МОДЕЛИРОВАНИЕ ПЕРЕНОСА ИЗЛУЧЕНИЯ В ТЕРМИНАХ УРАВНЕНИЯ БЕТЕ-СОЛПИТЕРА ДЛЯ ДВУХСЛОЙНЫХ СИСТЕМ БИОТКАНЕЙ

 $B.\ \it{Л.}\ \it{Кузъмин}\ ^{a^*},\ \it{HO.}\ \it{A.}\ \it{Жаворонков}\ ^{b^{**}},\ \it{C.}\ \it{B.}\ \it{Ульянов}\ ^{b^{***}},\ \it{A.}\ \it{HO.}\ \it{Вальков}\ ^{a,b^{****}}$

^а Санкт-Петербургский политехнический университет Петра Великого 195251, Санкт-Петербург, Россия

> ^b Санкт-Петербургский государственный университет 198504, Санкт-Петербург, Россия

> > Поступила в редакцию 23 декабря 2021 г., после переработки 29 декабря 2021 г. Принята к публикации 30 декабря 2021 г.

Интенсивность обратного рассеяния излучения ближнего инфракрасного диапазона рассчитана для двухслойной модели сильно неоднородной среды, которую можно рассматривать как систему биотканей «череп-мозг». На основе уравнения Бете – Солпитера описана процедура моделирования многократного рассеяния методом Монте-Карло для двухслойной случайно-неоднородной среды. В качестве индикатрисы однократного рассеяния использована фазовая функция Хеньи – Гринштейна. Рассчитаны зависимости интенсивности обратного рассеяния от расстояния вдоль поверхности головы между источником излучения и приемником. Вид этих зависимостей оказался чувствительным к изменению таких параметров системы, как анизотропия индикатрисы рассеяния, толщина слоев, длина волны лазерного излучения. Эта особенность может быть использована в медицинской диагностике. Предложен альтернативный подход к расчету плотности распределения вероятности длины свободного пробега фотона. Показано, что, начиная с расстояния между источником и приемником порядка нескольких транспортных длин, рассчитанная интенсивность находится в хорошем согласии с предсказаниями диффузионной теории.

DOI: 10.31857/S0044451022060013

EDN: DTRSKT

1. ВВЕДЕНИЕ

Методы рассеяния света в настоящее время активно используются для исследования биотканей, прежде всего в связи с медицинской диагностикой [1–4]. Важную область здесь составляет быстрая «полевая» диагностика различных травм головного мозга [5–11]. Наличие так называемого «окна прозрачности» биологических тканей в ближнем инфракрасном диапазоне привело к развитию метода диффузной спектроскопии ближнего инфракрасного диапазона DNIRS (Diffuse Near-infrared Spectroscopy, см. [1–4,7–9]). Указанный метод широко используется для определения глубины и степени повреждения кожных покровов и подкожной клет-

чатки, диагностики венозных повреждений, травм мозга и мягких тканей [2,9,11-14].

Для корректного описания состояния мозга по данным обратно рассеянного лазерного излучения обязательно требуется дополнительный учет наличия черепа, т. е. для теории — как минимум двухслойная модель головы «череп-мозг» [15, 16]. Задача определения оптических параметров модели «череп-мозг» по данным эксперимента в биофантомах и теоретического описания интенсивности как аналитически — на основе уравнения переноса, так и численно — моделированием методом Монте-Карло (МК), рассматривалась в работе [17]. Аналогичная модель была описана в [18] и использовалась для неинвазивного определения оптических свойств мозга в рамках DNIRS. В работе [19] показано, что оптические параметры мозга можно получить, если расстояние между источником и детектором вдоль поверхности черепа больше некоторого характерного значения.

^{*} E-mail: kuzmin_vl@mail.ru

^{**} E-mail: zhavoronkov95@gmail.com

^{***} E-mail: ulyanov_sv@mail.ru

Данная работа посвящена МК-моделированию обратного рассеяния в двухслойной среде. Выбор для исследования двухслойной модели продиктован желанием избежать громоздкости в теоретическом описании, эта модель является удобной базой для верификации результатов для реальных многослойных моделей, учитывающих дополнительно слой скальпа, прозрачную цереброспинальную жидкость и сложную структуру мозга (см., например, [11]).

Наш расчет интенсивности обратно рассеянного лазерного излучения основан на итерационном решении уравнения Бете-Солпитера. Многократные интегралы, являющиеся членами разложения решения по кратностям рассеяния, вычисляются методом Монте-Карло. Широко применяемая процедура MCML (Monte Carlo Multi Layer) [20] основана на подсчете числа фотонов, покинувших систему в результате случайных блужданий. МСМL-подход модифицирован нами так, чтобы вклады в интенсивность обратного рассеяния определялись на каждом акте рассеяния [21,22], это приводит к существенному снижению времени расчета. Также мы модифицируем процедуру обратного преобразования в методе МК, явно учитывая наличие абсорбции в каждом порядке рассеяния.

