КВАЗИИЗЭНТРОПИЧЕСКОЕ СЖАТИЕ ГАЗООБРАЗНЫХ ГЕЛИЯ И ДЕЙТЕРИЯ В СФЕРИЧЕСКИХ КОНСТРУКЦИЯХ ПРИ ТЕРАПАСКАЛЬНЫХ ДАВЛЕНИЯХ

М. В. Жерноклетов, С. Ф. Маначкин, Н. Б. Давыдов*, В. А. Раевский, А. О. Бликов,

К. Н. Панов, А. В. Рыжков, В. А. Аринин, Б. И. Ткаченко, А. И. Логвинов,

А. В. Дегтярев, В. А. Комраков, А. И. Давыдов, Н. Н. Анашкин, В. В. Хрусталев

Российский федеральный ядерный центр —

Всероссийский научно-исследовательский институт экспериментальной физики 607188, Саров, Нижегородская обл., Россия

> Поступила в редакцию 13 апреля 2022 г., после переработки 9 сентября 2022 г. Принята к публикации 9 сентября 2022 г.

Приведены результаты четырех экспериментов по исследованию предварительно статически сжатых газообразных гелия и дейтерия при их последующем обжатии во взрывных сферических каскадных конструкциях, обеспечивающих квазиизэнтропическое сжатие исследуемых газов. Для гелия достигнуты следующие значения: давление сжатия $P_{mean} \approx 4.9$ TПа при плотности $\rho_{max} \approx 6.4$ г/см³, степень сжатия $\delta = \rho/\rho_0 \approx 320$ в одном эксперименте и $P_{mean} \approx 10.9$ TПа, $\rho_{max} \approx 10.3$ г/см³, $\delta \approx 470$ в другом. Для дейтерия эти параметры составляют $P_{mean} \approx 3.4$ TПа, $\rho_{max} \approx 6.0$ г/см³, $\delta \approx 162$ в одном эксперименте и $P_{mean} \approx 13.3$ TПа, $\rho_{max} \approx 11.4$ г/см³, $\delta \approx 520$ в другом. Плотность газов определялась рентгенографическим методом по положению границ стальных оболочек, сжимающих газ. Эксперименты моделировались по одномерной газодинамической программе, в которой для изучаемых газов использовались уравнения состояния Копышева – Хрусталева. Давления получены из расчетов, в которых удалось удовлетворительское по положетия газов во всей совокупности экспериментов.

DOI: 10.31857/S0044451023020116 **EDN:** OQWECN

1. ВВЕДЕНИЕ

Интерес к исследованию термодинамических свойств гелия, водорода и дейтерия при высоких давлениях и температурах связан с их широким распространением в природе и применением в различных высокоэнергетических конструкциях. Для изучения процессов в недрах планет-гигантов, а также многочисленного отряда так называемых внесолнечных планет необходимо знать, как меняются параметры уравнения состояния (УРС), в том числе в процессе изэнтропического сжатия этих газов и их смесей [1–3].

Отметим, что работы по изучению УРС водорода, дейтерия и гелия в широких диапазонах давлений и температур ведутся во ВНИИЭФ на протяжении многих лет. Результаты первых экспериментов по исследованию газообразного водорода до давления $P \approx 1000 \, \Gamma \Pi$ а опубликованы в 1972 г. Кормером и его сотрудниками [4]. В опытах исследовалось сжатие водорода стальной сферической оболочкой, сходящейся к центру под действием продуктов взрыва (ПВ). В дальнейшем различными группами исследователей проводились эксперименты по сжатию изотопов водорода в газообразном, жидком и твердом состояниях по следующим направлениям динамических исследований: ударно-волновому, квазиизэнтропическому и изэнтропическому сжатиям. Для создания высоких ударно-волновых давлений применялись устройства сферической геометрии [5,6]. Квазиизэнтропические режимы сжатия исследовали в устройствах цилиндрической и сферической геометрии с использованием в качестве энергетического источника взрывчатого вещества (ВВ) [7,8]. Процессы изэнтропического сжатия исследовали в

^{*} E-mail: postmaster@ifv.vniief.ru

устройствах цилиндрической геометрии с применением магнитного поля, создаваемого генератором MK-1 [9]. Наибольшие сжатия и давления реализуются в каскадных сферических устройствах [10–12]. Полученные экспериментальные данные служат тестовым материалом для теоретических моделей и основой для калибровки полуэмпирических широкодиапазонных УРС.

Несмотря на уже достаточно большой объем проведенных экспериментов, еще нет оснований считать работы по изучению УРС изотопов водорода и гелия завершенными, и в ряде случаев необходимы дополнительные исследования. Одна из причин увеличения числа экспериментов связана с единичными измерениями для каждой вновь испытуемой конструкции. Отметим, что исходных состояний на изэнтропах сжатия для каждой конструкции немного, но они различаются. Практика показывает, что плотность газа в сферических устройствах определяется с погрешностью 13–15%. Повысить степень доверия к результатам можно за счет увеличения статистики экспериментов.

В настоящей работе приводятся постановка и результаты четырех экспериментов по исследованию сжатия газообразных гелия и дейтерия во взрывных сферических каскадных конструкциях, обеспечивающих квазиизэнтропическое сжатие исследуемых газов.

