ФЛУОРЕСЦЕНЦИЯ, ВОЗБУЖДАЕМАЯ В ГРОЗОВОЙ АТМОСФЕРЕ ЛАВИНАМИ РЕЛЯТИВИСТСКИХ УБЕГАЮЩИХ ЭЛЕКТРОНОВ

Л. П. Бабич^{*}, Е. И. Бочков

Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики 607188, Саров, Нижегородская обл., Россия

Поступила в редакцию 5 мая 2016 г.

Без участия релятивистской обратной связи рассчитаны спектр и пространственно-временная эволюция флуоресценции атмосферного разряда, развивающегося в режиме генерации лавин релятивистских убегающих электронов (ЛРУЭ). Показано, что разряды, генерирующие узкие биполярные импульсы, как и разряды, ответственные за вспышки гамма-излучения атмосферного происхождения, являются относительно темными. Тем не менее, флуоресценция, возбуждаемая разрядом с участием ЛРУЭ, может регистрироваться с помощью камер, используемых для регистрации высотных оптических явлений. Отмечается возможная связь между определенным классом оптических явлений, наблюдаемых на вершинах грозовых облаков, и излучением ЛРУЭ.

DOI: 10.7868/S0044451017050029

1. ВВЕДЕНИЕ

Начиная с 1993 г., регистрируются вспышки необычайно жесткого гамма-излучения атмосферного происхождения [1-4], получившие в англоязычной литературе название TGFs (terrestrial gamma-ray flashes), т.е. земные вспышки гамма-излучения. Длительность вспышек находится в диапазоне от нескольких десятков микросекунд до нескольких миллисекунд [5]. Среди всех естественных высокоэнергетических явлений, протекающих в земной атмосфере, TGFs генерируют наиболее жесткий спектр фотонов, простирающийся до энергий порядка 100 МэВ [4]. Несмотря на атмосферное происхождение, TGFs в основном регистрируются с борта искусственных спутников Земли: CGRO (Compton Gamma-Ray Observatory) [1], RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) [2], FGRST (Fermi Gamma-Ray Space Telescope) [3], AGILE (Astro-rivelatore Gamma a Immagini Leggero) [4]. TGF, индуцированный триггерной молнией, наблюдался также с поверхности Земли [6].

В 1992 г. был предложен механизм лавин релятивистских убегающих электронов (ЛРУЭ), способных развиваться в относительно слабых, но протяженных электрических полях грозовых облаков [7]. Практически с момента первой регистрации TGFs предполагалось, что они обусловлены тормозным излучением высокоэнергетических электронов атмосферного происхождения [8], что подтверждено численным моделированием методом Монте-Карло транспорта гамма-фотонов, генерируемых ЛРУЭ, в атмосфере Земли (см., например, [9]). В работе [10] показано, что источники TGFs находятся на высотах в диапазоне от 15 до 21 км. Из результатов численного моделирования транспорта гаммаизлучения в ближний космос следует, что наилучшее согласие вычисленного гамма-спектра на высоте орбиты спутника RHESSI с измеренным спектром достигается, если источники TGFs находились на высотах 15-20 км [9].

Развитие ЛРУЭ сопровождается рождением большого числа электрон-ионных пар в результате ионизации молекул воздуха [11–16] и, следовательно, ростом электрической проводимости внутри грозового облака, что должно приводить к ослаблению грозового электрического поля. В связи с резким усилением электрического тока в грозовом поле ожидалась генерация электромагнитных

