ЭВОЛЮЦИЯ НЕЛИНЕЙНЫХ ВОЛНОВЫХ ИМПУЛЬСОВ В ТЕОРИИ УРАВНЕНИЯ СИНУС-ГОРДОН

A. M. Kамчатнов a^*

^а Институт спектроскопии Российской академии наук 108840 Москва, Троицк, Россия

> Поступила в редакцию 27 декабря 2022 г., после переработки 27 декабря 2022 г. Принята к публикации 26 января 2023 г.

Дано решение модуляционных уравнений Уизема, описывающих эволюцию огибающих однофазных периодических волн, подчиняющихся уравнению синус-Гордон. Методом годографа задача сведена к линейному уравнению в частных производных и описан класс решений этого уравнения с разделяющимися переменными. Теория иллюстрируется примером, в котором получено полное аналитическое решение задачи о самосжатии нелинейного волнового пакета, которое сопровождается уходом волн из области нелинейных колебаний.

DOI: 10.31857/S0044451023050127 **EDN:** BFLYCL

1. ВВЕДЕНИЕ

Явление модуляционной неустойчивости нелинейных волн было открыто независимо в нескольких различных физических контекстах: как самофокусировка интенсивных пучков света, распространяющихся в нелинейной среде [1–3], как разбиение газа ленгмюровских плазмонов на отдельные сгустки [4,5], как самосжатие волновых пакетов для волн в оптике [6] и на глубокой воде [7,8]. Если начальное распределение физических параметров волны промодулировано достаточно плавными функциями, то в главном приближении динамика модуляций описывается уравнениями гидродинамического типа, для решения которых могут быть использованы методы газовой динамики. Первые примеры такого подхода были даны в теории самофокусировки, когда эволюция пучка света описывается фокусирующим нелинейным уравнением Шредингера, так что модуляционными параметрами служат интенсивность света и поперечное волновое число световой волны, которые подчиняются уравнениям геометрической оптики, эквивалентным гидродинамическим уравнениям для волн на «опрокинутой мелкой воде». Для этого случая В. И. Таланов нашел ре-

Естественно, эти решения, предполагающие плавную модуляцию волны, справедливы лишь до момента фокусировки. Кроме того, они неустойчивы относительно малых возмущений, нарушающих плавность профиля волны. Еще в работах [15, 16] было замечено, что в теории фокусирующего НУШ локализованное начальное возмущение однородной плоской волны ведет к образованию расширяющейся со временем промодулированной волновой структуры. Применение модуляционной теории Уизема [17-20] к описанию эволюции этой структуры показало [21–23], что фронт неустойчивости движется с минимальной групповой скоростью действительной ветви закона дисперсии, и этот результат был подтвержден в [24] в рамках метода обратной задачи рассеяния для НУШ. Обобщение

шение для пучка с параболическим начальным профилем интенсивности [9], а С. А. Ахманов, А. П. Сухоруков, Р. В. Хохлов [10] — для пучков с начальным профилем интенсивности вида $ch^{-2}(x)$. В работах [11,12] аналогичный подход был сформулирован независимо от теории НУШ, но также в приближении умеренной амплитуды волны, и в результате модуляционная гидродинамическая система была сведена методом годографа к линейному уравнению эллиптического типа. Примеры решений этого уравнения, описывающих самофокусировку пучков света и самокомпрессию импульсов, были даны в [13] и другие многочисленные примеры можно найти в книге [14].

^{*} E-mail: kamch@isan.troitsk.ru

[25] этой теории на неоднородные эволюционирующие волны позволило найти закон движения границ области нелинейных осцилляций для произвольных плавных начальных профилей неустойчивого импульса.

Описанные выше результаты основаны на том, что в главном приближении волна является линейной, так что нелинейность вносит лишь небольшую, зависящую от амплитуды, поправку в закон дисперсии. В геометро-оптическом приближении это эквивалентно зависимости показателя преломления среды от интенсивности света, и тогда уравнения геометрической оптики для пучков света, распространяющихся в фокусирующей среде, превращаются в гидродинамические уравнения для «опрокинутой мелкой воды», простота которых позволяет использовать хорошо разработанные методы газовой динамики. Ситуация меняется, однако, в случае известного нелинейного уравнения Клейна-Гордона

$$\varphi_{tt} - \varphi_{xx} + U'(\varphi) = 0, \quad U' = \frac{dU}{d\varphi}, \quad U'(0) = 0, \quad (1)$$

имеющего многочисленные приложения к физическим задачам, особенно в частном случае так называемого уравнения синус-Гордон с $U'(\varphi) = \sin \varphi$ (см., например, [26, 27] и имеющиеся там ссылки). Это уравнение имеет решения в виде нелинейных периодических волн $\varphi = \varphi(A, kx - \omega t)$, для которых зависимость частоты ω от амплитуды волны Aуже не может считаться малой поправкой. В промодулированной волне ее амплитуда А и фазовая скорость $V = \omega/k$ становятся медленными функциями координаты x и времени t, мало изменяющимися на одной длине волны и за один период. Соответствующие модуляционные уравнения, определяющие динамику A и V, были получены Уиземом [17,18]. В работе [28] на основе метода усреднения Боголюбова-Митропольского было указано, что уравнения квазиклассической асимптотики для (1), совпадающие с уравнениями Уизема, эквивалентны уравнениям релятивистской гидродинамики (см. также обзор [29]). Существенно, что в наиболее интересном случае уравнения синус-Гордон эта динамика снова оказывается модуляционно неустойчивой, однако как ввиду сложности уравнения состояния, отвечающего закону дисперсии $\omega = \omega(k, A)$ для волн в «эффективной релятивистской материи», так и сложности уравнений релятивистской гидродинамики, задача об эволюции нелинейных волновых пакетов в теории уравнения синус-Гордон пока детально не исследовалась.