2. ТЕХНИКА ЭКСПЕРИМЕНТА

Эксперименты выполнены с использованием рентгеновского комплекса РФЯЦ-ВНИИЭФ. Постановка подобных экспериментов подробно описана в ряде работ (см., например, [12]). Комплекс позволяет в одном взрывном эксперименте получить до девяти рентгеноснимков полости с исследуемым газом в различные моменты процесса сжатия.

Схема проведения взрывных экспериментов с использованием многокадровой рентгеновской установки представлена на рис. 1. Собранное сферическое устройство 1, размещенное внутри защитного однослойного (двухслойного для опытов №№3, 4) стального цилиндра 2, установлено между двумя защитными сооружениями 3 и 4. В защитных сооружениях 3 находится рентгенографический комплекс РФЯЦ-ВНИИЭФ, состоящий из трех бетатронов БИМ234.3000 5 с граничной энергией электронов 53 МэВ и линейного индукционного ускорителя ЛИУ-Р-Т 9 с граничной энергией электронов 12 МэВ. Бетатроны работают в режиме по-

Рис. 1. Схема проведения взрывных экспериментов с использованием многокадровой рентгеновской установки: 1 — экспериментальное устройство в сборе; 2 — защитный цилиндр (локализующее устройство); 3, 4 — защитные сооружения; 5 — бетатроны БИМ234.3000 [13]; 6 — регистраторы; 7 — коллиматоры (Pb); 8 — защитные конусы (Al);

9 — ЛИУ-Р-Т [14]; 10 — пакет ADC-экранов

следовательной генерации трех импульсов рентгеновского излучения длительностью 150–180 нс. Для ЛИУ-Р-Т длительность импульса излучения не превышает 50 нс.

Для регистрации рентгеновского излучения в боковых проекциях использовали оптикоэлектронную систему детектирования 6. Для регистрации рентгеновского излучения в центральной проекции использовали набор из десяти фотохромных экранов 10 на основе галогенида бария, активированного европием (ADC-экраны).

Для снижения влияния рассеянного излучения размер поля регистрации ограничивали коллиматорами 7. Для защиты от воздействия продуктов взрыва бетатронов 5, ЛИУ-Р-Т 9 и регистраторов рентгеновского излучения 6, 10 применены алюминиевые конусы 8.

Полученные рентгеновские изображения обрабатывались цифровым методом [15]. В результате определялись величины эквивалентных радиусов (радиусов сфер, имеющих тот же объем, что и объем полости, граница которой определена методом функциональной трассировки) полости с газом в различные моменты времени, которые затем сравнивались с соответствующими расчетными зависимостями радиуса полости с газом от времени.

№опыта	P_1 , MПa/He	P_2 , МПа/газ	$ ho_{01},$ г/см 3	$ ho_{02},$ г/см 3	$T_0, ^{\circ}\mathrm{C}$	M_{expl} , кг Т.Э.
1	24.24	$11.77/\mathrm{He}$	0.039	0.02	-5	52
2	24.94	$24.50/\mathrm{D}_2$	0.037	0.036	+15	52
3	13.77	$13.75/\mathrm{D}_2$	0.022	0.022	+10	117
4	13.56	$13.57/\mathrm{He}$	0.022	0.022	+5	117

Таблица 1. Начальные давления и плотности газов в полостях, температура среды, масса ВВ в экспериментах

3. ЭКСПЕРИМЕНТАЛЬНЫЕ УСТРОЙСТВА

Общий вид и физические схемы сферических экспериментальных устройств показаны на рис. 2 и 3 соответственно.

Рис. 2. Экспериментальное двухкаскадное сферическое устройство с разделенными полостями: Об₁, Об₂ — оболочки первого и второго каскадов; P_1 , P_2 — давление газа в полости между оболочками и в центральной полости

Рис. 3. Схемы двухкаскадных сферических устройств: *a*) опыты №№1, 2, устройство 1; *б*) опыты №№3, 4, устройство 2

Общее в этих устройствах — двухкаскадная схема центральной части с раздельным заполнением полостей через трубопровод газами с требуемым давлением. Наличие значительного слоя газа между оболочками позволяет симметризовать сжатие газа в центральной полости, реализуя при этом квазиизэнтропический процесс сжатия. В экспериментах №1 и №2 было устройство 1 (рис. 3*a*) со стальными оболочками, изменялось только наполнение полостей газами. В экспериментах №3 и №4 было устройство 2 (рис. 36), в котором оболочки первого и второго каскадов двухслойные — сталь, алюминий. Конкретные параметры каждого сферического устройства в четырех представленных экспериментах приведены на рис. 3 и в табл. 1. В табл. 1 приведены начальные давления и плотности газов в полостях, температура среды во время проведения эксперимента и масса ВВ в килограммах тротилового эквивалента (Т.Э.). В качестве ВВ использовался октогеновый состав. Начальная плотность дейтерия рассчитана с использованием справочных данных [16]. Для определения начальной плотности гелия использовали табличные данные [17].

4. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В каждом эксперименте получено по семь рентгеноснимков в различные моменты времени, относящиеся к разным фазам сжатия полости с газом.

