ИЗЛУЧЕНИЕ МАТЕРИАЛЬНОЙ ЧАСТИЦЫ, НАХОДЯЩЕЙСЯ В ДИЭЛЕКТРИЧЕСКОЙ СРЕДЕ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

Б. А. Беляев ^{a,b*}, В. В. Тюрнев ^a, Д. А. Шабанов ^{a,b}

^а Институт физики им. Л.В. Киренского ФИЦ КНЦ Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский федеральный университет 660041, Красноярск, Россия

> Поступила в редакцию 15 июля 2022 г., после переработки 19 июля 2022 г. Принята к публикации 20 июля 2022 г.

Учет излучения материальной частицы с отрицательной относительной диэлектрической проницаемостью ε_p , находящейся под воздействием электромагнитного поля в среде с диэлектрической проницаемостью ε_m , исключает неограниченный рост электрического дипольного момента частицы и порождаемых им электрических полей при $2\varepsilon_m + \varepsilon_p \to 0$ в случае отсутствия потерь в среде и в частице. Рассчитанные потери на излучение описываются поправкой к диэлектрическим потерям реальной частицы. На примере полистирола с наночастицей серебра, имеющей отрицательную диэлектрическую проницаемость в оптическом диапазоне, исследовано поведение поправки в зависимости от размера частицы при изменении ее диэлектрической проницаемости в интервале $-16 < \varepsilon_p < 16$. Установлено, что даже при положительных значениях диэлектрической проницаемости наночастицы учет излучения существенно повышает точность квазистатического расчета.

DOI: 10.31857/S0044451022120033 **EDN:** LCBAMP

1. ВВЕДЕНИЕ

Композиты, состоящие из диэлектрической матрицы с металлическими частицами размером меньше длины свободного пробега электронов, обладают высокой добротностью в диапазоне ниже оптических частот и привлекают внимание исследователей возможностью значительного увеличения эффективной диэлектрической проницаемости среды с ростом концентрации частиц, что используется, в частности, при конструировании многослойных полосно-пропускающих фильтров терагерцевого диапазона [1]. Квазистатический расчет эффективной диэлектрической проницаемости композита, содержащего в диэлектрической матрице сферические частицы, был впервые предложен Максвеллом-Гарнеттом [2]. Однако точность этого расчета с увеличением концентрации частиц быстро уменьшается, так как в нем не учитывается электродипольное взаимодействие поляризованных частиц [3]. Это взаимодействие было учтено Бруггеманом [4] в приближении среднего поля (приближение эффективной среды), причем считалось, что размер частицы с учетом ее диэлектрической проницаемости много меньше длины волны.

В теории эффективной среды [5] решается квазистатическая задача о возбуждении дипольных колебаний в сферической частице радиусом *R*, находящейся во внешнем электроманитном поле. Решение этой задачи выражается формулами [6]

$$\varphi_{i} = -\frac{3\varepsilon_{m}}{2\varepsilon_{m} + \varepsilon_{p}} \mathbf{E}_{0} \cdot \mathbf{r},$$

$$\varphi_{s} = \frac{\varepsilon_{p} - \varepsilon_{m}}{2\varepsilon_{m} + \varepsilon_{p}} \frac{R^{3}}{r^{3}} \mathbf{E}_{0} \cdot \mathbf{r},$$
(1)

где \mathbf{E}_0 — заданный вектор напряженности внешнего электрического поля, φ_i и φ_s — искомые квазистатические потенциалы электрического поля \mathbf{E}_i внутри частицы ($r \leq R$) и поля рассеяния \mathbf{E}_s снаружи

^{*} E-mail: belyaev@iph.krasn.ru

частицы $(r \geq R)$, а ε_p и ε_m — комплексные относительные диэлектрические проницаемости материала частицы и окружающей ее среды. Сравним потенциал φ_s с потенциалом φ_p поля точечного дипольного момента **р**, выражаемого формулой

$$\varphi_p = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\varepsilon_0 \varepsilon_m r^3},\tag{2}$$