В разд. 2 данной работы приведено решение уравнения Бете – Солпитера в лестничном приближении для интенсивности обратного рассеяния в виде ряда по кратностям рассеяния. В разд. 3 описана процедура МК-вычисления интегралов методом обратного преобразования. В разд. 4 в явном виде приведен метод МСМL обратного преобразования кумулятивной функции распределения вероятности длины пробега фотона в двухслойной случайно неоднородной среде. В разд. 5 описана предложенная нами модификация метода обратного преобразования. В разд. 6 представлены результаты расчетов интенсивности обратного рассеяния, а в разд. 7 проведен анализ полученных результатов и сделаны выводы.

2. УРАВНЕНИЕ БЕТЕ-СОЛПИТЕРА

Мы описываем перенос излучения в случайной среде с помощью уравнения Бете – Солпитера [21,22]

$$\Gamma(\mathbf{r}_{2}, \mathbf{r}_{1} | \mathbf{k}_{f}, \mathbf{k}_{i}) = \mu_{s} p(\mathbf{k}_{f} - \mathbf{k}_{i}) \delta(\mathbf{r}_{2} - \mathbf{r}_{1}) + \mu_{s} \int d\mathbf{r}_{3} p(\mathbf{k}_{f} - \mathbf{k}_{23}) \Lambda(\mathbf{r}_{2} - \mathbf{r}_{3}) \Gamma(\mathbf{r}_{3}, \mathbf{r}_{1} | \mathbf{k}_{23}, \mathbf{k}_{i}), \quad (1)$$

где пропагатор $\Gamma(\mathbf{r}_2, \mathbf{r}_1 | \mathbf{k}_f, \mathbf{k}_i)$ соответствует излучению из точки \mathbf{r}_1 в точку \mathbf{r}_2 с начальным \mathbf{k}_i и ко-

нечным \mathbf{k}_f волновыми векторами, \mathbf{k}_{ij} — волновой вектор, направленный из точки \mathbf{r}_j в точку \mathbf{r}_i , \mathbf{k}_{ij} = $k_0\mathbf{r}_{ij}/r_{ij}$, $\mathbf{r}_{ij}=\mathbf{r}_i-\mathbf{r}_j$. Здесь $k_0=2\pi/\lambda$ — волновое число в вакууме, λ — длина волны. Пропагатор однократного рассеяния $\Lambda(r)=r^{-2}\exp(-\mu r)$ возникает из произведения двух комплексно-сопряженных средних функций Грина скалярного поля, $\mu=\mu_s+\mu_a$ — коэффициент экстинкции, μ_s и μ_a — коэффициенты рассеяния и абсорбции соответственно, $p(\mathbf{k}_f-\mathbf{k}_i)$ — фазовая функция,

$$p(\mathbf{k}_f - \mathbf{k}_i) = \frac{G(\mathbf{k}_f - \mathbf{k}_i)}{\int d\Omega_f G(\mathbf{k}_f - \mathbf{k}_i)},$$
 (2)

 $G(\mathbf{k})$ — преобразование Фурье корреляционной функции диэлектрической проницаемости,

$$G(\mathbf{k}) = \int d(\mathbf{r} - \mathbf{r}_0) e^{-i\mathbf{k}\cdot(\mathbf{r} - \mathbf{r}_0)} \langle \delta\varepsilon(\mathbf{r}) \, \delta\varepsilon^*(\mathbf{r}_0) \rangle.$$
 (3)

Уравнение (1) написано в лестничном приближении, подразумевающем условие слабого рассеяния: $\lambda \ll l_s = \mu_s^{-1}$. В формуле (1) мы использовали оптическую теорему для скалярного поля,

$$\mu_s = \frac{k_0^4}{(4\pi)^2} \int d\Omega_f G(\mathbf{k}_f - \mathbf{k}_i). \tag{4}$$

Пусть z — декартова координата, нормальная к границе полубесконечной среды, $\mathbf{r}=(\mathbf{r}_{\perp},z), z>0$. Для исходящего поля мы используем приближение Фраунгофера, когда поле в дальней зоне является произведением сферической волны и плоской волны, направленной в точку наблюдения [22]. Тогда основная, некогерентная часть интенсивности обратного рассеяния [23] представляется в виде

$$J(s_i, s_f) = 4\pi \int_0^\infty dz_1 \int_{z_2 > 0} d\mathbf{r}_2 \Gamma(\mathbf{r}_2, \mathbf{r}_1 | \mathbf{k}_f, \mathbf{k}_i) \times \exp\left(-\mu(s_f z_2 + s_i z_1)\right), \quad (5)$$

где $s_i=1/\cos\theta_i,\,s_f=1/\cos\theta_f,\,\theta_i$ — угол падения, а θ_f — угол обратного рассеяния, отсчитываемый от обратного направления.

Проводя итерации в уравнении Бете – Солпитера, представляем интенсивность рассеяния как ряд по кратностям рассеяния [22,24]:

$$J(s_i, s_f) = \sum_{n=1}^{\infty} J^{(n)}(s_i, s_f), \tag{6}$$

где вклад в рассеяние *n*-го порядка

$$J^{(n)}(s_i, s_f) = 4\pi \mu_s^n \int_0^\infty dz_1 \int d\mathbf{r}_2 \dots \int d\mathbf{r}_n \Lambda(r_{21}) \times p(\mathbf{k}_{21} - \mathbf{k}_i) \prod_{j=2}^{n-1} \Lambda(r_{j+1j}) p(\mathbf{k}_{j+1 j} - \mathbf{k}_{j j-1}) \times H(z_j) H(z_n) p(\mathbf{k}_f - \mathbf{k}_{n n-1}) e^{-\mu(s_i z_1 + s_f z_n)}.$$
(7)

Функции Хевисайда H(z) обеспечивают исчезновение этого вклада при вылете фотона из среды.