^{*} E-mail: babich@elph.vniief.ru

импульсов (ЭМИ), которые действительно были зарегистрированы в ВЧ-УВЧ-диапазоне, причем более мощные, чем ЭМИ разрядов молнии на землю или «нормальных» внутриоблачных разрядов [17–19]. Эти ЭМИ характеризуются малой длительностью порядка десятков микросекунд и характерной биполярной формой, в связи с чем в научной литературе идентифицируются как «узкие биполярные импульсы» (narrow bipolar pulses — NBPs). Методом численного моделирования атмосферного разряда, развивающегося в режиме генерации ЛРУЭ, показано, что NBPs связаны с развитием ЛРУЭ [20]. Рассчитанные параметры ЭМИ (длительность импульса, отношение максимума напряженности поля в импульсе к минимуму) согласуются с измеренными характеристиками NBPs, если источник ЛРУЭ расположить на высоте примерно 15 км, что соответствует нижней границе расположения источника TGFs [9, 10]. Представляет интерес поиск временной корреляции между событиями TGFs и NBPs, поскольку одновременная регистрация обоих событий в предположении их единого генезиса позволила бы локализовать источник TGF (ЭМИ легко локализуются) и, таким образом, используя метеорологические данные, установить параметры атмосферы во время генерации TGF. В работе [6] наблюдался TGF в корреляции с триггерной молнией. Одновременность наблюдавшегося усиления электрического поля и вспышки оптического излучения свидетельствуют о начальном импульсе непрерывного тока на землю, с быстрой компонентой которого коррелирован TGF. Данные по гамма-излучению и электрическому полю, по мнению авторов работы [6], свидетельствуют о том, что ЛРУЭ, отвечающая за гамма-излучение, скорее всего, индуцировалась, когда вершина положительного лидера достигла высоты около 3.5 км. В измерениях электрического поля, выполненных в работе [6], отсутствуют формы, характерные для NBPs; это является свидетельством того, что не каждый разряд, который рождает TGF, генерирует NBP.

Развитие ЛРУЭ должно сопровождаться свечением атмосферы, поскольку убегающие электроны (УЭ) и генерируемые ими вторичные электроны низких энергий возбуждают молекулы воздуха. Результаты измерений спектра и интенсивности свечения позволили бы определить параметры газоразрядной плазмы, на основании чего можно было бы вычислить число УЭ. На основании данных о положении и пространственных размерах излучающей области можно было бы опосредованно оценить положение и размер источника ЛРУЭ, что позволило бы прояснить механизм зарождения затравочных УЭ, поскольку природа источника ЛРУЭ остается дискуссионной: широкий атмосферный ливень космических частиц, лидер молнии, разряд с релятивистской обратной связью (relativistic feedback) [21, 22].

В данной работе выполнено двумерное численное моделирование атмосферного разряда, развивающегося в самосогласованном электрическом поле в режиме генерации ЛРУЭ. В отличие от работы [23], где моделировался разряд, развивающийся в режиме с релятивистской обратной связью и генерирующий TGF, в данной работе моделирование выполнено для условий, при которых численным моделированием без участия релятивистской обратной связи нами получен ЭМИ с параметрами, близкими к параметрам NBP [20,24]. Такая постановка моделирования позволит понять, могут ли разряды, генерирующие NBPs, наблюдаться в оптическом диапазоне.

На основании рассчитанных характеристик разряда вычислены параметры флуоресценции воздуха: яркость, длительность, спектр, число фотонов и полная энергия излучения. Рассчитанные характеристики импульсов флуоресценции сравниваются с характеристиками, полученными в работе [23]. Обсуждается возможность регистрации флуоресценции.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАЗРЯДА

Исследования процессов в грозовом поле с участием УЭ удобно вести в терминах перенапряжения поля $\delta = e E / (F_B^{min} P_g)$ [7, 25] относительно минимума силы трения, действующей на электрон $F_B^{min} = 218 P_g \ \kappa B/(M \cdot atm)$ в результате неупругих взаимодействий с молекулами атмосферы [26]. Здесь е — элементарный заряд, Е — модуль напряженности электрического поля, P_q — давление воздуха. Развитие ЛРУЭ в воздухе возможно, начиная с $\delta_{th} \approx 1.3$, чему соответствует критическая напряженность поля $E_{th} \approx 283~{
m kB/m}$ при нормальных условиях [27]. Отличие порогового значения δ_{th} от единицы обусловлено рассеянием электронов на молекулах, в результате чего они в среднем движутся под некоторым углом к направлению электрической силы $-e\mathbf{E}$.