где ε_0 — диэлектрическая проницаемость вакуума. Формула (2) получается из кулоновского потенциала

$$\varphi_q = \frac{q}{4\pi\varepsilon_0\varepsilon_m r} \tag{3}$$

точечного заряда q и известного соотношения [7]

$$\varphi_p = -\frac{\mathbf{p}}{q} \operatorname{grad} \varphi_q, \tag{4}$$

выражающего потенциал точечного диполя через потенциал точечного заряда. Из выражений для потенциалов φ_s и φ_p получаем формулу

$$\mathbf{p} = 3V\varepsilon_0\varepsilon_m \frac{\varepsilon_p - \varepsilon_m}{2\varepsilon_m + \varepsilon_p} \mathbf{E}_0 \tag{5}$$

для дипольного момента частицы, где $V = 4\pi R^3/3$ — объем частицы. Этот дипольный момент, согласно формулам (1), порождает внутреннее поле

$$\mathbf{E}_{i} = \frac{3\varepsilon_{m}}{2\varepsilon_{m} + \varepsilon_{p}} \mathbf{E}_{0} \tag{6}$$

и поле рассеяния

$$\mathbf{E}_{s} = \frac{\varepsilon_{p} - \varepsilon_{m}}{2\varepsilon_{m} + \varepsilon_{p}} \frac{R^{3}}{r^{3}} [3\mathbf{r}R^{-2}(\mathbf{r} \cdot \mathbf{E}_{0}) - \mathbf{E}_{0}].$$
(7)

Обобщение формулы (6), полученной в квазистатическом приближении, на случай частицы эллипсоидальной формы представляется в виде [6]

$$\mathbf{E}_{i} = \frac{\varepsilon_{m} \mathbf{E}_{0}}{\varepsilon_{m} + (\varepsilon_{p} - \varepsilon_{m}) \,\widehat{\mathbf{N}}},\tag{8}$$

где $\hat{\mathbf{N}}$ — тензор коэффициентов деполяризации. В случае сферической частицы этот тензор принимает одно значение $\hat{\mathbf{N}} = 1/3$.

2. ФОРМУЛИРОВКА ПРОБЛЕМЫ

Заметим, что в знаменателях формул (1), (5)–(7) стоит одинаковая сумма $2\varepsilon_m + \varepsilon_p$. В результате при отсутствии диэлектрических потерь в материалах, когда одна из сред имеет отрицательную диэлектрическую проницаемость, электрический дипольный момент частицы и порождаемые им электрические поля устремляются в бесконечность, если сумма $2\varepsilon_m + \varepsilon_p$ приближается к нулю, что, очевидно, противоречит основополагающим принципам физики. Это противоречие возникает из-за использования квазистатического приближения за пределами его применимости, при этом возможность его разрешения является целью работы. Отрицательными диэлектрическими проницаемостями, как известно, обладают некоторые сегнетоэлектрики [8], а в оптическом диапазоне — металлы и металлические частицы [9, 10]. Поэтому полученные формулы справедливы только при положительных значениях диэлектрических проницаемостей матрицы и частиц, а при различии знаков ε_m и ε_p эти формулы напрямую нельзя использовать в расчетах характеристик композитов.

Указанный недостаток присущ и некоторым другим широко известным уравнениям и формулам, полученным в квазистатическом приближении, в том числе соотношению Клаузиуса-Моссотти, формулам Рэлея, Максвелла-Гарнетта и Бруггемана. На такой недостаток формулы Рэлея было указано в работе [11]. Там же было отмечено, что возбужденная падающей электромагнитной волной частица должна излучать запасаемую энергию, однако это излучение мало, поэтому, как правило, не учитывается. Авторами [11] отмечено, что в случае металлической частицы возбуждаются плазменные колебания, амплитуда которых неограниченно растет при равенстве $2\varepsilon_m + \varepsilon_p = 0$, а значит, излучение частицы также должно увеличиваться, внося соответствующие потери, ограничивающие рост электрических полей, обеспечивая тем самым динамическое равновесие.

3. РЕШЕНИЕ ПРОБЛЕМЫ

Для устранения указанного недостатка квазистатических расчетов необходимо рассчитать величину электромагнитного излучения возбужденной частицей, тем самым учесть связанные с ним ее потери электромагнитной энергии. В рассматриваемой задаче основной вклад в электромагнитное излучение дает излучение электрического диполя [12]. Усредненная по времени мощность его излучения в свободном пространстве на круговой частоте ω выражается формулой [13]

$$\bar{P}_0 = \frac{\omega^4 |\mathbf{p}|^2}{12\pi\varepsilon_0 c^3}.$$
(9)