3. МОДЕЛИРОВАНИЕ МЕТОДОМ МОНТЕ-КАРЛО

Опишем алгоритм моделирования для однородной полубесконечный среды. Метод основан на известной процедуре обратного преобразования [25], который представляет пространственные интегралы итерационного ряда (6) по полубесконечному интервалу в виде интегралов по единичным интервалам. Трехмерный пространственный интеграл в декартовых координатах $\mathbf{r}_{i} = (x_{i}, y_{i}, z_{i})$ преобразуется в интеграл по сферическим координатам (r, θ, ϕ) , с началом в ${\bf r}_{i-1}$. Ось z находится под прямым углом к поверхности образца и уходит вглубь него. Форма пропагатора однократного рассеяния $\Lambda(r)$ показывает, что длина свободного пробега фотона имеет экспоненциальное распределение вероятности с плотностью $f(r) = \mu \exp(-\mu r)$ на интервале $r \in [0, \infty)$, где $r = |\mathbf{r}_i - \mathbf{r}_{i-1}|$ — расстояние между точками j-го и (j-1)-го порядков актов рассеяния. Для экспоненциального распределения кумулятивная функция распределения $\xi = F(r)$ находится элементарно,

$$\xi = F(r) = \int_{0}^{r} f(r') dr' = 1 - \exp(-\mu r).$$
 (8)

Обратное преобразование $r = F^{-1}(\xi)$ дает

$$r = -\mu^{-1}\ln(1-\xi) = -\mu^{-1}\ln\xi',\tag{9}$$

где ξ и $\xi' = 1 - \xi$ — случайные величины, равномерно распределенные в единичном интервале [0,1]. Аналогичное обратное преобразование выполняется с косинусом угла рассеяния: от $t = \cos \theta$ переходим к

$$\chi = 2\pi \int_{-1}^{t} p(t') dt'.$$

Таким образом, трехмерный пространственный интеграл по относительной координате $\mathbf{r} = \mathbf{r}_j - \mathbf{r}_{j-1}$ преобразуется как

$$\int d\mathbf{r}\Lambda(r)p(t) = \frac{1}{2\pi\mu} \int_{0}^{1} d\xi \int_{0}^{1} d\chi \int_{0}^{2\pi} d\phi.$$
 (10)

После этого интеграл вычисляется как среднее по выборке трех равномерно распределенных переменных ξ , χ , ϕ , где первые две принадлежат интервалу [0,1], а азимутальный угол ϕ — интервалу $[0,2\pi]$.

Приближая член n-го порядка $J^{(n)}(1,s_f)$ средним по выборке из N_{ph} падающих фотонов, имеем

$$J^{(n)}(1, s_f) \simeq \sum_{i=1}^{N_{ph}} \frac{W_n^{(i)}}{N_{ph}} p\left(\mathbf{k}_f - \mathbf{k}_{n \, n-1}^{(i)}\right) e^{-\mu s_f z_n^{(i)}}, (11)$$

где веса $W_n^{(i)}$ для n>1 задаются формулой

$$W_n^{(i)} = \left(\frac{\mu_s}{\mu}\right)^n \prod_{i \le n} H\left(z_j^{(i)}\right) H\left(T - z_j^{(i)}\right). \tag{12}$$

Функция H(z)H(T-z) учитывает, что реальная среда заполняет конечный слой толщиной $T, 0 \le z \le T$. Отметим, что интенсивность рассеяния, рассчитанная с помощью (11), может быть интерпретирована как среднее значение экспоненты $\exp(-\mu s_f z_n^{(i)})$, которая описывает затухание фотона, возвращающегося из среды к границе после n актов рассеяния.

Вес $W_n^{(i)}$ представляет собой случайное значение многократного пространственного интеграла, полученного в результате итерации п-го порядка уравнения Бете-Солпитера. Вычисляя его, моделируем стохастическую последовательность, или траекторию, точек рассеяния $\mathbf{r}_1, \ldots, \mathbf{r}_n$. Переменная $z_i^{(i)}$ это расстояние до границы от *j*-го события рассеяния. Функция $\phi_{BLB}(z_n^{(i)}) = \exp(-\mu s_f z_n^{(i)})$ возникает вследствие затухания рассеянного излучения, распространяющегося от случайной точки n-го события рассеяния $z_n^{(i)}$ к границе. Оно зависит от локальных оптических параметров на пути фотона, движущегося к границе, и имеет вид в приближении Фраунгофера закона Бугера – Ламберта – Бера. Для однородной среды $\phi_{BLB}(z) = \exp(-\mu s_f z)$. В формуле (12) мы пренебрегли потерями энергии на отражение на границах между слоями и с вакуумом. Эти потери можно учесть, если весовые коэффициенты $W_n^{(i)}$ умножить на коэффициенты отражения Френеля (см. [26]).

