пробной волны (см. рис. 1 б). Первый из индексов L и L' соответствует состоянию

Таблица 5. Частоты электродипольных переходов между ридберговскими состояниями в атомах *бария*: из $n^{1}S_{0}$ в $(n-1)^{1}P_{1}$ состояние, $\Delta E_{nSP} = E_{n^{1}S_{0}} - E_{(n-1)^{1}P_{1}}$; из $n^{1}P_{1}$ в $n^{1}S_{0}$ состояние, $\Delta E_{nPS} = E_{n^{1}P_{1}} - E_{n^{1}S_{0}}$; из $n^{1}D_{2}$ в $(n+1)^{1}P_{1}$ состояние, $\Delta E_{nDP} = E_{n^{1}D_{2}} - E_{(n+1)^{1}P_{1}}$; из $n^{1}D_{2}$ в $(n-3)^{1}F_{3}$ состояние, $\Delta E_{nDF} = E_{n^{1}D_{2}} - E_{(n-3)^{1}F_{3}}$; из $(n-2)^{1}F_{3}$ в $n^{1}D_{2}$ состояние, $\Delta E_{nFD} = E_{(n-2)^{1}F_{3}} - E_{n^{1}D_{2}}$

n	$\Delta E_{nSP}, \Gamma \Gamma$ ц	$\Delta E_{nPS}, \Gamma \Gamma$ ц	$\Delta E_{n\mathrm{DP}}, \Gamma \Gamma$ ц	$\Delta E_{n\mathrm{DF}}, \Gamma \Gamma$ ц	$\Delta E_{n\text{FD}}, \Gamma \Gamma$ ц
20	1002.874	661.686	159.536	651.4998	612.280
50	48.3070	21.0583	14.7077	31.3990	30.6607
100	5.312844	2.22191	1.78612	3.58531	3.55079
150	1.505813	0.626791	0.519408	1.03120	1.02623
200	0.621170	0.258352	0.216762	0.428652	0.427633
	Парал	метры интерпо	ляционной фор	мулы (10)	
d_0 , ТГц	4586.02	2012.76	1631.58	3287.60	3303.32
d_1	16.1754	4.51813	13.1213	8.37691	6.93735
d_2	-23.731	561.623	-349.530	66.6017	54.3822

Таблица 6. Численные значения матричных элементов и коэффициентов интерполяционного полинома (12) для электродипольных переходов из ридберговских n^1S_0 и n^1D_2 состояний в атомах *магния*. Соответствующие частоты переходов представлены в табл. 2

n	$\langle n^{1}\!\mathrm{S}_{0} z (n-1)^{1}\!\mathrm{P}_{1}\rangle$	$\langle n^{1}\mathrm{P}_{1} z n^{1}\mathrm{S}_{0}\rangle$	$\langle n^{1}\mathrm{D}_{2} z n^{1}\mathrm{P}_{1}\rangle$	$\langle n^{1}\mathrm{D}_{2} z (n-1)^{1}\mathrm{F}_{3}\rangle$	$\langle n^{1}\mathrm{F}_{3} z n^{1}\mathrm{D}_{2}\rangle$
20	199.306	235.5761	232.0898	203.8322	215.9874
50	1420.03	1578.0711	1505.1167	1417.8946	1313.8736
100	5922.69	6453.975	6083.41	5851.2619	5209.0052
150	13510.5	14627.87	13732.2	13296.988	11685.842
200	24183.4	26099.76	24451.43	23755.066	20744.372
	Параметр	ы интерполяци	онной формулы	(12)	
a_0	2.49919	0.1620585	-2.694213	-3.11412	0.446855
a_1	-2.50080	-1.421768	-0.54864	-1.70341	0.4514861
a_2	0.617027	0.659599	0.6140971	0.6024717	0.516341

с бо́лышей энергией при достаточно больших n, так что $\Delta E_{nLL'} > 0$. Очевидно, коэффициенты d_0 , d_1 , d_2 в (10) тесно связаны с константами разложения μ_0 , μ_2 , μ_4 для квантовых дефектов (9).

Обратим внимание на большие отрицательные значения коэффициентов d_2 , связанные с резким изменением квантового дефекта μ_D при малых значениях n. Такое поведение μ_D обусловлено специфической спектральной структурой серий nD состояний в атомах группы IIa, обусловленных появлением двухэлектронных состояний с возбуждением электрона из внутренней D-оболочки. Влияние таких состояний приводит к тому, что соответствующие энергии переходов nD-n'L' отрицательны и становятся положительными лишь при достаточно больпих значениях n. В частности, для кальция частота перехода ΔE_{nPD} становится положительной при n = 17, а ΔE_{nFD} — при n = 24. У стронция ΔE_{nPD} и ΔE_{nFD} становятся положительными при n = 7 и n = 13, соответственно.