Полученные изображения на ренгеноснимках были обработаны цифровым методом и определены величины эквивалентных радиусов полости с газом в различные моменты времени. На рис. 4–7 для каждого эксперимента представлены все полученные рентгеноснимки с изображением исследуемой газовой полости (темная область в центре кадра). Снимки на рисунках расположены по порядку в соответствии с временами экспозиции. Размеры изображений приведены к одному масштабу.

В табл. 2–5 приведены времена экспозиции рентгеноснимков и полученные в результате обработки изображений соответствующие величины эквивалентных радиусов внутренней (R) границы стальной оболочки, обжимающей газ. Для каждого внутреннего радиуса оболочки приведены погрешности (σ), определенные как среднеквадратичные отклонения границ, полученных методом функциональной трассировки, от соответствующих эквивалентных радиусов.

Рис. 4. Рентгеноснимки опыта №1 (Не)

Рис. 5. Рентгеноснимки опыта №2 (D₂)

Рис. 6. Рентгеноснимки опыта №3 (D₂)

Рис. 7. Рентгеноснимки опыта №4 (Не)

Таблица 2. Времена экспозиции, экспериментальные эквивалентные радиусы и соответствующие им погрешности в опыте №1 с гелием

$N_{\underline{0}} \pi / \pi$	T, мкс	R, MM	σ , mm
1	44.44	30.97	0.25
2	45.38	23.26	0.21
3	46.36	14.12	0.18
4	47.07	7.17	0.27
5	47.35	7.91	0.19
6	47.78	9.03	1.22
7	48.66	11.41	1.03

Таблица 3. Времена экспозиции, экспериментальные эквивалентные радиусы и соответствующие им погрешности в опыте №2 с дейтерием

$\mathbb{N}^{0} \pi / \pi$	T, мкс	R, MM	σ , mm
1	45.11	26.08	0.44
2	45.98	19.01	0.27
3	46.41	14.48	0.27
4	47.12	8.83	0.23
5	47.35	9.18	0.35
6	47.80	10.05	0.70
7	48.40	12.04	1.07

Данные, полученные в эксперименте №1 (Не), представлены в табл. 2 и на рис. 4, в эксперименте №2 (D₂) — в табл. 3 и на рис. 5, в эксперименте №3 (D₂) — в табл. 4 и на рис. 6 и в эксперименте №4 (Не) — в табл. 5 и на рис. 7.

5. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЭКСПЕРИМЕНТОВ

Проведено численное моделирование процесса сжатия газа в испытанных устройствах. Расче-

Таблица 4. Экспериментально определенные эквивалентные радиусы и соответствующие им погрешности в опыте №3 с дейтерием

$N_{\rm M}\pi/\pi$	T, мкс	R, MM	σ , mm
1	73.93	19.45	0.4
2	74.22	14.66	0.3
3	74.61	8.49	0.15
4	74.84	5.68	0.6
5	75.20	6.51	1.6
6	75.41	9.32	2.5
7	75.79	12.01	2.5

Таблица 5. Экспериментально определенные эквивалентные радиусы и соответствующие им погрешности в опыте №4 с гелием

$N_{\rm M}\pi/\pi$	T, мкс	R, MM	σ , mm
1	74.10	14.85	0.35
2	74.39	10.23	0.44
3	74.73	5.92	0.31
4	74.90	6.10	1.41
5	75.12	8.24	2.14
6	75.30	10.29	2.67
7	75.70	13.06	3.71

ты движения оболочек выполнялись по одномерной программе математического комплекса РФЯЦ-ВНИИЭФ [18]. В расчетах для материала оболочек и ВВ использовались аттестованные УРС, введенные в программы математического комплекса. Для материала оболочек Fe, Al использовались УРС в форме РОСА [19]. Динамическая прочность учитывалась по модели [20]. Для расчетов продуктов взрыва применялось УРС из работы [21]. Для дейтерия применялось УРС [22], построенное на основе

Рис. 8. Сравнение экспериментальных и расчетных результатов для опыта №1 с гелием

модели сжимаемого коволюма (MCK) [23] и калиброванное на экспериментальные данные [4]. Для гелия использовалось УРС в табличной форме, разработанное на основе модифицированной модели сжимаемого коволюма (мMCK).

Основное уравнение мМСК имеет вид

$$P = NkT/(V - V_C) + P_a.$$
 (1)

Здесь P — давление, V — объем, V_C — коволюм, P_a описывает притяжение частиц, N — число частиц в объеме V, k — постоянная Больцмана.

В работах [22, 23] коволюм V_C считался функцией только давления и отождествлялся с кривой холодного сжатия вещества $V_X(P)$. В модифицированной модели использовались результаты расчетов методом Монте-Карло термодинамических свойств жидкости с обратным степенным потенциалом взаимодействия между частицами, $\varphi(r) = \varepsilon(\sigma/r)^n$, где σ и ε — параметры, имеющие соответственно размерности длины и энергии [24,25]. «Избыточные» свойства такой жидкости, т. е. представляющие разницу между истинными и идеально-газовыми величинами, зависят от одного параметра $x = \rho^*/T^{*3/n}$, где $\rho^* = N\sigma^{3/V}$, $T^* = kT/\varepsilon$.