Метод МК широко используется для моделирования миграции фотонов в тканях и тканевых фантомах, в основном в рамках известного алгоритма МСМL [20]. В рамках МСМL в сигнал вносят вклад фотоны, выходящие из рассеивающей среды, что требует довольно большой выборки из-за того, что

число случайно вышедших фотонов с заданной геометрией задачи могут составлять очень малую долю падающего света. В развитой в настоящей работе модификации каждый фотон вносит свой вклад в сигнал при каждом акте рассеяния, пока не покинет среду. Таким образом, объем выборки и, соответственно, время вычислений, необходимое для получения результатов, существенно уменьшается.

4. МЕТОД ОБРАТНОГО ПРЕОБРАЗОВАНИЯ ДЛЯ ДВУХСЛОЙНОЙ СРЕДЫ

Рассмотрим неоднородную среду, в которой оптические параметры зависят от положения фотона, а именно — от декартовой координаты z по оси, нормальной к границам.

В общем случае положим $\mu=\mu(z)$. Мы предполагаем, что на границе раздела слоев отражение отсутствует. Таким образом, предполагая, что направление луча не меняется при движении в неоднородной среде, получаем, что экспоненциальная функция распределения, определяющая затухание фотона, движущегося из точки \mathbf{r}_0 в точку \mathbf{r} , может быть представлена в следующем виде:

$$\exp\left(-\mu|\mathbf{r} - \mathbf{r}_0|\right) \to \exp\left(-\frac{1}{\cos\theta} \int_{z_0}^{z} \mu(z') dz'\right). \quad (13)$$

Здесь θ — угол между направлением движения фотона и осью z, который должен быть определен заранее. Заметим, что распределение зависит от начального положения фотона \mathbf{r}_0 . Определим плотность вероятности для пространственной координаты z, задающей новое положение фотона, формулой

$$f(z, z_0) = C_0^{-1} \exp\left(-\frac{1}{\cos \theta} \int_{z_0}^z \mu(z') dz'\right),$$
 (14)

где C_0 — нормировочная постоянная.

Рассматривается двухслойная модель, состоящая из слоев A и B. Слой A занимает область $0 < z < T_A$, слой B — область $T_A < z < T$, где $T = T_A + T_B$ — толщина данной двухслойной системы. При построении обратного преобразования мы рассматриваем среду B как полубесконечный слой $T_A < z$, а в численных расчетах будем полагать T_B конечным, но $T_B \gg T_A$. Нам необходимо получить кумулятивную функцию, зависящую от знака $\cos \theta$, и выполнить обратное преобразование для шести различных случаев, а именно, как видно из рис. 1, для каждого возможного направления движения фотона, вверх или вниз на рисунке,

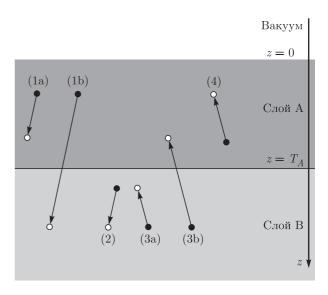


Рис. 1. Схематическое представление случайного пути фотона из начальной точки ${\bf r}_j$ (черный кружок) в точку следующего рассеяния ${\bf r}_{j+1}$ (белый кружок); варианты движения фотона вглубь образца, $\cos\theta>0$: (1a) — из среды A в A, (1b) — из A в B, (2) — из B в B; варианты движения фотона в направлении поверхности, $\cos\theta<0$: (3a) — из среды B в B, (3b) — из B в A, (4) — из A в A

а также с учетом того, движется ли фотон в слое A или B, либо пересекает границу этих слоев. Таким образом, нам необходимо построить алгоритм определения последовательных шагов, которые должен пройти фотон, начиная с точки z_0 .

Пусть начальная точка z_0 выбрана в слое А для фотона, движущегося вглубь среды, $\cos \theta > 0$, что соответствует путям (1a) или (1b) среди шести путей, показанных на рис. 1. Для описания случайного расстояния, пройденного фотоном между двумя последовательными актами рассеяния, определим функцию плотности вероятности [20]:

$$f(z, z_0) = \begin{cases} \frac{\mu(A)}{\cos \theta} \exp\left(-\frac{\mu(A)}{\cos \theta}(z - z_0)\right), & z \le T_A, \\ \xi_A \frac{\mu(B)}{\cos \theta} \exp\left(-\frac{\mu(B)}{\cos \theta}(z - T_A)\right), & z > T_A, \end{cases}$$
(15)

где параметр $\xi_A = \exp(-\mu(A)(T_A - z_0)/\cos\theta)$ соответствует движению фотона от точки z_0 до границы $z = T_A$. Для краткости мы опускаем зависимость введенных параметров от z_0 . Интегрируя плотность вероятности (15), получаем кумулятивную функцию распределения

$$F(z) = \begin{cases} 1 - \exp\left(-\frac{\mu(A)}{\cos\theta}(z - z_0)\right), & z \le T_A, \\ 1 - \xi_A \exp\left(-\frac{\mu(B)}{\cos\theta}(z - T_A)\right), & z > T_A. \end{cases}$$
(16)