Здесь *с* — скорость света в вакууме. Выясним, как изменится эта мощность в случае, когда дипольное излучение частицы происходит в материальной среде, которая может быть и композитом. Для этого запишем формулу, выражающую связь мгновенной мощности излучения P_s с интегралом вектора Пойнтинга [6],

$$P_s = \iint_S [\mathbf{E} \times \mathbf{H}] d\mathbf{s},\tag{10}$$

по всей замкнутой поверхности S, охватывающей этот источник. Выразим в этой формуле поля E и H диполя p, расположенного в материальной среде, через поля E_1 и H_1 другого диполя той же величины p, но расположенного в свободном пространстве. Из формулы (2) видно, что поле E, порождаемое дипольным моментом p в материальной среде, связано с полем E_1 , порождаемым тем же дипольным моментом, но уже в свободном пространстве, соотношением

$$\mathbf{E} = \mathbf{E}_1 / \varepsilon_m. \tag{11}$$

Связь же между электрическим и магнитным полем в материальной среде и в свободном пространстве выражается формулами

$$\mathbf{E} = \sqrt{\frac{\mu_0 \mu_m}{\varepsilon_0 \varepsilon_m}} \mathbf{H}, \qquad \mathbf{E}_1 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \mathbf{H}_1. \tag{12}$$

Здесь μ_m и μ_0 — соответственно относительная магнитная проницаемость среды и магнитная проницаемость вакуума. После подстановки формул (11) и (12) в формулу (10) получаем выражение для мгновенной мощности излучения:

$$P_{s} = \frac{1}{\varepsilon_{m}\sqrt{\varepsilon_{m}\mu_{m}}} \iint_{S} [\mathbf{E}_{1} \times \mathbf{H}_{1}] d\mathbf{s} = \frac{1}{\varepsilon_{m}\sqrt{\varepsilon_{m}\mu_{m}}} P_{0}.$$
(13)

Отсюда с учетом формулы (9) находим усредненную по времени мощность электродипольного излучения частицы в материальной среде:

$$\bar{P}_s = \frac{\omega^4 |\mathbf{p}|^2}{12\pi c^3 \varepsilon_0 |\varepsilon_m \sqrt{\varepsilon_m \mu_m}|}.$$
(14)

Подставляя сюда (5), получаем искомую формулу

$$\bar{P}_s = \frac{3V^2\omega^4\varepsilon_0}{4\pi c^3} \sqrt{\left|\frac{\varepsilon_m}{\mu_m}\right|} \left|\frac{\varepsilon_p - \varepsilon_m}{2\varepsilon_m + \varepsilon_p}\right|^2 E_0^2 \qquad (15)$$

для усредненной по времени излучаемой мощности, выраженной через амплитуду внешнего поля **E**₀.

В уравнениях квазистатики потери мощности, связанные с электромагнитным излучением частицы, не учитываются. Однако эти потери можно учесть, прибавив к мнимой части ее комплексной диэлектрической проницаемости ε_p поправку $\Delta \varepsilon''_p$. Усредненная по времени мощность диэлектрических потерь в частице выражается формулой [6]

$$\bar{P}_{\varepsilon} = \frac{1}{2} V \omega \varepsilon_0 \varepsilon_p'' |\mathbf{E}_i|^2.$$
 (16)

Поэтому поправке $\Delta \varepsilon_p''$ будет отвечать приращение мощности потерь на излучение

$$\Delta \bar{P}_{\varepsilon} = \frac{1}{2} V \omega \varepsilon_0 \Delta \varepsilon_p'' |\mathbf{E}_i|^2.$$
(17)

Эта формула после подстановки в нее формулы (6) принимает вид

$$\Delta \bar{P}_{\varepsilon} = \frac{9}{2} V \omega \varepsilon_0 \Delta \varepsilon_p'' \left| \frac{\varepsilon_m}{2\varepsilon_m + \varepsilon_p} \right|^2 E_0^2.$$
(18)

Подставляя формулы (15) и (18) в равенство $\Delta \bar{P}_{\varepsilon} = \bar{P}_{s}$, находим искомую поправку

$$\Delta \varepsilon_p^{\prime\prime} = \frac{V\omega^3}{6\pi c^3} \sqrt{\left|\frac{\varepsilon_m}{\mu_m}\right|} \left|\frac{\varepsilon_p - \varepsilon_m}{\varepsilon_m}\right|^2.$$
(19)

Эту формулу можно переписать в виде

$$\Delta \varepsilon_p^{\prime\prime} = \frac{2}{9} \theta^3 \sqrt{\left|\frac{\varepsilon_m}{\mu_m}\right| \left|\frac{\varepsilon_p - \varepsilon_m}{\varepsilon_m}\right|^2},\tag{20}$$

если ввести обозначение $\theta = 2\pi R/\lambda$, где λ — длина волны в свободном пространстве.