Используем модель разряда, изложенную в работах [20, 28, 29]. Транспорт УЭ описывается соответствующим диффузионно-дрейфовым уравнением. Кинетика электронов низких энергий, положительных и отрицательных ионов описывается системой трех уравнений в дрейфовом приближении с учетом ударной ионизации молекул воздуха электронами низких энергий, рекомбинации положительных ионов с электронами и отрицательными ионами, прилипания электронов к молекулам кислорода, генерации электронов низких энергий в соударениях УЭ с молекулами воздуха и внешнего источника электронов и положительных ионов, обусловленного фоновым космическим излучением. Система кинетических уравнений замыкается уравнениями для электрического поля. Использованы те же, что и в работе [20], начальные и граничные условия.

Решается двумерная задача в цилиндрической системе координат, с направленной вертикально вверх аксиальной координатой z и ортогональной ей радиальной координатой ρ . Поскольку длительность развития ЛРУЭ крайне мала, порядка 10 мкс [20], полагаем внешнее поле стационарным. В нулевом приближении грозовое поле можно считать однородным с вектором напряженности \mathbf{E}_{ext} . Полагаем, что оно создается двумя плоскими равномерно заряженными слоями зарядов разного знака толщиной Δz :

$$\mathbf{E}_{ext}(z,\rho) = E_{ext}(z) \, \mathbf{e}_z =$$

$$= \mathbf{e}_z \cdot \begin{cases} E_m \frac{z_b - z}{\Delta z}, & z_b < z < z_b + \Delta z, \\ -E_m, & z_b + \Delta z < z < z_t - \Delta z, \\ E_m \frac{z - z_t}{\Delta z}, & z_t - \Delta z < z < z_t, \end{cases}$$
(1)

где z — высота над уровнем моря, z_b и z_t — нижняя и верхняя границы области с полем, $E_m = \delta_{ext} F_B^{min}(0.5(z_b + z_t)), \, \delta_{ext}$ — модуль напряженности и перенапряжение поля в центре области, занятой полем. Вектор \mathbf{E}_{ext} направлен вниз, что соответствует типичной конфигурации распределения зарядов: отрицательный заряд концентрируется в нижней части облака, положительный — в верхней. Как и в работах [20,24], толщина Δz принята равной 200 м.

3. МОДЕЛЬ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ, ВОЗБУЖДАЕМОГО УБЕГАЮЩИМИ ЭЛЕКТРОНАМИ

Флуоресценция, возбуждаемая УЭ в воздухе, обусловлена излучением в три основные полосы: первую положительную систему азота 1P в красном и инфракрасном диапазонах, обусловленную переходами $B^3\Pi_q \rightarrow A^3\Sigma^+_\mu$ молекулы азота N_2

 $(\lambda = 570-1030$ нм, 30 переходов); вторую положительную 2P и первую отрицательную 1N системы в ультрафиолетовой и синей частях спектра (2P: $\lambda =$ = 310–490 нм, 20 переходов; 1N: $\lambda =$ 390–560 нм, 8 переходов), обусловленные переходами $C^3\Pi_u \rightarrow$ $\rightarrow B^3\Pi_g$ молекулы N₂ и $B^2\Sigma_u \rightarrow X^2\Sigma_g^+$ иона N₂⁺, соответственно.

Флуоресценция, возбуждаемая УЭ и релаксирующими вторичными электронами, обусловлена энергетическими потерями ЛРУЭ. Теряемую УЭ мощность можно рассчитать по формуле

$$R_s(z) = F_B^{min}(z)v_{re}(\delta) \approx$$
$$\approx 5.9 \cdot 10^{13} \frac{\Im B}{c \cdot \operatorname{arm}} P_g(z), \quad (2)$$

где учтено то обстоятельство, что групповая скорость УЭ практически не зависит от δ [30].