Значение кумулятивной функции рассматривается далее как равномерно распределенная случайная величина $\xi = F(z, z_0)$. Выполняя обратное преобразование, т. е. определяя пространственную переменную z как обратную функцию $z = F^{-1}(\xi)$, получаем

$$z = \begin{cases} z_0 - \frac{\cos \theta}{\mu(A)} \ln(1 - \xi), & \xi \le 1 - \xi_A, \\ T_A - \frac{\cos \theta}{\mu(B)} \ln\left(\frac{1 - \xi}{\xi_A}\right), & \xi > 1 - \xi_A. \end{cases}$$
(17)

В случае $z_0 > T_A$ и положительного направления движения фотона, $\cos \theta > 0$, коэффициент рассеяния не меняется, $\mu(z) = \mu(B)$, и применение обратного преобразования дает

$$z = z_0 - \frac{\cos \theta}{\mu(B)} \ln(1 - \xi).$$
 (18)

Аналогично для фотона, движущегося из слоя B в отрицательном направлении, $\cos \theta < 0$, получаем

$$z = \begin{cases} z_0 - \frac{\cos \theta}{\mu(B)} \ln(1 - \xi), & \xi \le 1 - \xi_B, \\ T_A - \frac{\cos \theta}{\mu(A)} \ln\left(\frac{1 - \xi}{\xi_B}\right), & \xi > 1 - \xi_B, \end{cases}$$
(19)

где $\xi_B = \exp\left(-\mu(B)(T_A-z_0)/\cos\theta\right)$. Для фотона, движущегося в сторону границы z=0 из слоя A, аналогично получаем

$$z = z_0 - \frac{\cos \theta}{\mu(A)} \ln(1 - \xi).$$
 (20)

Таким образом, формулы (17)–(20) определяют изменение координаты z фотона в результате одного акта рассеяния как функцию равномерно распределенной величины ξ для двухслойной среды. Число возможных случаев увеличивается как k(k+1) с ростом числа слоев k; так, в трехслойной среде имеется 12 различных вариантов движения фотона.

5. МОДИФИКАЦИЯ АЛГОРИТМА МСМL

Каждое событие рассеяния в члене n-го порядка в выражении (7) для интенсивности рассеяния порождает коэффициент $\mu_s(A)$ или $\mu_s(B)$. Мы разработали процедуру обратного преобразования, включающую эти множители в явном виде в функцию плотности вероятности. Это позволит нам при

МК-моделировании более точно учесть наличие абсорбции и, в частности, отличие альбедо μ_s/μ от 1.

Движение вглубь среды: $z>z_0, \cos\theta>0$. Пусть фотон начинает двигаться в слое A, $z_0< T_A$, в положительном направлении, $\cos\theta>0$. Плотность вероятности для $z_0< T_A$ имеет вид

$$f^{(+)}(z, z_0) =$$

$$= \begin{cases} \frac{\mu_s(A)}{C^{(+)}\cos\theta} \exp\left(-\frac{\mu(A)}{\cos\theta}(z - z_0)\right), & z \le T_A, \\ \frac{\xi_A \mu_s(B)}{C^{(+)}\cos\theta} \exp\left(-\frac{\mu(B)}{\cos\theta}(z - T_A)\right), & z > T_A. \end{cases}$$
(21)

В нормировочную постоянную $C^{(+)} = C_1^{(+)} + C_2^{(+)}$ вносят вклад два члена,

$$C_1^{(+)} = (1 - \xi_A) \frac{\mu_s(A)}{\mu(A)}, \quad C_2^{(+)} = \xi_A \frac{\mu_s(B)}{\mu(B)}.$$
 (22)

Теперь найдем обратную кумулятивную функцию $z=(F^{(+)})^{-1}(\xi)$. Выполняя схему обратного преобразования, находим переменную z как функцию случайной величины ξ :

$$z = \begin{cases} z_0 - \frac{\cos \theta}{\mu(A)} \ln \left(1 - C^{(+)} \xi \frac{\mu(A)}{\mu_s(A)} \right), & \xi \le \xi^{(+)}, \\ T_A - \frac{\cos \theta}{\mu(B)} \ln \left((1 - \xi) \frac{C^{(+)}}{C^{(+)}} \right), & \xi > \xi^{(+)}. \end{cases}$$
(23)

Здесь

$$\xi^{(+)} = F^{(+)}(T_A) = (1 - \xi_A) \frac{\mu_s(A)}{\mu(A)C^{(+)}}$$
 (24)

— значение кумулятивной функции на границе слоев А и В. При $z_0 > T_A$, при движении вглубь, $\cos \theta > 0$, обратное преобразование дает

$$z = z_0 - \frac{\cos \theta}{\mu(B)} \ln(1 - \xi).$$
 (25)

Движение к поверхности: $z_0 > z$, $\cos \theta < 0$. Двигаясь в отрицательном направлении из слоя B, $\cos \theta < 0$, мы получаем аналогичный результат:

$$z = \begin{cases} z_0 - \frac{\cos \theta}{\mu(B)} \ln \left(1 + C^{(-)} \xi \frac{\mu(B)}{\mu_s(B)} \right), & \xi \le \xi^{(-)}, \\ T_A - \frac{\cos \theta}{\mu(A)} \ln \left((1 - \xi) \frac{C^{(-)}}{C_2^{(-)}} \right), & \xi > \xi^{(-)}, \end{cases}$$
(26)