Целью настоящей работы является развитие метода решения модуляционных уравнений Уизема для однофазных периодических волн, эволюция которых подчиняется уравнению синус-Гордон. Ранее уравнения релятивистской гидродинамики изучались в теории множественного рождения частиц при ультрарелятивистских столкновениях ядер и нуклонов [30-33]. Мы покажем, что развитые в этих работах методы, использующие крайне простое уравнение состояния ультрарелятивистской материи p = e/3 (p — давление, e — плотность энергии), могут быть модифицированы применительно к существенно более сложному случаю уравнения синус-Гордон. В результате будет выведено линейное уравнение в частных производных, определяющее решение уравнений релятивистской гидродинамики в методе годографа, и описан класс решений этого уравнения с разделяющимися переменными. Теория будет проиллюстрирована примером самосжатия нелинейного волнового пакета, когда его эволюция демонстрирует уход волн из области нелинейных осцилляций через малоамплитудный край этой области.

2. УРАВНЕНИЯ УИЗЕМА

Приведем здесь основные соотношения модуляционной теории Уизема [17, 18] для нелинейного уравнения Клейна–Гордона (1). Легко видеть, что это уравнение имеет решения в виде бегущей волны $\varphi = \varphi(\xi), \ \xi = x - Vt$, где $\varphi(\xi)$ определяется неявно уравнением

$$\xi - \xi_0 = \sqrt{\frac{V^2 - 1}{2}} \int_{\varphi_0}^{\varphi} \frac{d\varphi}{\sqrt{A - U(\varphi)}},$$
 (2)

так что V и постоянная интегрирования A являются постоянными параметрами, $\varphi(\xi_0) = \varphi_0$, и переменная φ осциллирует между двумя корнями уравнения $A - U(\varphi) = 0$ в интервале положительности подкоренного выражения. Следуя Уизему [17, 18], мы определяем функцию

$$W(V,A) = \sqrt{2(V^2 - 1)} \oint \sqrt{A - U(\varphi)} \, d\varphi \equiv$$

$$\equiv \sqrt{V^2 - 1} G(A), \qquad (3)$$

где интеграл берется по контуру вокруг указанного интервала положительности подкоренного выражения. Тогда длина волны найденного периодического решения выражается формулой

$$L = \frac{\partial W}{\partial A} = \sqrt{V^2 - 1}G'(A). \tag{4}$$

Мы определяем волновое число k как величину, обратную длине волны, k = 1/L, так что $k^2(V^2-1) = (G')^{-2}$, и получаем для частоты $\omega = kV$ закон дисперсии

$$\omega^2 = k^2 + (G'(A))^{-2}, \tag{5}$$

существенным образом зависящий от амплитуды A. Групповая скорость определяется выражением

$$v = \left(\frac{\partial \omega}{\partial k}\right)_A = \frac{k}{\omega} = \frac{1}{V}.$$
 (6)

В промодулированной волне параметры V и A становятся медленными функциями координаты x и времени t, и их эволюция подчиняется модуляционным уравнениям Уизема [17, 18], которые могут быть записаны в наших обозначениях в виде

$$\left(\frac{kV}{V^2 - 1} + A\right)_t + \left(\frac{kVW}{V^2 - 1}\right)_x = 0,$$

$$\left(\frac{kVW}{V^2 - 1}\right)_t + \left(\frac{kV^2W}{V^2 - 1} - A\right)_x = 0.$$

$$(7)$$

Для перехода к релятивистской интерпретации этих уравнений удобно исключить из них W и V с помощью формул (3) и (6), и тогда мы получаем

$$\begin{pmatrix} \frac{G/G'}{1-v^2} + A - \frac{G}{G'} \end{pmatrix}_t + \left(\frac{(G/G')v}{1-v^2} \right)_x = 0, \\ \left(\frac{(G/G')v}{1-v^2} \right)_t + \left(\frac{(G/G')v^2}{1-v^2} - A + \frac{G}{G'} \right)_x = 0.$$
(8)

Линеаризация этих уравнений относительно малых отклонений от постоянных значений A и v дает характеристические скорости

$$v_{\pm} = \frac{v \pm c}{1 \pm vc},\tag{9}$$

где с определяется выражением

$$c^2 = -\frac{GG''}{(G')^2}.$$
 (10)

В случае положительности этого выражения формулы (9) имеют простой физический смысл: они дают скорости распространения звукового сигнала со звуковой скоростью c по или против течения «среды», движущейся со скоростью v, так что в лабораторной системе отсчета скорость сигнала равна релятивистской сумме скоростей.

Уравнения (8) могут быть преобразованы к диагональной форме

$$\frac{\partial r_{\pm}}{\partial t} + v_{\pm} \frac{\partial r_{\pm}}{\partial x} = 0 \tag{11}$$

введением римановых инвариантов

$$r_{\pm} = \int^{v} \frac{dv}{1 - v^2} \pm \int^{A} \frac{cG'}{G} \, dA, \tag{12}$$

что существенно упрощает решение задач в случае вещественности скорости звука *c* (положительности выражения в правой части (10)). Нас, однако, будет интересовать противоположный случай мнимой «скорости звука» *c*, для чего необходимо обсудить более детально свойства релятивистской гидродинамики для модели синус-Гордон.