Коэффициенты d_0 , d_1 , d_2 асимптотического приближения (10) определены методом полиномиальной интерполяции по численным значениям сдвигов $\Delta E_{nLL'}$, полученным из расчетов энергий (1) для n = 20, 60, 120 с использованием квантовых дефектов (9) с численными значениями коэффициентов

n	$\langle n^{1} \mathbf{S}_{0} z (n-1)^{1} \mathbf{P}_{1} \rangle$	$\langle n^{1}\mathrm{P}_{1} z n^{1}\mathrm{S}_{0}\rangle$	$\langle (n+1)^{1} \mathbf{P}_{1} z n^{1} \mathbf{D}_{2} \rangle$	$\langle (n-1)^{1} \mathrm{F}_{3} z n^{1} \mathrm{D}_{2} \rangle$
20	179.0652	218.175	269.820	264.9072
50	1342.061	1552.80	1503.69	1750.896
100	5694.125	6466.25	5939.22	7013.015
150	13062.75	14741.1	13389.80	15817.41
200	23447.90	26377.2	23857.07	28168.08
	Параме	тры интерполя	ционной формулы (1	2)
a_0	6.55853	0.716357	83.2064	31.05359
a_1	-3.45558	-2.57196	-1.74088	-1.025913
a_2	0.6033124	0.6722726	0.6030102	0.7084552

Таблица 7. Численные значения матричных элементов и коэффициентов интерполяционного полинома (12) для электродипольных переходов из ридберговских $n^{1}S_{0}$ и $n^{1}D_{2}$ состояний в атомах *кальция*. Соответствующие частоты переходов представлены в табл. 3

Таблица 8. Численные значения матричных элементов и коэффициентов интерполяционного полинома (12) для электродипольных переходов из ридберговских $n^{1}S_{0}$ и $n^{1}D_{2}$ состояний в атомах *стронция*. Соответствующие частоты переходов представлены в табл. 4

n	$\langle n^{1}\!\mathrm{S}_{0} z (n-1)^{1}\!\mathrm{P}_{1}\rangle$	$\langle n^{1}\!\mathrm{P}_{1} z n^{1}\!\mathrm{S}_{0}\rangle$	$\langle (n+1)^{1} \mathbf{P}_{1} z n^{1} \mathbf{D}_{2} \rangle$	$\langle n^{1}\mathrm{D}_{2} z n^{1}\mathrm{P}_{1}\rangle$	$\langle (n-2)^{1} \mathrm{F}_{3} z n^{1} \mathrm{D}_{2} \rangle$
20	182.0592	175.777	168.3352	189.7896	236.9892
50	1440.259	1347.17	1042.346	1508.364	1617.280
100	6219.836	5720.67	4313.597	6385.609	6688.760
150	14351.47	13121.0	9847.389	14615.49	15228.09
200	25835.09	23548.2	17643.33	26197.94	27235.36
	Параметр	ы интерполяци	онной формулы (12)		
a_0	12.73516	0.4978125	33.6385	-16.24257	13.6446
a_1	-4.97004	-3.33483	-2.45126	-3.03424	-2.60574
a_2	0.6704106	0.605366	0.4525084	0.6705275	0.693569

 μ_0, μ_2, μ_4 из табл. 1. При этом относительная погрешность приближенной формулы (10) с константами d_0, d_1, d_2 из табл. 2–5 в области 10 < n < 500не превышает 0.01%.

4. АМПЛИТУДА СВЧ-ПЕРЕХОДА МЕЖДУ РИДБЕРГОВСКИМИ СОСТОЯНИЯМИ

Здесь предполагается, что все три излучения (коллинеарные пробное и связывающее, а также поперечное к ним излучение СВЧ, см. рис. 1 *a*) поляризованы линейно вдоль оси *z*. Поэтому магнитные квантовые числа всех рассматриваемых состояний: основного $|n_0S\rangle$, резонансного $|n_0P\rangle$, а также ридберговских $|nL\rangle$ и $|n'L'\rangle$ — одинаковы и совпадают с магнитным квантовым числом основного состояния $M_0 = 0$. Выполнив интегрирование по угловым переменным ридберговского электрона стандартными методами квантовой теории углового момента [22], матричный элемент $\mathcal{R} = \langle n'L'|z|nL\rangle$ можно записать через радиальный матричный элемент $\langle n'L'|r|nL\rangle$ в виде:

$$\mathcal{R} = \frac{L + L' + 1}{2\sqrt{(2L+1)(2L'+1)}} \langle n'L'|r|nL\rangle.$$
(11)