где

$$\xi^{(-)} = (1 - \xi_B) \frac{\mu_s(B)}{\mu(B)C^{(-)}}, \tag{27}$$

	$\lambda = 750$		$\lambda = 850$		$\lambda = 950$		$\lambda = 1050$	
	μ_a	μ_s'	μ_a	μ_s'	μ_a	μ_s'	μ_a	μ_s'
Мозг	0.036	0.859	0.106	0.762	0.114	0.622	0.118	0.525
Череп	0.006	1.974	0.013	1.876	0.019	1.757	0.019	1.665

Таблица. Типичные коэффициенты рассеяния и абсорбции рассмотренных биотканей μ_a и μ_s' (в мм $^{-1}$) для различных длин волн λ (в нм)

а нормировочная постоянная $C^{(-)} = C_1^{(-)} + C_2^{(-)}$ представляет собой сумму двух слагаемых,

$$C_1^{(-)} = (1 - \xi_B) \frac{\mu_s(B)}{\mu(B)}, \quad C_2^{(-)} = \xi_B \frac{\mu_s(A)}{\mu(A)}.$$
 (28)

В случае $z_0 < T_A$, при движении к поверхности, $\cos \theta < 0$, обратное преобразование дает

$$z = z_0 - \frac{\cos \theta}{\mu(A)} \ln(1 - \xi). \tag{29}$$

6. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

В данном разделе приводятся результаты расчетов интенсивности обратного рассеяния лазерного излучения ближнего инфракрасного диапазона двухслойной средой.

Существуют обширные данные по оптическим параметрам биотканей (см., например, [27–30]). Параметры для системы «череп-мозг», использованные нами при моделировании, приведены в таблице.

Моделирование проводилось методом МК с использованием как традиционного метода обратного преобразования кумулятивной функции распределения вероятности длины свободного пробега фотона [20], так и предложенной в разд. 5 данной работы его модификации. В расчетах полагалось, что в среду, занимающую полупространство $z \geq 0$, лазерное излучение попадает вдоль направления оси z. Далее, в результате многократного рассеяния в двухслойной среде возникает обратное рассеяние, интенсивность которого рассчитывалась в точке на поверхности z=0 на расстоянии ρ от точки входа лазерного луча в среду. В расчетах кратность рассеяния ограничивалась числом $n=3\cdot 10^5$, а объем выборки был выбран $N=10^6$.

Результаты многократного рассеяния существенно зависят от анизотропии рассеяния. Для изучения этой зависимости нормированную фазовую функцию $p(\cos\theta)$, где θ — угол однократного рассеяния, мы описывали широко применяемой модельной фазовой функцией Хеньи – Гринштейна (ХГ) [3, 31]:

$$p_{HG}(\cos \theta) = \frac{1}{4\pi} \frac{1 - g^2}{(1 + q^2 - 2q\cos \theta)^{3/2}},$$
 (30)

где $g = \langle \cos \theta \rangle$ — параметр анизотропии однократного рассеяния. Удобство фазовой функции ХГ связано с тем, что для нее в элементарных функциях выражается обратная кумулятивная функция распределения вероятности по углу рассеяния θ .

Во многих оптических исследованиях биотканей и биофантомов используется приведенный коэффициент рассеяния μ'_s (обратная транспортная длина), связанный с коэффициентом рассеяния μ_s (обратной длиной рассеяния) соотношением $\mu'_s = (1-g)\mu_s$. На рис. 2 показаны зависимости интенсивности обратно рассеянного излучения от расстояния между источником фотонов и приемником на плоскости z = 0 при изменении параметра анизотропии g. На рис. 2a приведены результаты расчетов для различных значений параметра g при одном и том же значении коэффициента рассеяния μ_s . В соответствии с оптической теоремой, для всех кривых рис. 2a неизменной остается интегральная интенсивность однократного рассеяния, в то время как приведенный коэффициент рассеяния μ_s' с изменением параметра gменяется.

Как видно из рис. 2a, с ростом параметра g, т. е. с увеличением вытянутости индикатрисы однократного рассеяния вперед, растет и интенсивность обратного рассеяния на любом расстоянии ρ между источником и приемником, исключая самую близкую к источнику область. Такое поведение находится в согласии с аналитическими расчетами [32, 33], выполненными для изотропной и сильно анизотропной фазовых функций. Отметим, что на рис. 2а для каждого значения g показаны результаты вычислений, выполненных по двум алгоритмам нахождения длины свободного пробега фотона, приведенным в разд. 4 и 5 данной работы: а именно — закрашенные символы соответствуют классическому алгоритму МСМL из работы [20], а белые символы — нашему алгоритму. На рис. 26 приведены результаты МК-моделирования для другого варианта