При представлении результатов работы [24] в форме (1) коволюм V_C зависит уже не только от давления, но и от температуры. Для $V_C(P,T)$ подобрана аппроксимационная формула, которая при высоких температурах согласуется с известными формулами для второго и третьего вириальных коэффициентов, и $V_C(P,T) \rightarrow V_X(P)$ при $T \rightarrow 0$.

Полагалось, что гелий в жидком состоянии образует частицы четырех сортов: атомы He, ионы He⁺, ядра He^{++} и электроны e^- . Два уравнения ионизационного равновесия типа уравнения Саха получены из условия минимума термодинамического потенциала Гиббса. Совместно с двумя соотношениями, отражающими законы сохранения массы и заряда, они составляют систему четырех уравнений относительно четырех концентраций компонентов.

Вклад ионизованных электронов в термодинамические функции вычислялся по формулам для идеального ферми-газа. При вычислении статистических сумм атомов и ионов учитывались только основные состояния. Приближенно учтено ван-дерваальсово притяжение атомов.

Сравнение расчетных и экспериментальных результатов проведено путем сопоставления расчетной траектории движения внутренней границы стальной оболочки, сжимающей исследуемый газ, с экспериментальными точками, соответствующими полученным при обработке рентгеноснимков эквивалентным радиусам границ оболочек в моменты рентгенографирования.

6. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

6.1. Опыт №1 с гелием

Сравнение расчетных и экспериментальных результатов для опыта №1 с гелием приведено на рис. 8, где сплошной линией проведена расчетная траектория движения внутренней границы стальной оболочки, обжимающей исследуемый газ. Нанесенные на экспериментальные точки значения погрешностей по радиусам соответствуют величинам 2σ (см. табл. 2), а по времени погрешность составляет ±0.1 мкс. Для иллюстрации состояния газовой полости в процессе сжатия на рис. 8 приведены экспериментальные рентгеноснимки в моменты, близкие к максимальному сжатию газа (газ — темная область в центре кадра).

На рис. 8 видно, что имеется удовлетворительное согласие результатов эксперимента и расчета. Этот факт позволяет использовать расчетные результаты для определения максимальных средних значений плотности и давления гелия, достигнутых в проведенном эксперименте. При определении средних максимальных величин давления учитывается, что на момент максимального сжатия в газовой полости реализуется профиль этой величины, имеющий значительные колебания по амплитуде. За среднюю величину максимального давления принимается взвешенное значение P_{mean} , которое получается усреднением по массе расчетного профиля давления в момент максимального сжатия и вычисляется по формуле

$$P_{mean} = \frac{\sum_{i} P_i m_i}{\sum_{i} m_i},\tag{2}$$

где индексом $\langle i \rangle$ обозначены значения величин, вычисленные в *i*-й счетной точке газовой полости, суммирование проводится по всем счетным точкам в исследуемом газе.

Для оценки разогрева газа на момент максимального сжатия взято средневзвешенное значение температуры T_{mean} , полученное усреднением по массе полученного в расчете профиля температуры аналогичным образом, как для давления P_{mean} .

Исходя из этого, приведем в качестве полученных величин в эксперименте на момент максимального обжатия газа среднее значение плотности ρ_{max} и средневзвешенные по массе давление гелия P_{mean} и температуру T_{mean} .

Анализ результатов расчетов показал, что состояние гелия на момент максимального сжатия характеризуются следующими величинами: радиус полости $r_{min} \approx 7.1$ мм; средняя плотность $\rho_{max} \approx 6.4 \, \mathrm{r/cm}^3$; средневзвешенное по массе давление гелия $P_{mean} \approx 4.9 \, \mathrm{T\Pi}$ а; степень сжатия $\delta \approx 320$; средневзвешенная температура гелия

Рис. 9. Распределение давления по радиусу области сжатого гелия в момент максимального сжатия в опыте №1

 $T_{mean} \approx 98770 \, \text{K}$. Минимальный радиус газовой полости, зарегистрированный экспериментально, $r_{min.exp} \approx 7.17 \, \text{мм}$. Этому радиусу соответствует средняя плотность гелия $\rho \approx 6.2 \, \text{г/см}^3$.

Расчетное распределение давления по радиусу области сжатого гелия на момент максимального сжатия приведено на рис. 9. Штриховая линия — средневзвешенное по массе давление P_{mean} .

Расчетное распределение температуры по радиусу области сжатого гелия на момент максимального сжатия приведено на рис. 10. Штриховая линия — средневзвешенная по массе температура гелия T_{mean} .

Рис. 10. Распределение температуры по радиусу области сжатого гелия в момент максимального сжатия в опыте №1

6.2. Опыт №2 с дейтерием

Сравнение экспериментальных результатов с результатом численного моделирования процесса сжатия дейтерия дано на рис. 11, где приведены экспериментальные точки, расчетная R-t-диаграмма движения внутренней границы стальной оболочки и экспериментальные рентгеноснимки на моменты, близкие к максимальному сжатию. Нанесенные на экспериментальные точки значения погрешностей по радиусам соответствуют величинам 2σ (табл. 3), а по времени погрешность ± 0.1 мкс.