3. РЕЛЯТИВИСТСКАЯ ГИДРОДИНАМИКА ДЛЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ КЛЕЙНА-ГОРДОНА

Еще Уизем в своей основополагающей работе [17] заметил, что процедура усреднения законов сохранения волнового движения по быстрым осцилляциям аналогична переходу от микроскопического описания движения среды в статистической механике к ее усредненному гидродинамическому описанию, справедливому при условии малости градиентов физических параметров, характеризующих среду. В нашем случае такими параметрами служат A и V, уравнение (1) релятивистски инвариантно, так что естественно ожидать, что после усреднения законов сохранения мы должны прийти к уравнениям релятивистской гидродинамики. В рамках асимптотического метода ВКБ это было показано в работе [28]. Однако для записи уравнений Уизема (8) в форме уравнений релятивистской гидродинамики удобнее исходить из закона сохранения энергии-импульса в релятивистском течении (см. [34]):

$$\frac{\partial T^{00}}{\partial t} + \frac{\partial T^{10}}{\partial x} = 0, \quad \frac{\partial T^{10}}{\partial t} + \frac{\partial T^{11}}{\partial x} = 0, \quad (13)$$

где

$$T^{ij} = wu^i u^j - pg^{ij}, \quad i, j = 1, 2,$$
 (14)

 тензор энергии импульса в двумерном пространстве Минковского с метрикой

$$g^{ij} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \tag{15}$$

w = e + p — тепловая функция на единицу объема, e — плотность энергии, p — давление, u^i — двумерный вектор «4-скорости». Для отождествления уравнений Уизема (8) с уравнениями (13) мы вводим стандартным образом 4-вектор u^i :

$$u^{0} = \frac{1}{\sqrt{1 - v^{2}}}, \qquad u^{1} = \frac{v}{\sqrt{1 - v^{2}}},$$
 (16)

и тогда легко видеть, что уравнения (8) и (13) совпадают, если

$$T^{00} = \frac{w}{1 - v^2} - p = \frac{G/(2G')}{1 - v^2} + \frac{A}{2} - \frac{G}{2G'},$$

$$T^{10} = T^{01} = \frac{wv}{1 - v^2} = \frac{(G/(2G'))v}{1 - v^2},$$

$$T^{11} = \frac{wv^2}{1 - v^2} + p = \frac{G/(2G')}{1 - v^2} - \frac{A}{2} + \frac{G}{2G'},$$

(17)

где мы поделили для дальнейшего удобства уравнения (8) на 2. Отсюда следует связь амплитуды волны *A* с термодинамическими функциями эффективной материи, подчиняющейся гидродинамическим уравнениям (13):

$$e = \frac{A}{2}, \quad p = \frac{G}{2G'} - \frac{A}{2}, \quad w = e + p = \frac{G}{2G'}.$$
 (18)

Существенно, что давление p зависит только от плотности энергии e. Это означает, что масса частиц эффективной материи пренебрежимо мала, хотя уравнение состояния p = p(e) определяется существенно более сложной формулой, чем обычно предполагаемое уравнение состояния p = e/3 для ультрарелятивистской материи (см. [30–33]). Легко видеть, что выражение (10) для скорости звука можно записать в стандартном виде

$$c^2 = \frac{dp}{de}.$$
 (19)

Температуру T и плотность энтропии σ эффективной материи можно определить следующим образом. В случае безмассовых частиц химический потенциал равен нулю, так что тепловая функция выражается формулой $w = T\sigma$, а из соотношения $dw = Td\sigma + dp = d(T\sigma)$ следует $dp = \sigma dT$ (см. [35]). Следовательно, квадрат скорости звука можно записать двумя способами: из (10) и (18) находим

$$c^2 = -w \frac{d^2 G/de^2}{dG/de},$$

а из формулы (19) с учетом $dp = \sigma dT = (w/T)dT$ имеем

$$c^2 = \frac{w}{T} \frac{dT}{de}.$$

Сравнение этих двух выражений дает формулы

$$T = \gamma \left(\frac{dG}{de}\right)^{-1}, \qquad \sigma = \frac{1}{\gamma}G(e),$$
 (20)

где постоянный множитель γ имеет в обеих формулах одно и то же значение. Отсюда следует соотношение

$$d\sigma = \frac{1}{\gamma} \frac{dG}{de} de = \frac{de}{T},\tag{21}$$

согласующееся со стандартным термодинамическим определением энтропии.

В переменных T, σ, u^i гидродинамические уравнения можно записать в особенно простом виде. Замечаем, что формулы для волнового числа k = 1/Lи частоты $\omega = kV = k/v$ переходят в

$$k = 2u^{1} \left(\frac{dG}{de}\right)^{-1} = \frac{2}{\gamma}u^{1}T,$$

$$\omega = k\frac{u^{0}}{u^{1}} = \frac{2}{\gamma}u^{0}T.$$
(22)

Следовательно, следующий из уравнений (7) закон сохранения числа волн (см. [17,18])

$$k_t + \omega_x = 0 \tag{23}$$

переходит в

$$(u^{1}T)_{t} + (u^{0}T)_{x} = 0. (24)$$

Отметим, что это соотношение было получено И. М. Халатниковым [31] из уравнений (13) для любого одномерного течения, что доказывает его потенциальность. В теории Уизема уравнение (23) следует из того, что волновое число и частота определены как производные фазы: $k = \theta_x, \omega = -\theta_t$. Как мы видим, обе картины — модуляционная уиземовская и релятивистская гидродинамическая — математически согласованы друг с другом, отличаясь лишь обозначениями и физическим смыслом переменных.