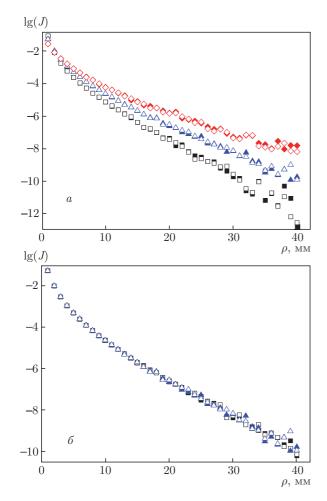


Рис. 2. Зависимости интенсивности обратного рассеяния в двухслойной модели череп (A) и мозг (B) от расстояния источник—приемник. Закрашенные символы соответствуют классическому алгоритму, белые — модифицированному. Значения параметра анизотропии $g=0.8~(\square$ и \blacksquare), 0.9 (\Diamond и \blacktriangle), $0.95~(\Diamond$ и \spadesuit). Длина волны $\lambda=750$ нм. Толщина слоя А — $T_A=5$ мм. Графикам a и δ отвечают варьируемые параметры μ_s' и μ_s соответственно

роста параметра анизотропии g, а именно — неизменной оставалась величина приведенного коэффициента рассеяния μ_s' , а коэффициент μ_s изменялся согласованно с изменением параметра анизотропии g. Из совпадения графиков на этом рисунке следует, что зависимость интенсивности обратного рассеяния от расстояния между приемником и источником в рассмотренной двухслойной системе определяется приведенными коэффициентами рассеяния $\mu_s'(A)$ и $\mu_s'(B)$, что свидетельствует о сформировавшемся диффузионном режиме переноса излучения.

На рис. 3 представлены результаты моделирования зависимости интенсивности обратного рассеяния от расстояния между источником и приемни-

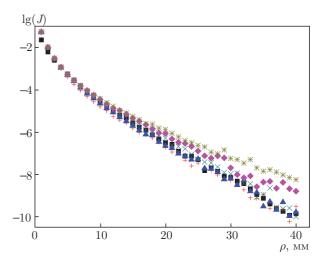


Рис. 3. Зависимости интенсивности обратного рассеяния в двухслойной модели череп (A) и мозг (B) от расстояния источник—приемник для различных толщин слоя A: 0 (\blacksquare), 3 мм (+), 5 мм (\blacktriangle), 7 мм (\times), 10 мм (\blacklozenge), 150 мм (*). Длина волны $\lambda=750$ нм. Параметр анизотропии g=0.9

ком для системы «череп-мозг» с различной толщиной верхнего слоя, т. е. черепа. Кривые для $T_A=0$ и $T_A=150$ мм показывают результаты обратного рассеяния на полупространстве, содержащем лишь вещество мозга и черепа соответственно. Другие кривые на рис. З показывают, как с увеличением толщины верхнего слоя, т. е. черепа, изменяется наклон кривых. По результатам МК-моделирования излучения, обратно рассеянного полупространством только из одной биоткани, определялся угловой коэффициент μ_{eff} в уравнении [34]

$$\ln[\rho^2 I(\rho)] = -\mu_{eff}\rho + I_0, \tag{31}$$

справедливом при $\rho\gg l_{tr}=1/\mu_s'$, т.е. в случае применимости диффузионного приближения переноса излучения. По данным кривой на рис. 3 с $T_A=0$, т.е. для полупространства с параметрами ткани мозга, было получено значение $\mu_{eff}(B)=0.31~{\rm mm}^{-1}$, которое очень близко к результату $\mu_{eff}(B)=0.305~{\rm mm}^{-1}$, найденному по данным таблицы:

$$\mu_{eff} = \sqrt{3\mu_s'\mu_a}. (32)$$

По данным кривой на рис. З с $T_A=150$ мм было найдено значение $\mu_{eff}(A)=0.197$ мм $^{-1}$, которое также близко к значению $\mu_{eff}(A)=0.188$ мм $^{-1}$, найденному по формуле (32) с данными из таблицы. Таким образом, для данных тканей при моделировании обратного рассеяния на расстояниях от источника излучения больших 10 мм можно пользоваться диффузионным приближением.

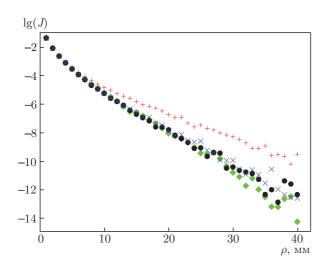


Рис. 4. Зависимости интенсивности обратного рассеяния в двухслойной модели череп (A) и мозг (B) от расстояния источник-приемник для различных длин волн λ : 750 нм (+), 850 нм (\blacklozenge), 950 нм (\bullet), 1050 нм (\times). Параметр анизотропии g=0.9. Толщина слоя A — $T_A=3$ мм

На рис. 4 показано, как меняется зависимость интенсивности обратного рассеяния на двухслойной среде от расстояния источник—приемник для разных длин волн. Значительное отличие кривой, построенной для $\lambda=750$ нм, от трех других кривых связано с большим отличием коэффициента абсорбции и согласуется с формулой (32) для μ_{eff} .