Из данных на рис. 11 следует, что получено удовлетворительное согласие результатов проведенного эксперимента и расчета, что также, как и в опыте №1 с гелием, позволяет использовать расчетные результаты для определения максимальных средних значений плотности и давления дейтерия в этом опыте.

По результатам расчетов получено, что состояния дейтерия на момент максимального сжатия в данном опыте характеризуются следующими величинами: радиус полости $r_{min} \approx 8.87$ мм; средняя плотность $\rho_{max} \approx 6.0 \, \text{г/см}^3$; средневзвешенное по массе давление дейтерия $P_{mean} \approx 3.4$ ТПа; степень сжатия $\delta \approx 162$; средневзвешенная температура дейтерия $T_{mean} \approx 20215$ К. Минимальный радиус газовой полости, зарегистрированный в эксперимен-

Рис. 11. Сравнение экспериментальных данных с результатами одномерного расчета для опыта №2 с дейтерием

Рис. 12. Распределение давления по радиусу области дейтерия в момент максимального сжатия в опыте №2

Рис. 13. Распределение температуры по радиусу области сжатого дейтерия в момент максимального сжатия в опыте №2

те, $r_{min.exp} \approx 8.83$ мм. Этому радиусу соответствует средняя плотность дейтерия $\rho \approx 6.0 \, \mathrm{r/cm}^3$.

Распределение давления по радиусу области сжатого дейтерия в момент максимального сжатия приведено на рис. 12. Штриховая линия — средневзвешенное по массе давление P_{mean} .

Расчетное распределение температуры по радиусу области сжатого дейтерия на момент максимального сжатия приведено на рис. 13. Штриховая линия — средневзвешенная по массе температура дейтерия T_{mean} .

6.3. Опыт №3 с дейтерием

Сравнение экспериментальных и расчетных результатов при численном моделировании процесса сжатия дейтерия в проведенном эксперименте показано на рис. 14. На нем приведены экспериментальные точки, расчетная R-t-диаграмма движения внутренней границы стальной оболочки и, для иллюстрации, экспериментальные рентгеноснимки на моменты, близкие к максимальному сжатию. Нанесенные на экспериментальные точки значения погрешностей по радиусам соответствуют величинам 2σ (табл. 3), а по времени погрешность составляет ±0.1 мкс.

Из данных на рис. 14 следует удовлетворительное согласие результатов проведенного эксперимента и расчета.

Анализ результатов расчетов показал, что состояния дейтерия на момент максимального сжатия в опыте характеризуются следующими величинами: радиус полости $r_{min} \approx 5.6$ мм; средняя плотность $\rho_{max} \approx 11.4 \, \mathrm{r/cm}^3$; средневзвешенное по массе давление дейтерия $P_{mean} \approx 13.3 \,\mathrm{T\Pi}$ а; степень сжатия $\delta \approx 520$; средневзвешенная температура дейтерия $T_{mean} \approx 50950 \,\mathrm{K}$. Минимальный радиус га-

Рис. 14. Сравнение экспериментальных данных с результатами одномерного расчета для опыта №3 с дейтерием

Рис. 15. Распределение давления по радиусу области дейтерия в момент максимального сжатия в опыте №3

Рис. 16. Распределение температуры по радиусу области сжатого дейтерия в момент максимального сжатия в опыте №3

зовой полости, зарегистрированный в эксперименте, $r_{min.exp} \approx 5.68$ мм. Этому радиусу соответствует средняя плотность дейтерия $\rho \approx 10.9 \,\mathrm{r/cm}^3$.

Распределение давления по радиусу области сжатого дейтерия в момент максимального сжатия приведено на рис. 15. Штриховая линия средневзвешенное по массе давление P_{mean} . Расчетное распределение температуры по радиусу области сжатого дейтерия на момент максимального сжатия приведено на рис. 16. Штриховая линия — средневзвешенная по массе температура дейтерия T_{mean} .

6.4. Опыт №4 с гелием

Сравнение экспериментальных и расчетных результатов при численном моделировании процесса сжатия гелия в проведенном эксперименте показано на рис. 17. Приведены экспериментальные рентгеноснимки на моменты, близкие к максимальному сжатию.

Из данных на рис. 17 следует удовлетворительное согласие результатов проведенного эксперимента и расчета. Анализ результатов расчетов показал, что состояния гелия на момент максимального сжатия в опыте характеризуются следующими величинами: радиус полости $r_{min} \approx 5.8$ мм; средняя плотность $\rho_{max} \approx 10.3$ г/см³; средневзвешенное по массе давление гелия $P_{mean} \approx 10.9$ TПа; степень сжатия $\delta \approx 470$; средневзвешенная температура гелия $T_{mean} \approx 133850$ К. Минимальный радиус газовой полости, зарегистрированный в эксперименте, $r_{min.exp} \approx 5.9$ мм. Соответствующая средняя плотность дейтерия $\rho \approx 9.8$ г/см³.

Распределение давления по радиусу области сжатого гелия в момент максимального сжатия приведено на рис. 18. Штриховая линия — средневзвешенное по массе давление P_{mean} .

Рис. 17. Сравнение экспериментальных данных с результатами одномерного расчета для опыта №4 с гелием

Рис. 18. Распределение давления по радиусу области гелия в момент максимального сжатия в опыте №4

Рис. 19. Распределение температуры по радиусу области сжатого гелия в момент максимального сжатия в опыте №4

Распределение температуры по радиусу области сжатого гелия в момент максимального сжатия приведено на рис. 19. Штриховая линия — средневзвешенная по массе температура T_{mean} .