Еще одно уравнение легко получаем из формулы

$$\frac{\partial(wu^i)}{\partial x^i} - u^i \frac{\partial p}{\partial x^i} = 0, \qquad (25)$$

являющейся следствием уравнений (13), (14) (см. формулу (134.5) и задачу 2 в §134 книги [34]). Подстановка в нее $w = T\sigma$, $dp = \sigma dT$ мгновенно дает уравнение

$$\frac{\partial(\sigma u^0)}{\partial t} + \frac{\partial(\sigma u^1)}{\partial x} = 0, \qquad (26)$$

выражающее сохранение энтропии, то есть адиабатичность течения.

Конкретизируем эти соотношения для уравнения синус-Гордон, когда в (1)

$$U'(\varphi) = \sin \varphi, \qquad U(\varphi) = 1 - \cos \varphi.$$
 (27)

В этом случае интеграл в (2) сводится к эллиптическому интегралу первого рода и его обращение дает периодическое решение в явном виде

$$\varphi = 2 \arcsin\left[\sqrt{e} \operatorname{sn}\left(\frac{\xi - \xi_0}{\sqrt{V^2 - 1}}, e\right)\right] =$$

$$= 2 \arcsin\left[\sqrt{e} \operatorname{sn}\left(\frac{v(x - x_0) - t}{\sqrt{1 - v^2}}, e\right)\right].$$
(28)

При $e \rightarrow 1$ это решение переходит в известное решение уравнения синус-Гордон в виде «кинка»,

$$\varphi = 2 \arcsin\left[\sqrt{e} \operatorname{th}\left(\frac{v(x-x_0)-t}{\sqrt{1-v^2}}\right)\right],$$
 (29)

то есть волны, переходящей от значения $\varphi = -\pi$ при $x \to -\infty$ к значению $\varphi = \pi$ при $x \to +\infty$. Вычисление интеграла в (3) с помощью подстановки $\sin(\varphi/2) = \sqrt{e} \sin \psi$ дает

$$G(e) = 2\sqrt{2} \int_{-\varphi_0}^{\varphi_0} \sqrt{2e - 1 + \cos\varphi} \, d\varphi =$$

$$= 16\{E(e) - (1 - e)K(e)\},$$
(30)

где K(e), E(e) — полные эллиптические интегралы первого и второго рода, соответственно, определенные здесь согласно справочнику [36] ($\pm \varphi_0$ являются нулями подынтегрального выражения). Выбирая для постоянной γ в (20) значение $\gamma = 8$ и используя известные формулы для производных эллиптических интегралов по параметру e,

$$\frac{dK}{de} = \frac{E - (1 - e)K}{2e(1 - e)}, \qquad \frac{dE}{de} = \frac{E - K}{2e}, \qquad (31)$$

мы находим выражения для термодинамических функций

$$T = \frac{1}{K}, \quad \sigma = 4e(1-e)\frac{dK}{de} = 2[E - (1-e)K]. \quad (32)$$

Уравнение состояния p = p(e) имеет вид

$$p = 2\left(\frac{E(e)}{K(e)} - 1\right) + e.$$
(33)

Квадрат скорости звука

$$c^{2} = -4e(1-e)\left(\frac{1}{K}\frac{dK}{de}\right)^{2}$$
(34)

отрицателен в области $0 \le e < 1$ существования периодических решений, то есть модуляционная система Уизема отвечает модуляционной неустойчивости периодической волны. Соответственно римановы инварианты (12) являются комплексными:

$$r_{\pm} = \frac{1}{2} \ln \frac{1+v}{1-v} \pm i \arcsin \sqrt{e}.$$
 (35)

Тем не менее, подобно теории НУШ, эволюция плавных распределений модуляционных параметров подчиняется гидродинамическим уравнениям (24), (26), решение которых может быть получено преобразованием годографа.

4. ПРЕОБРАЗОВАНИЕ ГОДОГРАФА

Для проведения преобразования годографа вводим вместо скорости v «быстроту» y согласно уравнениям

$$u^0 = \operatorname{ch} y, \qquad u^1 = \operatorname{sh} y, \qquad v = \operatorname{th} y, \qquad (36)$$

а также переходим к переменным светового конуса

$$x_{-} = t - x, \qquad x_{+} = t + x.$$
 (37)

Тогда уравнение (24) приобретает вид

$$\frac{\partial}{\partial x_{-}} \left(\frac{\mathrm{e}^{-y}}{K(e)} \right) - \frac{\partial}{\partial x_{+}} \left(\frac{\mathrm{e}^{y}}{K(e)} \right) = 0, \qquad (38)$$

и оно удовлетворяется, если

$$\frac{\mathrm{e}^{-y}}{K(e)} = \frac{\partial\phi}{\partial x_{-}}, \qquad \frac{\mathrm{e}^{y}}{K(e)} = \frac{\partial\phi}{\partial x_{+}} \tag{39}$$