Расчет матричного элемента $\langle n'L'|r|nL\rangle$ можно выполнить одним из хорошо апробированных полуэмпирических методов — методом модельного потенциала Фьюса (МПФ) или методом квантового де-

n	$\langle n^{1} \mathbf{S}_{0} z (n-1)^{1} \mathbf{P}_{1} \rangle$	$\langle n^{1}\mathrm{P}_{1} z n^{1}\mathrm{S}_{0}\rangle$	$\langle n^{1}\mathrm{D}_{2} z (n+1)^{1}\mathrm{P}_{1}\rangle$	$\langle n^{1}\mathrm{D}_{2} z (n-3)^{1}\mathrm{F}_{3}\rangle$	$\langle (n-2)^{1}\mathrm{F}_{3} z n^{1}\mathrm{D}_{2}\rangle$
20	134.5930	184.8053	228.085	154.785	178.836
50	957.7323	1640.46	1630.520	1251.238	1255.518
100	4147.729	7195.95	6832.794	5393.76	5220.82
150	9613.958	16661.49	15625.76	12435.83	11892.89
200	17356.35	30036.83	28009.93	22377.68	21271.36
a_0	43.9670	-4.98649	18.93956	8.27385	-3.03226
a_1	-4.48701	-6.19155	-3.675310	-4.13626	-1.89655
a_2	0.4552463	0.7820094	0.7181385	0.579911	0.5413512

Таблица 9. Численные значения матричных элементов и коэффициентов интерполяционного полинома (12) для электродипольных переходов из ридберговских $n^{1}S_{0}$ и $n^{1}D_{2}$ состояний в атомах *бария*. Соответствующие частоты переходов представлены в табл. 5

фекта (МКД) [9,23]. В обоих методах радиальные волновые функции записываются в виде полиномов с аргументом, пропорциональным радиальной переменной r. При этом коэффициенты при старших степенях r в волновых функциях МКД и МПФ одинаковы. Интегрирование по r в обоих методах приводит к аналитическим выражениям для $\langle n'L'|r|nL\rangle$ в виде двукратных сумм от обобщенных гипергеометрических функций [24,25].

Результаты численных расчетов дипольных матричных элементов (11) с помощью волновых функций МКД в области главных чисел n > 15 отличаются от результатов МПФ не более, чем на 1% и хорошо согласуются с наиболее надежными данными литературы. Различие между результатами расчетов в рамках МКД и МПФ снижается с ростом главных и орбитальных квантовых чисел. Матричные элементы переходов между близкими по энергии ридберговскими состояниями, в том числе и переходов, часто́ты которых представлены в табл. 2– 5, пропорциональны квадрату главного квантового числа. Поэтому все рассчитанные величины матричных элементов (11) удобно аппроксимировать квадратичным полиномом

$$R(n) = a_0 + a_1 n + a_2 n^2, (12)$$

коэффициенты которого можно определить с помощью стандартной процедуры полиномиальной интерполяции. Коэффициенты a_0 , a_1 , a_2 , полученные по численным значениям матричного элемента (11) для состояний с n = 50,100 и 150, представлены в табл. 6–9. Значения полинома (12), получаемые с использованием этих коэффициентов, согласуются с результатами прямых расчетов матричного элемента (11) в области от n = 20 до n = 500 с относительной погрешностью менее 1%.

5. ЗАКЛЮЧЕНИЕ

Основными результатами настоящей работы являются численные значения частот и матричных элементов радиационных переходов между ридберговскими состояниями синглетных серий энергетических уровней с малыми орбитальными моментами $L \leq 3$ атомов щелочноземельных элементов Mg, Ca, Sr и Ba. Результаты расчетов представлены в табл. 1-9 вместе с коэффициентами полиномов асимптотических аппроксимаций (10) и (12), позволяющих использовать полученные данные для произвольных значений главных квантовых чисел *n* > 15 ридберговских состояний. Продемонстрировано отсутствие влияния линейного эффекта Доплера на расщепление частоты резонанса в ЭИП при коллинеарном распространении связывающего и пробного излучений, что позволяет обеспечить возможность измерения характеристик СВЧизлучения в пара́х щелочноземельных атомов при любой температуре.

В таблицах представлены частоты и матричные элементы радиационных дипольных переходов под действием резонансного излучения СВЧ из ридберговских состояний n^1S_0 и n^1D_2 (в одном из которых атом может оказаться при возбуждении фотонами пробного и связывающего излучений) в ближайшие по энергии состояния n'^1P_1 и $n'^{1}F_{3}$ (см. рис. 1 б). Очевидно, что коэффициенты асимптотических аппроксимаций (10) для таких резонансных частот тесно связаны с коэффициентами разложения (9) для квантовых дефектов. Однако, численные значения асимптотических коэффициентов μ_0, μ_2, μ_4 в (9) определяются при интерполяции по энергиям состояний одной и той же спектральной серии с фиксированным орбитальным моментом, а коэффициенты d_0, d_1, d_2 в (10) определяются при аппроксимации частот переходов между состояниями из разных серий. Поэтому взаимно однозначного соответствия между коэффициентами d и μ может и не быть, а указанные наборы коэффициентов можно считать взаимно независимыми. С помощью представленных в табл. 2-5 данных можно найти значения главных и орбитальных квантовых чисел ридберговских уровней, энергия перехода между которыми $\Delta E_{nLL'}$ будет совпадать с энергией фотона СВЧ-излучения заданной частоты $\omega_{\rm R}$. Тогда по численным данным табл. 6-9 достаточно определить амплитуду (12) радиационного перехода \mathcal{R} , а по расщеплению резонанса ЭИП для зондирующей (пробной) волны $\Delta \omega = \Omega$, совпадающей с частотой Раби для аутлер-таунсовского смешивания ридберговских состояний $\Omega = F\mathcal{R}$, определить напряженность (7) электрического поля излучения СВЧ.