Эксперименты №3 и №4 проведены с устройством 2 (см. рис. 3) при практически одинаковых начальных условиях по давлению газа в полостях и начальной температуре. Поэтому представляет интерес прямое сравнение полученных экспериментальных данных по сжатию дейтерия и гелия в этих экспериментах. При обработке рентгенограмм получены эквивалентные радиусы не только газовой полости (внутренней границы стальной оболочки второго каскада), но и радиусы наружной границы стальной оболочки второго каскада. Для снимка в центральной проекции получены радиусы границ стальной оболочки первого каскада. Положение наружных границ алюминиевых оболочек не определялось вследствие низкой контрастности изображения на этих границах. Сравнение полученных результатов приведено на рис. 20 в виде экспериментальных точек по положению границ стальных оболочек и расчетных *R*-*t*-диаграмм движения внешней и внутренней границ стальных оболочек.

Видно практическое совпадение результатов обоих экспериментов. Можно отметить, что в расчетах удовлетворительно описываются экспериментальные радиусы стальных оболочек обоих каскадов. Таким образом, экспериментально показано, что в области давлений 11–13 ТПа сжимаемость дейтерия и гелия одинакова. Аналогичное совпадение сжатий гелия и дейтерия в других сферических устройствах в области давлений до 20 ТПа отмечено в работе [26].

Рис. 20. (В цвете онлайн) Сравнение экспериментальных и расчетных данных для опыта №3 с дейтерием и опыта №4 с гелием: черная линия — расчет D₂; красная — Не

7. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На представленных рентгенограммах видно, что вплоть до момента максимального сжатия газов в опытах форма полости (темная область в центре рентгеноснимков) близка к сферической. На стадии расширения асимметрия сжатия резко возрастает, что приводит к увеличению погрешности определения среднего радиуса полости с газом. В опытах №3 и №4 с дейтерием такая асимметрия более заметна, чем в двух первых экспериментах.

Из сопоставления расчетных и экспериментальных данных следует, что вплоть до моментов достижения максимального сжатия полостей с исследуемыми газами имеется удовлетворительное согласие расчетных и экспериментальных данных.

Необходимо подчеркнуть, что процесс сжатия газа в сферическом взрывном нагружающем устройстве зависит от многих факторов, таких, например, как мощность BB, динамические свойства материалов оболочек и т. д., однако, как показывают расчеты, основным фактором, определяющим величину минимального радиуса полости с газом, являются именно свойства исследуемого газа.

Для иллюстрации этого положения в предыдущей нашей работе [11] были приведены зависимости радиусов полостей с газом в процессе сжатия, полученные в трех расчетах, в которых для газа использовались УРС в форме «идеального газа», позволяющие легко изменять «жесткость» УРС путем варьирования только одного параметра γ . Использовались значения $\gamma = 1.7, 1.8, 1.9$.

Путем использования различных УРС идеального газа убедительно показано, что расчетная траектория границы полости с газом чувствительна к сравнительно небольшим изменениям УРС газа. Изменение параметра γ на ± 0.1 приводит к изменению минимального радиуса полости на ± 1.1 мм при экспериментальной погрешности определения радиуса в ± 0.8 мм (2σ). При варьировании в расчетах УРС материала обжимающей газ оболочки (в разумных пределах) не удалось заметным образом изменить траекторию границы полости.

Поэтому, получив согласие расчетных и экспериментальных данных в проведенных экспериментах, можно сделать вывод о том, что применение УРС дейтерия (МСК) и гелия (мМСК) позволяет адекватно описывать сжатие этих газов в рассмотренной области давлений.

N⁰	газ	$\rho_{max},$	$P_{mean},$	$T_{mean},$
опыта		$_{\Gamma}/c{ m m}^3$	ТПа	Κ
1	He	6.4	4.9	98770
2	D_2	6.0	3.4	20215
3	D_2	11.4	13.3	50950
4	He	10.3	10.9	118500

Таблица 6. Реализованные в экспериментах состояния газа на момент максимального сжатия

В настоящей статье представлены результаты четырех экспериментов по обжатию газов гелия и дейтерия в терапаскальной области давлений. Достигнутые давления и плотности в каждом из экспериментов представлены в табл. 6.

Сравним полученные значения средневзвешенных давлений и температур в момент максимального сжатия газа с данными расчета давлений и температур при изэнтропическом сжатии для УРС дейтерия (МСК) и гелия (мМСК). Для данных УРС были рассчитаны изэнтропы для начальных состояний, которые реализуются на фронте первой ударной волны (УВ) при ее схождении к центру. При расчете изэнтроп было учтено, что начальные состояния на первой УВ на разных радиусах в исследуемом газе различаются и по мере уменьшения радиуса давление на фронте нарастает. При анализе оказалось, что на изэнтропах сжатия, проведенных из начальных состояний на УВ в основной массе (более 70%) газа¹⁾, давления и температуры для полученных плотностей ρ_{max} близки к средневзвешенным. Иллюстрация полученного результата приведена на рис. 21, 22, где приведены расчетные изэнтропы *P*-*р* и *T*-*р* для УРС гелия (мМСК) из начальных состояний $P \approx 0.5 \, \Gamma \Pi a, \, \rho \approx 0.07 \, \Gamma / \mathrm{cm}^3$

¹⁾ Эта масса расположена на расстоянии, большем $R_0 \cdot 2/3$, где R_0 — начальный радиус газа во внутреннем каскаде до сжатия. Давление на фронте УВ от 0.5 до 1.5 ГПа.