В результате замена комплексной диэлектрической проницаемости $\varepsilon_p = \varepsilon_p' + i \varepsilon_p''$ на

$$\hat{\varepsilon}_p = \varepsilon_p + i\Delta\varepsilon_p'' \tag{21}$$

позволяет в решениях задач квазистатики строго учесть электромагнитное излучение частицы в материальной среде под воздействием внешнего электромагнитного поля. В частности, подставляя (21) в (6), получаем уточненную формулу

$$\mathbf{E}_{i} = \frac{3\varepsilon_{m}}{2\varepsilon_{m} + \hat{\varepsilon}_{p}} \mathbf{E}_{0} \tag{22}$$

для поля внутри сферической частицы.

Введем относительную поправку δ для внутреннего поля \mathbf{E}_i , обусловленную потерями на излучение частицы, находящейся в среде с диэлектрической проницаемостью ε_m :

$$\delta = \frac{\Delta \varepsilon_p''}{\left|2\varepsilon_m + \varepsilon_p + i\Delta \varepsilon_p''\right|}.$$
(23)

Выясним, сколь она велика при расчете внутреннего поля \mathbf{E}_i по формуле (22) для конкретного случая, например, для частицы серебра, помещенной в полистирол. В оптическом диапазоне на длине волны $\lambda = 397$ нм эти материалы имеют диэлектрические проницаемости $\varepsilon_p = -4.3 + 0.2i$ и $\varepsilon_m = 2.65 + 3 \cdot 10^{-4}i$ [1, 14, 15]. Для заданных параметров на рис. 1 построена зависимость поправки δ от размера частицы. Видно, что по мере увеличения радиуса частицы R поправка δ неограниченно возрастает пропорционально объему частицы (см. формулу (19)), т.е. $\delta \sim R^3$.

Рис. 1. Зависимость относительной поправки δ от размера радиуса частицы

Рис. 2. Зависимости относительной поправки δ от действительной компоненты диэлектрической проницаемости частицы для трех значений диэлектрической проницаемости окружающей среды ε_m

Важно отметить, что отрицательная диэлектрическая проницаемость наночастиц серебра быстро возрастает по модулю с увеличением длины электромагнитной волны и при $\lambda = 1393$ нм достигает величины $\varepsilon_p = -102.0 + 2.6i$ [9, 14]. С учетом этого факта на рис. 2 в широком диапазоне изменения действительной части диэлектрической прони-

цаемости частицы ε'_p представлены зависимости относительной поправки $\delta(\varepsilon'_p)$ для трех значений диэлектрической проницаемости окружающей среды ε_m , но при фиксированных значениях радиуса частицы R = 40 нм и мнимой части ее диэлектрической проницаемости $\varepsilon''_p = 0.2$.

Видно, что зависимости $\delta(\varepsilon'_p)$ на рис. 2 имеют по одному ярко выраженному максимуму и по одному слабо выраженному минимуму. Максимумы располагаются в области отрицательных значений ε'_p вблизи точек, в которых выполняется условие $2\varepsilon_m + \varepsilon_p = 0$, что приводит к резкому увеличению излучения и соответствующему росту диэлектрических потерь частицы. Минимумы располагаются в области положительных значений ε'_p в точках $\varepsilon_m = \varepsilon_p$, в которых согласно формуле (19) излучение частицы отсутствует. Однако с дальнейшим ростом ε'_p излучение монотонно увеличивается, причем значительно медленнее для больших значений диэлектрической проницаемости среды ε_m , что также следует из формулы (19).

Как и ожидалось, при любых значениях диэлектрической проницаемости среды ε_m величина относительной поправки δ много больше для частиц с отрицательной диэлектрической проницаемостью при одинаковых по модулю значениях $|\varepsilon_p|$. В частности, при замене диэлектрической проницаемости частицы серебра на длине волны $\lambda = 397$ нм с $\varepsilon_p = -4.3 + 0.2i$ на $\varepsilon_p = +4.3 + 0.2i$ относительная поправка δ уменьшается больше, чем в 100 раз с 0.6 до 3.7 · 10⁻³ независимо от размера частицы. Поэтому поправка $\Delta \varepsilon_p''$, вычисляемая по формуле (19), очень важна, прежде всего, в задачах квазистатики, содержащих частицы с отрицательной диэлектрической проницаемостью. Важно отметить, что поправку на излучение можно не учитывать, если $\Delta \varepsilon_p'' \ll 2 \varepsilon_m'' + \varepsilon_p''$, что видно из формулы (23).