7. ЗАКЛЮЧЕНИЕ

В работе проведен расчет интенсивности обратного рассеяния лазерного инфракрасного излучения на двухслойной случайно неоднородной биоткани. В качестве основной модели рассматривалась система «череп-мозг». Для сравнения с реальными биомедицинскими данными по обратному рассеянию инфракрасного излучения головой человека двухслойная модель является очень упрощенной. Однако она может служить предельным случаем для верификации результатов, учитывающих слой скальпа, прозрачную цереброспинальную жидкость и более сложную структуру мозга (см., например, [11]). Моделирование переноса излучения в биоткани основывалось на уравнении Бете-Солпитера в лестничном приближении, решение которого представлено в виде разложения по кратностям рассеяния. Каждый член разложения является многократным интегралом, вычисление которого проводится методом Монте-Карло. Были рассчитаны зависимости интенсивности обратного рассеяния от расстояния вдоль

поверхности черепа между приемником и источником излучения. Изучено влияние на интенсивность рассеяния изменения параметра анизотропии фазовой функции, толщины черепа и длины волны. Чувствительность интенсивности обратного рассеяния к изменению параметров биоткани позволяет использовать данные обратного рассеяния в медицинской диагностике. В расчетах мы применяли нашу модификацию известной процедуры МСМL [20], отличающуюся способом регистрации фотонов [22], а для моделирования длины свободного пробега фотона мы пользовались как традиционным методом MCML, так и предложенной в данной работе его модификацией. Модифицированный метод позволил существенно сократить время вычислений, а также явно учесть в моделировании альбедо μ_s/μ .

ЛИТЕРАТУРА

- 1. S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).
- **2.** D. J. Davies, Z. Su, M. T. Clancy et al., J. Neurotrauma **32**, 933 (2015).
- 3. В. В. Тучин, Оптика биологических тканей. Методы рассеяния света в медицинской диагностике, IPR Media, Москва (2021).
- А. Н. Башкатов, А. В. Приезжев, В. В. Тучин, КЭ 41, 283 (2011).
- D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, Appl. Opt. 45, 8142 (2006).
- 6. M. Dehaes, P. E. Grant, D. D. Sliva et al., Biomed. Opt. Express 2, 552 (2011).
- J. Selb, D. A. Boas, S.-T. Chan et al., Neurophoton. 1, 015005 (2014).
- A. Sabeeh and V. V. Tuchin, J. Biomed. Photon. Eng.
 6, 040201 (2020).
- 9. R. Francis, B. Khan, G. Alexandrakis et al., Biomed. Opt. Express 6, 3256 (2015).
- S. Mamani, L. Shi, T. Ahmed et al., J. Biophotonics 11, e201800096 (2018).
- A. P. Tran, S. Yan, and Q. Fang, Neurophoton. 7, 015008 (2020).
- 12. E. Zinchenko, N. Navolokin, A. Shirokov et al., Biomed. Opt. Express 10, 4003 (2019).
- 13. E. S. Papazoglou, M. D. Weingarten, S. Michael et al., J. Biomed. Opt. 13, 044005 (2008).

- E. S. Papazoglou, M. T. Neidrauer, L. Zubkov et al.,
 J. Biomed. Opt. 14, 064032 (2009).
- S. Mahmoodkalayeh, M. A. Ansari, and V. V. Tuchin, Biomed. Opt. Express 10, 2795 (2019).
- **16**. M. S. Cano-Velazquez, N. Davoodzadeh, D. Halaney et al., Biomed. Opt. Express **10**, 3369 (2019).
- A. Kienle, M. S. Patterson, N. Dögnitz et al., Appl. Opt. 37, 779 (1998).
- J. H. Choi, W. Martin, V. Yu. Toronov et al.,
 J. Biomed. Opt. 9, 221 (2004).
- M. A. Franceschini, S. Fantini, L. A. Paunescu et al., Appl. Opt. 37, 7447 (1998).
- L. Wang, S. L. Jacques, and L. Q. Zheng, Comput. Meth. Prog. Bio. 47, 131 (1995).
- **21**. В. Л. Кузьмин, А. Ю. Вальков, Письма в ЖЭТФ **105**, 261 (2017).
- **22**. В. Л. Кузьмин, А. Ю. Вальков, Л. А. Зубков, ЖЭТФ **155**, 460 (2019).
- **23**. V. L. Kuzmin, V. P. Romanov, and E. V. Aksenova, Phys. Rev. E **65**, 016601 (2001).

- V. L. Kuzmin, M. T. Neidrauer, D. Diaz et al.,
 J. Biomed. Opt. 20, 105006 (2015).
- **25**. L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York (1986).
- T. H. Pham, O. Coquoz, J. B. Fishkin et al., Rev. Sci. Instrum. 71, 2500 (2000).
- **27**. A. N. Bashkatov, E. A. Genina, V. I. Kochubey et al., J. Phys. D Appl. **38**, 2543 (2005).
- **28**. A. N. Bashkatov, E. A. Genina, V. I. Kochubey et al., Proc. SPIE **6163**, 616310 (2006).
- 29. J. D. Johansson, J. Biomed. Opt. 15, 0570059 (2010).
- 30. E. A. Genina, A. N. Bashkatov, D. K. Tuchina et al., Biomed. Opt. Express 10, 5182 (2019).
- **31**. T. Durduran, R. Choe, W. B. Baker et al., Rep. Progr. Phys. **73**, 076701 (2010).
- T. M. Nieuwenhuizen and J. M. Luck, Phys. Rev. E 48, 569 (1993).
- V. L. Kuzmin and A. Yu. Valkov, J. Quant. Spectrosc. Radiat. Transf. 272, 107760 (2021).
- **34**. D. Tamborini, P. Farzam, B. B. Zimmermann et al., Neurophoton. **5**, 011015 (2017).