В заключение необходимо отметить полное совпадение результатов измерений электромагнитных характеристик излучения СВЧ квантовооптическими приборами, разработанными на основе использования ридберговских состояний атомов рубидия [14], с результатами измерений, основанных на использовании действующих в настоящее время эталонов электромагнитных полей радиочастотного диапазона [26–28]. Поэтому полученные в настоящей работе результаты могут быть использованы в качестве источников количественной информации для дальнейших разработок метрологических стандартов измерения характеристик СВЧ-излучений.

Финансирование. Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Госзадания по проекту FZGU-2023-0007.

ЛИТЕРАТУРА

 K.-J. Boiler, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).

- M. D. Lukin, M. Fleischhauer, R. Cote, et al., Phys. Rev. Lett. 87, 037901 (2001).
- S. Mauger, J. Millen and M. P. A. Jones, J. Phys. B: At. Mol. Phys. 40, F319 (2007).
- A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev. Lett. 98, 113003 (2008).
- M. Reetz-Lamour, J. Deiglmayr, T. Amthor, et al., New J Phys. 10, 045026 (2008).
- S. R. Autler and C. R. Townes, Phys. Rev. 100, 703 (1955).
- C. N. Cohen-Tannoudji. The Auther-Townes Effect Revisited. In: Amazing Light, ed. by R. Y. Chiao, Springer, New York (1996).
- Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, Москва (1974) §§ 39, 40.
- N. L. Manakov, V. D. Ovsiannikov, L. P. Rapoport, Phys. Rep. 141, 319 (1986).
- J. A. Sedlacek, A. Schwettmann, H. Kubler, et al., Nature Physics 8, 819 (2012).
- J. A. Gordon, C. L. Holloway, A. Schwarzkopf, et al., Applied Phys. Lett 105, 024104 (2014).
- 12. D. A. Anderson, G. Raithel, Appl. Phys. Lett. 111, 053504 (2017).
- M. T. Simons, J. A. Gordon, C. L. Holloway, Applied Optics 57, 6456 (2018).
- 14. Е. Ф. Стельмашенко, О. А. Клезович, В. Н. Барышев и др., Оптика и спектроскопия 128, 1063 (2020).
- V. D. Ovsiannikov, V. G. Pal'chikov, I. L. Glukhov, Photonics 9, 635 (2022).
- R. Beigang, K. Luicke, D. Schmidt, et al, Phys. Scripta 26, 183 (1982).
- 17. H. Rinneberg, J. Neukammer, A. Konig, et al., Hiperfine Interactions 38, 515 (1987).
- 18. Yu. Ralchenko, A. Kramida, J. Reader and NIST ASD Team. NIST Atomic Spectra Database (version 4.1), [Online]. National Institute of Standards and Technology, Gaithersburg, MD; http://physics.nist.gov/asd

- 19. Информационная система «Электронная структура атомов». Новосибирский государственный университет. Институт автоматики и электрометрии СО РАН; http://grotrian.nsu.ru
- 20. W. C. Martin, J Opt Soc Am 70, 784 (1980).
- 21. F. Robicheaux, J Phys B 52, 244001 (2019).
- 22. Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский, Квантовая теория углового момента, Наука, Ленинград (1975).
- **23**. И. И. Собельман, Введение в теорию атомных спектров, Наука, Москва (1977).

- 24. I. L. Glukhov, A. A. Kamenski, V. D. Ovsiannikov, J. Quant. Spectr. Rad. Trans. 280, 108068 (2022).
- **25.** Е. Ю. Ильинова, В. Д. Овсянников, Оптика и спектроскопия **105**, 709 (2008).
- 26. С. А. Колотыгин, В. А. Тищенко, Л. Н. Брянский, Измерительная техника № 12, 27 (2001).
- 27. В. А. Тищенко, В. И. Токатлы, В. И. Лукьянов, Измерительная техника № 8, 78 (2003).
- 28. В. А. Тищенко, В. И. Токатлы, В. И. Лукьянов, Измерительная техника № 9, 39 (2003).