Рис. 21. (В цвете онлайн) Изэнтропы сжатия Р- ρ и Т- ρ для гелия и экспериментальные средневзвешенные величины P_{mean} , T_{mean}

Рис. 22. (В цвете онлайн) Изэнтропы сжатия Р-р и Т-р для дейтерия и экспериментальные средневзвешенные величины P_{mean}, T_{mean}

Рис. 23. Экспериментальные данные по сжатию газообразного гелия в сферических нагружающих устройствах: штриховая линия — расчетная изэнтропа по УРС мМСК; квадраты — [12, 26–28]; кружок — [11]; треугольники настоящая работа

(синяя линия), $P \approx 1.1 \Gamma \Pi a$, $\rho \approx 0.08 \, \Gamma/cm^3$ (черная линия) и для УРС дейтерия (МСК) из состояний $P \approx 0.47 \, \Gamma \Pi a$, $\rho \approx 0.068 \, \Gamma/cm^3$ (синяя линия), $P \approx 1.2 \, \Gamma \Pi a$, $\rho \approx 0.1 \, \Gamma/cm^3$ (черная линия). Красные точки — экспериментальные средневзвешенные величины P_{mean} , T_{mean} (см. табл. 6).

На рис. 21, 22 видно, что экспериментальные средневзвешенные величины P_{mean} , T_{mean} близки к соответствующим значениям на изэнтропах.

Рассмотрим, как соотносятся результаты представленных четырех экспериментов с полученными

Рис. 24. Экспериментальные данные по сжатию газообразного дейтерия в сферических нагружающих устройствах: линия — расчетная изэнтропа по УРС МСК; квадраты — данные работ [12, 26–28]; кружок — [11]; треугольники — настоящая работа

в других подобных экспериментах со сферическими устройствами по обжатию гелия и дейтерия. Совокупность имевшихся ранее и вновь полученных результатов по квазиизэнтропическому сжатию гелия и дейтерия в сферических конструкциях приведена на рис. 23 и 24 в координатах $P-\rho$. Для экспериментальных точек взяты максимальные значения средневзвешенного по массе давления P_{mean} и средней плотности ρ_{max} , полученные в расчетах, описывающих эксперименты. Экспериментальные точки, обозначенные треугольниками, относятся к данным, представленным авторами в настоящей статье; кружки — из [11]; квадраты — экспериментальные данные, полученные также в РФЯЦ-ВНИИЭФ [12,26-28] на других сферических устройствах. Погрешности, указанные для точек на графиках, взяты одинаковыми и составляют $\pm 13\%(2\sigma)$ по плотности. В каждом эксперименте даже для отдельных точек конкретные величины погрешности по плотности могут отличаться от принятого нами значения (к тому же не всегда указаны в статьях), но в целом отклонение не велико. По давлению погрешность не определялась в силу использования одного способа расчета. Для того чтобы проиллюстрировать положение экспериментальных точек относительно изэнтропического сжатия исследуемого газа в координатах $P-\rho$, на рис. 23 и 24 штриховыми линиями показаны расчетные изэнтропы сжатия по УРС, проведенные из состояний на первой сходящейся УВ на радиусе $R_0 \cdot 2/3$ в исследуемом газе (D_2 или ⁴He).

На рис. 23, 24 видно, что в целом результаты экспериментов лежат вблизи расчетных изэнтроп. Тем не менее есть эксперименты, в которых результаты различаются между собой. Данные отклонения можно объяснить как конструктивными особенностями устройств, так и погрешностью метода при определении границ полостей при наличии асимметрии сжатия.

8. ЗАКЛЮЧЕНИЕ

В статье приведены новые экспериментальные данные по исследованию квазиизэнтропической сжимаемости газообразных гелия и дейтерия в терапаскальной области давлений, полученные в четырех экспериментах со взрывными сферическими устройствами. Плотность исследуемых газов в процессе обжатия определялась рентгенографическим методом по положению границ стальных оболочек, сжимающих газ. Эксперименты моделировались по одномерной газодинамической программе, в которой для изучаемых газов использовались следующие УРС: модель сжимаемого коволюма (МСК) для дейтерия и модифицированная модель сжимаемого коволюма (мМСК) для гелия. Выбранная модель расчетов позволила удовлетворительно описать сжатия газовой полости во всех экспериментах в одной манере. Представленные в работе максимальные плотности, давления и температуры определены из этих расчетов.

Экспериментально получено, что в области давлений 11–13 ТПа сжатия дейтерия и гелия в одинаковых устройствах совпадают, что подтверждает полученное ранее аналогичное заключение [26] о совпадении сжатий гелия и дейтерия в других сферических устройствах в области давлений до 20 ТПа.