4. ЗАКЛЮЧЕНИЕ

Таким образом, учет излучения материальной частицы с отрицательной диэлектрической проницаемостью ε_p , находящейся под воздействием электромагнитного поля в диэлектрической среде с положительной диэлектрической проницаемостью ε_m , в случае отсутствия потерь позволяет устранить неограниченный рост электрического дипольного момента частицы и порождаемого им электрического поля при $2\varepsilon_m + \varepsilon_p = 0$. Потери на излучение учитываются поправкой $\Delta \varepsilon_p''$ к диэлектрическим потерям частицы, которая согласно формуле (19) определяется как электромагнитными характеристиками среды и частицы, так и частотой электромагнитного излучения и размерами частицы. Поправка $\Delta \varepsilon_p''$ пропорциональна кубу частоты (ω^3) и кубу радиуса (R³) для сферической частицы. На примере полистирола с частицей серебра, имеющей отрицательную диэлектрическую проницаемость в оптическом диапазоне, исследовано поведение относительной поправки с увеличением размера частицы до 40 нм, а также при изменении ее диэлектрической проницаемости в интервале $-16 \leq \varepsilon_p' \leq 16.$ Установлено, что максимумы излучения располагаются в области отрицательных значений ε'_p вблизи точек, в которых выполняется условие $2\varepsilon'_m + \varepsilon'_p = 0$. Важно отметить, что даже при положительных значениях диэлектрических проницаемостей среды и наночастицы учет излучения заметно повышает точность квазистатического расчета.

Представленный расчет учета излучения материальной частицы, находящейся в диэлектрической среде, возможно, позволит решить проблему квазистатического расчета по Бруггеману [4] эффективной диэлектрической проницаемости ε_{eff} композита, содержащего металлические частицы в диэлектрической матрице, описанную в работе [14]. Проблема заключается в том, что с увеличением концентрации металлических частиц, имеющих отрицательную диэлектрическую проницаемость, существует область концентраций в композите, в которой ε_{eff} имеет мнимую компоненту в случае отсутствия потерь в частицах и в матрице. Это, как справедливо отмечено в [14], противоречит физике.

ЛИТЕРАТУРА

1. Б.А. Беляев, Ан.А. Лексиков, В.В. Тюрнев и др., ДАН 497, 5 (2021).

- J.C. Maxwell Garnett, Phil. Trans. Roy. Soc. Lond. A 203, 359 (1904).
- **3**. Б.А. Беляев, В.В. Тюрнев, ЖЭТФ **154**, 716 (2018).
- 4. D.A.G. Bruggeman, Ann. Phys. 24, 636 (1935).
- 5. T.C. Choy, *Effective Medium Theory*, Oxford Univ. Press, Oxford (2016), Ch. 1.
- Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика, т. 8, Электродинамика сплошных сред, Наука, Москва (1982), §8, §80.
- Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, Электричество и магнетизм, Мир, Москва (1977), гл. 6, §4 (6.16); R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics. Mainly Electromagnetism and Matter, Reading (1964), Ch. 6-4 (6.16).
- D.J.R. Appleby, N.K. Ponon, K.S.K. Kwa et al., Nano Lett. 14, 3864 (2014).
- P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
- Railing Changa, H.-P. Chianga, P.T. Leungb, D.P. Tsaid, and W.S. Tse, Sol. St. Com. 133, 315 (2005).
- **11**. М.И. Трибельский, А.Е. Мирошниченко, УФН **192**, 45 (2022).
- B. A. Belyaev and V. V. Tyurnev, Microw. Opt. Technol. Lett. 58, 1883 (2016).
- 13. Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. 2, Теория поля, Наука, Москва (1967), §67.
- 14. T. G. Mackay, J. Nanophoton. 1, 019501 (2007).
- X. Zhang, J. Qio, X. Li, J. Zhao, and L. Liu, Appl. Opt. 59, 2337 (2020).