для некого потенциала $\phi = \phi(x_-, x_+)$. Теперь, следуя Халатникову [31], мы делаем преобразование Лежандра, переходя к потенциалу $\mathcal{W} = \mathcal{W}(e, y)$,

$$\mathcal{W} = \phi - K^{-1} \mathrm{e}^{y} x_{-} - K^{-1} \mathrm{e}^{-y} x_{+}, \qquad (40)$$

так что

$$d\mathcal{W} = -\frac{dK^{-1}}{de} (e^{y}x_{-} + e^{-y}x_{+})de - \frac{1}{K} (e^{y}x_{-} - e^{-y}x_{+})dy,$$
(41)

откуда

$$x_{-} = -\frac{\mathrm{e}^{-y}}{2} \left(\frac{1}{dK^{-1}/de} \frac{\partial \mathcal{W}}{\partial e} + K \frac{\partial \mathcal{W}}{\partial y} \right),$$

$$x_{+} = -\frac{\mathrm{e}^{y}}{2} \left(\frac{1}{dK^{-1}/de} \frac{\partial \mathcal{W}}{\partial e} - K \frac{\partial \mathcal{W}}{\partial y} \right).$$
(42)

Эти формулы осуществляют преобразование годографа: если функция $\mathcal{W} = \mathcal{W}(e, y)$ известна, то они дают в неявном виде зависимость *e* и *y* от переменных (37) и тем самым от *x* и *t*.

Уравнение (26) после замен (36), (37) переходит в

$$\frac{\partial(\sigma e^{-y})}{\partial x_{-}} + \frac{\partial(\sigma e^{y})}{\partial x_{+}} =
= \frac{\partial(\sigma e^{-y}, x_{+})}{\partial(x_{-}, x_{+})} + \frac{\partial(x_{-}, \sigma e^{y})}{\partial(x_{-}, x_{+})} = 0.$$
(43)

Умножая его на якобиан $\partial(x_-, x_+)/\partial(e, y)$, получаем после простых преобразований с учетом формул (32) и $d\sigma/de = 1/T = K(e)$ уравнение для W:

$$\frac{\partial}{\partial e} \left[e(1-e)K^2 \frac{\partial \mathcal{W}}{\partial e} \right] + \frac{K^2}{4} \frac{\partial^2 \mathcal{W}}{\partial y^2} = 0 \qquad (44)$$

или

$$e(1-e)\frac{\partial^2 \mathcal{W}}{\partial e^2} + \left(\frac{E(e)}{K(e)} - e\right)\frac{\partial \mathcal{W}}{\partial e} + \frac{1}{4}\frac{\partial^2 \mathcal{W}}{\partial y^2} = 0.$$
(45)

Это уравнение является эллиптическим и оно заменяет уравнение Эйлера-Пуассона, возникающее в приложении метода годографа к уравнениям газовой динамики (см., например, [34]). В модуляционно неустойчивой бездисперсионной динамике теории НУШ, описываемой уравнениями опрокинутой мелкой воды, аналогом уравнения (45) оказывается двумерное уравнение Лапласа, записанное в полярных координатах (см., например, [11–13]). Уравнение (44) переходит в это уравнение Лапласа в пределе малых *е*.

Важный класс решений уравнения (45) получается после разделения переменных

$$\mathcal{W}(e) = Z(e)Y(y),\tag{46}$$

так что

$$\frac{d^2Y}{dy^2} = \lambda^2 Y, \qquad Y(y) = e^{\pm\lambda y}, \tag{47}$$

и Z = Z(e) удовлетворяет уравнению

$$e(1-e)\frac{d^2Z}{de^2} + \left(\frac{E(e)}{K(e)} - e\right)\frac{dZ}{de} + \frac{\lambda^2}{4}Z = 0.$$
 (48)

С помощью формул (31) можно проверить, что при $\lambda^2 = 1$ его решением является функция Z = 1/K(e). Поэтому делаем в (48) подстановку

$$Z = \frac{F(e)}{K(e)} \tag{49}$$

и получаем для F(e) гипергеометрическое уравнение

$$e(1-e)\frac{d^2F}{de^2} + (1-2e)\frac{dF}{de} + \frac{\lambda^2 - 1}{4}F = 0, \quad (50)$$

решением которого является гипергеометрическая функция $F = F((1 + \lambda)/2, (1 - \lambda)/2, 1; e)$ (см., например, [36, 37]). Подстановкой e = (1 - z)/2 оно преобразуется к уравнению Лежандра

$$(1-z^2)\frac{d^2F}{dz^2} - 2z\frac{dF}{dz} + n(n+1)F = 0, \quad n = \frac{\lambda - 1}{2},$$
(51)

которое при n = 0, 1, 2, ... имеет решения в виде многочленов Лежандра $P_n(z) = P_n(1-2e)$ и функций Лежандра 2-го рода $Q_n(z) = Q_n(1-2e)$. Ясно, что любая линейная комбинация решений (46) также является решением уравнения (45).

Проиллюстрируем развитую теорию примером.