Показано, что полученные экспериментальные результаты согласуются с данными по квазиизэнтропической сжимаемости дейтерия и гелия, представленными в других работах. Отмеченные факты повышают уверенность в достоверности достигнутых параметров сжатия.

Благодарности. Авторы выражают благодарность сотрудникам, принимавшим участие в организации, проведении экспериментов и обработке полученных данных: Р.В. Борисову, Е.П. Волкову, С.Е. Елфимову, С.Ю. Согрину, Д.П. Турутину, А.В. Бучирину, Р.В. Тилькунову, А.С. Соколовой, А.И. Гуркину, Е.В. Шевнину, И.П. Максимкину, А.И. Ломайкину. Также авторы благодарят М.А. Мочалова за предоставление данных о результатах аналогичных экспериментов.

Финансирование. Работа выполнена при финансовой поддержке Минобрнауки России (в рамках соглашения с ОИВТ РАН №075-15-2020-785).

ЛИТЕРАТУРА

- W. Ebeling, A. Forster, V. Fortov et al., *Thermo-physical Properties of Hot Dense Plasmas*, Teubner, Stuttgart-Leipzig (1991).
- **2.** В. Е. Фортов, Физика высоких плотностей энергии, Физматлит Москва, (2013).
- **3.** V. E. Fortov, *Extreme States of Matter on Earth and in the Cosmos*, Springer-Verlag, Berlin (2011).
- Ф. В. Григорьев, С. Б. Кормер, О. Л. Михайлова и др., Письма в ЖЭТФ 16, 286 (1972).
- Р.Ф. Трунин, Г.В. Борисков, А.И. Быков и др., ЖЭТФ 76, 90 (2006).
- С. К. Гришечкин, С. К. Груздев, В. К. Грязнов и др., Письма в ЖЭТФ 80, 452 (2004).
- М. А. Мочалов, Диссертация на соискание степени доктора физ. мат. наук, РФЯЦ-ВНИИЭФ, Саров (2008).
- М. А. Мочалов, Р. И. Илькаев, В. Е. Фортов и др., ЖЭТФ 151, 592 (2017).
- 9. Г. В. Борисков, А. И. Быков, Н. И. Егоров, М. В. Жерноклетов и др., ЖЭТФ 157, 221 (2020).
- М. А. Мочалов, Р. И. Илькаев, В. Е. Фортов и др., Письма в ЖЭТФ 92, 336 (2010).

- **11**. М. В. Жерноклетов, В. А. Раевский, С. Ф. Маначкин и др., ФГВ **54**(5), 3 (2018).
- М. А. Мочалов, Р. И. Илькаев, В. Е. Фортов, и др., Письма в ЖЭТФ 108, 692 (2018).
- 13. Yu. P. Kuropatkin, V. D. Mironenko, V. N. Suvorov, and A. A. Volkov, in *The 11th IEEE Pilsed Power Conference, Digest of the Technical Papers*, ed. by G. Cooperstein, and I. Vikovitsky, Vol. 2, p. 1663 (1997).
- **14**. В. Ф. Басманов, В. С. Гордеев, А. В. Гришин и др., Труды РФЯЦ-ВНИИЭФ **20**, 172 (2015).
- V. A. Arinin and B. I. Tkachenko, Pattern Recognition and Image Analysis 19, 63 (2009).
- 16. A. Michels, W. De Graaff, T. Wassenaar et al., Physica 25, 25 (1959).
- В. В. Сычев, А. А. Вассерман, Г. А. Спиридонов, В. А. Цымарный, Термодинамические свойства гелия, ГСССД, Изд-во стандартов, Москва (1984).
- 18. Н. Ф. Гаврилов, Г. Г. Иванова, В. И. Селин, В. Н. Софронов, ВАНТ, сер. Методики и программы численного решения задач математической физики, вып. 3, 11 (1982).

- 19. Б. Л. Глушак, Л. Ф. Гударенко, Ю. М. Стяжкин, ВАНТ, сер. Математическое моделирование физических процессов, вып. 2, 57 (1991).
- 20. Б. Л. Глушак, О. Н. Игнатова, С. С. Надежин, В. А. Раевский, ВАНТ, сер. Математическое моделирование физических процессов, вып. 2, 25 (2012).
- **21**. В. Н. Зубарев, А. А. Евстигнеев, ФГВ **20**, 114 (1984).
- **22**. В. П. Копышев, В. В. Хрусталев, ПМТФ **21**, 122 (1980).
- 23. В.П. Копышев, ПМТФ 12, 119 (1971).
- 24. W.G. Hoover, M. Ross, K.W. Johnson, et al., J. Chem. Phys. 52, 4931 (1970).
- 25. W.G. Hoover, S.G. Gray, and K.W. Johnson, J. Chem. Phys. 55, 1128 (1971).
- 26. М. А. Мочалов, Р. И. Илькаев, В. Е. Фортов и др. ЖЭТФ 160, 735 (2021).
- 27. М.А. Мочалов, Р.И. Илькаев, В.Е. Фортов и др. ЖЭТФ 152, 1113, (2017).
- 28. S.I. Blinnikov, R.I. Ilkaev, M.A. Mochalov et al., Phys. Rev. E 99, 033102 (2019).