Рис. 1. Графики функций $f_1(e)$ и $f_2(e)$, определенных формулами (54)

5. ПРИМЕР: САМОСЖАТИЕ НЕЛИНЕЙНОГО ВОЛНОВОГО ПАКЕТА

Возьмем в качестве примера, иллюстрирующего поведение нелинейных модулированных волн в модели синус-Гордон, решение с $F = P_1(z) = 1 - 2e$, то есть с n = 1 и, значит, $\lambda = 3$:

$$\mathcal{W}(e,y) = \frac{1-2e}{K(e)} e^{3y}.$$
(52)

Его подстановка в формулы (42) дает соотношения

$$\begin{aligned} x_{-} &= t - x = -2f_1(e)e^{2y}, \\ x_{+} &= t + x = -f_2(e)e^{4y}, \end{aligned}$$
(53)

где

$$f_1(e) = \frac{(1-2e)E(e) - (1-e)(1-3e)K(e)}{E(e) - (1-e)K(e)},$$

$$f_2(e) = -\frac{(1-2e)E(e) - (1-e)K(e)}{E(e) - (1-e)K(e)}.$$
(54)

Графики этих функций показаны на рис. 1. Их значения при e = 0 и e = 1 равны

$$f_1(0) = f_2(0) = 3,$$

$$f_1(1) = -1, \quad f_2(1) = 1,$$
(55)

а разложения вблизиe = 0имеют вид $(0 < e \ll 1)$

$$f_1(e) = 3 - \frac{15}{4}e - \frac{3}{32}e^2 + \dots,$$

$$f_2(e) = 3 - \frac{3}{2}e - \frac{3}{16}e^2 + \dots$$
(56)

Формулы (53) задают в неявном виде зависимость переменных e и y от x и t. Удобно выразить

Рис. 2. Траектории левого x_L и правого x_R краев нелинейного волнового пакета на плоскости (x, t) согласно формулам (63) и (61), соответственно.

все функции при фиксированном значении времени t параметрически, где в качестве параметра выступает переменная e. В самом деле, из (53) находим

$$2t = -2f_1 e^{2y} - f_2 e^{4y}, \quad 2x = 2f_1 e^{2y} - f_2 e^{4y}, \quad (57)$$

так что первое уравнение дает

$$e^{2y} \equiv \frac{1+v}{1-v} = \sqrt{\left(\frac{f_1}{f_2}\right)^2 - \frac{2t}{f_2}} - \frac{f_1}{f_2}, \qquad (58)$$

где мы выбрали положительный корень ввиду положительности функции e^{2y} . Подстановка e^{2y} во вторую формулу (57) дает

$$x = x(e) = t + 2f_1 \left(\sqrt{\left(\frac{f_1}{f_2}\right)^2 - \frac{2t}{f_2}} - \frac{f_1}{f_2} \right).$$
(59)

Эта формула определяет зависимость e от x в фиксированный момент времени t. Зависимость скорости v от e находим из (58):

$$v = v(e) = \frac{\sqrt{f_1^2 - 2f_2t} - f_1 - f_2}{\sqrt{f_1^2 - 2f_2t} - f_1 + f_2}.$$
 (60)

Эта формула вместе с (59) определяет распределение v по x в параметрическом виде. Полученные формулы дают частное решение уравнений Уизема об эволюции нелинейного волнового пакета. Обсудим его основные свойства.

Прежде всего из положительности f_2 и ограниченности функций f_1, f_2 , очевидной из рис. 1, мы заключаем, что должно быть t < 0, то есть пакет был сформирован при достаточно больших по абсолютной величине отрицательных значениях t и затем он

эволюционирует с уменьшением |t|. Положив в (59) e = 0, находим с помощью (55) закон движения малоамплитудного края пакета:

$$x_R(t) = t + 6\left(\sqrt{1 - 2t/3} - 1\right).$$
 (61)

Скорость этого края равна

$$\frac{dx_R}{dt} = 1 - \frac{2}{\sqrt{1 - 2t/3}},\tag{62}$$

и она как раз совпадает с групповой скоростью (60) при e = 0: $dx_R/dt = v(e = 0)$.

Закон движения противоположного левого края пакета с e = 1 находим из (59), положив в этой формуле соответствующие значения (55):

$$x_L(t) = t - 2\sqrt{1 - 2t} - 2, \tag{63}$$

так что его скорость равна

$$\frac{dx_L}{dt} = 1 + \frac{2}{\sqrt{1 - 2t}}.$$
(64)

Для групповой скорости (60) находим на этом крае значение

$$v(1) = \frac{\sqrt{1-2t}}{\sqrt{1-2t}+2},\tag{65}$$

то есть ввиду соотношения (6) скорость этого края (64) равна фазовой скорости волны в этой точке: $dx_L/dt = V = 1/v(1)$. Это соответствует тому, что на крае с $e \rightarrow 1$ имеется последовательность кинков (29), в которые вырождается в этом пределе периодическая волна (28): скорость кинка, очевидно, равна V = 1/v. Траектории краев нелинейного волнового пакета показаны на рис. 2, из которого видно, что пакет сжимается с течением времени.

Подстановка формул для x = x(e) и v = v(e)из (59), (60) в периодическое решение (28) дает нам вместе с (59) в параметрической форме профиль промодулированной волны в момент времени t (где мы пренебрегли, естественно, дополнительным медленным сдвигом фазы вдоль волновой структуры; см., например, [38]), и огибающие этого профиля, не зависящие от сдвига фазы, определяются, очевидно, формулой

$$a = \pm 2 \arcsin \sqrt{e(x)}.$$
 (66)

Типичный такой профиль изображен на рис. 3 сплошной линией, а его огибающие (66) — штриховыми линиями.

Длина волны (4) для случая уравнения синус-Гордон выражается формулой

$$L = 4 \frac{\sqrt{1 - v^2(e)}}{v(e)} K(e).$$
(67)

Рис. 3. Профиль волны в промодулированном нелинейном импульсе $\varphi(x,t)$ при t=-100

Рис. 4. Число колебаний в нелинейном волновом пакете в зависимости от времени

Естественно, для применимости модуляционной теории Уизема необходимо, чтобы длина волны L была много меньше, чем длина всей волновой структуры. С практической точки зрения можно заметить, что L стремится к бесконечности при $v \to 0$, а скорость правого края $dx_R/dt = v(0)$ (62) обращается в нуль при t = -9/2. Следовательно, наше частное решение уравнений Уизема применимо только при $t < 0, |t| \gg 5$.

Число нелинейных колебаний в структуре приближенно равно

$$N \cong \int_{x_L}^{x_R} \frac{dx}{L} = \int_0^1 \frac{|dx/de|}{L(e)} de,$$
 (68)

и, как видно из рис. 4, оно убывает со временем, становясь порядка единицы при t = -5 на границе области применимости теории Уизема. Вывод об уменьшении числа осцилляций в волновой структуре согласуется с тем, что в силу v < 1 фазовая скорость V = 1/v(0) на правом крае всегда больше групповой скорости v(0) правого края, так что с течением времени волны покидают уиземовскую область нелинейных колебаний через ее малоамплитудный край. Стоит отметить, что ситуация здесь противоположна теории дисперсионных ударных волн в модуляционно устойчивых системах [39], в которых волны входят в уиземовскую нелинейную область через малоамплитудный край [40], что дает возможность вычислить число солитонов, образующихся из начальной интенсивной простой волны при асимптотически больших временах [41] (см. также [42–46]).

Отметим, что согласно формулам (42) изменение знака функции W эквивалентно одновременному изменению знаков x и t. Следовательно, при изменении знака W мы получим решение, описывающее расширение нелинейного волнового пакета с ростом t > 0, аналогичное формированию волновой структуры при распаде ступеньки в теории НУШ (см., например, [21–23,47]), однако в этом случае эволюция не является автомодельной и определение движения малоамплитудного края волновой структуры остается за пределами теории Уизема-Гуревича-Питаевского.

Эволюция нелинейных волновых пакетов, для описания которых в формуле (49) используются функции Лежандра второго рода, имеет качественно такой же характер, как и в случае многочленов Лежандра, и поэтому мы здесь не будем останавливаться на конкретных деталях.

6. ЗАКЛЮЧЕНИЕ

Как известно, методы газовой динамики могут быть с успехом применены для описания эволюции не только устойчивых, но также и неустойчивых систем (см., например, [14]). Создание модуляционной теории Уизема [17, 18], открытие метода обратной задачи рассеяния [48] и развитие общей теории систем гидродинамического типа [49] позволило распространить эти методы на обширную область теории дисперсионных ударных волн (см., например, обзоры [41,50]). Хотя эти методы применимы и к модуляционно неустойчивым системам (см., например, работы [51–54] по теории уравнения синус-Гордон), тем не менее практические приложения модуляционной теории к однофазным волнам в неустойчивых системах пока ограничивались лишь частными случаями типа «эволюции ступеньки» [21-23] (см. также [47] и приведенные там ссылки). Развитие области неустойчивости в неоднородных системах обсуждалось в работе [25] также только для малоамплитудного края и не затрагивало вопроса об эволюции параметров во всей области нелинейных осцилляций. В настоящей работе дано точное решение модуляционных уравнений Уизема для модуляционно неустойчивой нелинейной волны в модели синус-Гордон. Развитая теория показывает весьма нетривиальную эволюцию нелинейного волнового пакета, которая заключается в его сжатии, сопровождаемом уходом волн из области нелинейных осцилляций, так что за конечное время в этой области остается лишь малое число порядка единицы нелинейных колебаний. На этой стадии теория Уизема теряет свою применимость и вопрос о дальнейшей эволюции волнового импульса должен рассматриваться другими методами.

Можно предполагать, что предложенный здесь подход окажется эффективным и при обсуждении модуляционно неустойчивых для других вариантов нелинейного уравнения Клейна–Гордона, в частности для уравнения, описывающего возбуждение волн ветром (см. [55]) или уравнений, описывающих распространение электромагнитных волн в нелинейных средах (см., например, [56–58]).

Благодарности. Автор выражает благодарность С. Ю. Доброхотову, Е. А. Кузнецову и С. В. Сазонову за полезные обсуждения.

Финансирование. Работа выполнена при поддержке Российского научного фонда (грант N 19-72-30028).

ЛИТЕРАТУРА

- 1. Г. А. Аскарьян, ЖЭТФ 42, 1568 (1962).
- **2**. Г. А. Аскарьян, УФН **111**, 249 (1973).
- R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
- А. А. Веденов, Л. И. Рудаков, ДАН СССР 159, 767 (1964).
- **5**. В. Е. Захаров, ЖЭТФ, **62**, 1745 (1972).
- **6**. Л. А. Островский, ЖЭТФ **51**, 1189 (1966).
- T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 41 (1967).
- **8**. В. Е. Захаров, ЖПМТФ, **9**, 86 (1968).

- **9**. В. И. Таланов, Письма в ЖЭТФ **2**, 218 (1965).
- С. А. Ахманов, А. П. Сухоруков, Р. В. Хохлов, ЖЭТФ 50, 1537 (1966).
- 11. M. J. Lighthill, J. Inst. Math. Appl. 1, 269 (1965).
- W. D. Hayes, Proc. Roy. Soc. Lond. A 332, 199 (1973).
- А. В. Гуревич, А. С. Шварцбург, ЖЭТФ 58, 2012 (1970).
- 14. С. К. Жданов, Б. А. Трубников, *Квазигазовые* неустойчивые среды, Наука, Москва (1991).
- **15**. В. И. Карпман, Письма ЖЭТФ **6**, 829 (1967).
- В. И. Карпман, Е. М. Крушкаль, ЖЭТФ 55, 530 (1968).
- 17. G. B. Whitham, Proc. Roy. Soc. Lond. A, 283, 238 (1965).
- **18**. Дж. Уизем, Линейные и нелинейные волны, Мир, Москва (1974).
- 19. M. G. Forest and J. E. Lee, in: Oscillation Theory, Computation, and Methods of Compensated Compactness, ed. by C. Dafermos et al., IMA Volumes on Mathematics and its Applications, Vol. 2,(Springer, New York (1986).
- **20**. М. В. Павлов, ТМФ **71**, 351 (1987).
- 21. A. M. Kamchatnov, Phys. Lett. A 162, 389 (1992).
- 22. G. A. El, A. V. Gurevich, V. V. Khodorovskii, and A. L. Krylov, Phys. Lett. A 177, 357 (1993).
- 23. Р. Ф. Бикбаев, В. Р. Кудашев, Письма в ЖЭТФ
 59, 741 (1994).
- G. Biondini and D. Mantzavinos, Phys. Rev. Lett. 116, 043902 (2016).
- 25. A. M. Kamchatnov and D. V. Shaykin, EPL 136, 40001 (2021).
- 26. Э. Скотт, Нелинейная наука. Рождение и развитие когерентных структур, Физматлит, Москва (2007).
- 27. In: The sine-Gordon Model and its Applications, ed. by J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams, Cham, Springer (2014).
- **28**. В. П. Маслов, ТМФ **1**, 378 (1969).
- **29**. С. Ю. Доброхотов, В. П. Маслов, Итоги науки и техн. Сер. Соврем. пробл. мат. **15**, 3 (1980).

- **30**. Л. Д. Ландау, Изв. АН СССР, серия физ. **17**, 51 (1953).
- **31**. И. М. Халатников, ЖЭТФ **27**, 529 (1954).
- **32**. В. Г. Носов, А. М. Камчатнов, ЖЭТФ **70**, 768 (1976).
- **33**. А. М. Камчатнов, ЖЭТФ **156**, 689 (2019).
- **34**. Л. Д. Ландау, Е. М. Лифшиц, *Гидродинамика*, Физматлит, Москва (2001).
- **35**. Л. Д. Ландау, Е. М. Лифшиц, *Статистическая* физика, часть 1, Физматлит, Москва (2001).
- 36. М. Абрамовиц, И. Стиган, Справочник по специальным функциям, Наука, Москва (1979).
- 37. Э. Т. Уиттекер, Дж. Н. Ватсон, Курс современного анализа, т. II, Физматлит, Москва (1963).
- 38. С. Ю. Доброхотов, Д. С. Миненков, ТМФ 166, 350 (2011).
- 39. А. В. Гуревич, Л. П. Питаевский, ЖЭТФ 65, 590 (1973).
- 40. А. В. Гуревич, Л. П. Питаевский, ЖЭТФ 93, 871 (1987).
- **41**. А. М. Камчатнов, УФН **191**, 52 (2021).
- 42. G. A. El, A. Gammal, E. G. Khamis, R. A. Kraenkel, and A. M. Kamchatnov, Phys. Rev. A 76, 053813 (2007).
- 43. G. A. El, R. H. J. Grimshaw, and N. F. Smyth, Physica D 237, 2423 (2008).

- 44. A. M. Kamchatnov, Chaos 30, 123148 (2020).
- **45**. А. М. Камчатнов, ЖЭТФ **151**, 76 (2021).
- 46. L. F. Calazans de Brito, A. M. Kamchatnov, Phys. Rev. E 104, 054203 (2021)
- 47. A. M. Kamchatnov, Phys. Rep. 286, 199, (1997).
- 48. В. Е. Захаров, С. В. Манаков, С. П. Новиков, Л. П. Питаевский, *Теория солитонов. Метод* обратной задачи, Физматлит, Москва (1980).
- **49**. Б. А. Дубровин, С. П. Новиков, УМН **44**, 29 (1989).
- 50. G. A. El, M. A. Hoefer, Physica D 333, 11 (2016).
- 51. M. J. Ablowitz, D. J. Kaup, A. S. Newell, and H. Segur, Phys. Rev. Lett. 30, 1262 (1973).
- **52**. Л. А. Тахтаджян, ЖЭТФ **66**, 476 (1974).
- 53. В. А. Козел, В. П. Котляров, ДАН УССР, сер. А 10, 878 (1976).
- 54. P. G. Grinevich and S. P. Novikov, Comm. Pure Appl. Math. 56, 956 (2003).
- 55. Е. А. Кузнецов, П. М. Лушников, ЖЭТФ 108, 614 (1995).
- 56. С. В. Сазонов, Н. В. Устинов, Письма ЖЭТФ
 83, 873 (2006).
- **57**. С. В. Сазонов, ЖЭТФ **146**, 483 (2014).
- 58. S. V. Sazonov and N. V. Ustinov, Phys. Rev. A 98, 063803 (2018).