Скорость генерации фотонов с энергией $h\nu_{i\to j}^{v_i,v_j}$ вторичными электронами, рождаемыми в процессе развития ЛРУЭ, вычисляется следующим образом [9]:

$$w_{i \to j}^{v_i, v_j}(z, \rho, t) = R_s(z) n_{re}(z, \rho, t) \frac{\alpha_{i \to j}^{v_i, v_j}}{h \nu_{i \to j}^{v_i, v_j}}.$$
 (3)

Здесь индексы *i* и *j* маркируют электронные состояния молекулы N₂ и иона N₂⁺ ($i \rightarrow j$: $B^3\Pi_g \rightarrow A^3\Sigma_u^+$, $C^3\Pi_u \rightarrow B^3\Pi_g$, $B^3\Pi_g \rightarrow A^3\Pi_u^+$); индексы v_i и v_j определяют колебательные подуровни соответствующего электронного уровня;

$$\alpha_{i \to j}^{v_i, v_j} = \chi_{i \to j}^{v_i, v_j} / (1 + \beta_{i \to j} P_g)$$

— эффективность флуоресценции, т.е. доля энергетических потерь пучка УЭ, идущая на излучение фотонов с энергией $h\nu_{i\to j}^{v_i,v_j}$, а $\chi_{i\to j}^{v_i,v_j}$ — доля общего энергетического вклада УЭ, приходящаяся на данный переход; $\beta_{i\to j}$ — соответствующий коэффициент тушения. Данные для коэффициентов $\chi_{i\to j}^{v_i,v_j}$ и $\beta_{i\to j}$ приведены в диссертации [31].

Суммируя (3) по всем возможным переходам, получаем скорость генерации фотонов всех энергий убегающими электронами:

$$w_{re}(z,\rho,t) = \sum_{i \to j} \sum_{v_i, v_j} w_{i \to j}^{v_i, v_j}(z,\rho,t).$$
(4)

4. РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ И ИХ ОБСУЖДЕНИЕ

В рассматриваемой нами модели грозовое электрическое поле характеризуется тремя параметрами

Рис. 1. Схема расчета яркости флуоресценции в точке наблюдения (z, ρ)

 δ_{ext}, z_b, z_t (см. формулу (1)). Вычисления выполнены для $\delta_{ext} = 2$ и 3; $z_t = 16$ км. Значение z_b подбиралось таким образом, чтобы число длин усиления ЛРУЭ

$$\zeta_{ext} = \int_{D\{\delta(z) > 1.3\}} \frac{\nu_{re}(\delta(z)) \, dz}{v_{re}(\delta(z))}$$

было равно 11 (граничное значение по релятивистской обратной связи, соответствующий коэффициент усиления $e^{\zeta} \approx 10^4 - 10^5$ [21]). Здесь ν_{re} — частота генерации УЭ. Как и в работах [20, 24], точечный источник УЭ

$$S_{re}^{ext} = N_{re}^0 \delta_D(t) \delta_D(z - z_s) \delta_D(\rho)$$

выраженный через дельта-функцию Дирака δ_D , располагался в точке с координатами $(z_s, 0)$. Здесь z_s минимальная высота, на которой выполняется условие $\delta(E_{ext}(z_s)) = 1.3$. Число УЭ в источнике принято равным величине $N_{re}^0 = 5 \cdot 10^{11}$, с использованием которой при $\zeta_{ext} = 11$ и $z_t = 16$ км рассчитанные в работах [20,24] характеристики ЭМИ согласуются с наблюдавшимися NBPs.

Мгновенная яркость излучения J_{emis} в точке наблюдения (z, ρ) на больших расстояниях от эмитирующей точки, без учета поглощения и рассеяния излучения в атмосфере рассчитывается интегрированием величины w_{re} вдоль луча зрения (см. рис. 1):

$$J_{emis}(z,\rho,t) = 10^{-10} \operatorname{P}_{\Pi} \cdot \operatorname{M}^2 \cdot \operatorname{c} \times \\ \times \int_{y_{min}}^{y^{max}} w_{re}\left(z,\sqrt{y^2+\rho^2},t\right) dy, \quad (5)$$

где $y_{min} = -\sqrt{\rho_{sim}^2 - \rho^2}, y_{max} = \sqrt{\rho_{sim}^2 - \rho^2}, \rho_{sim} -$ радиальный размер области моделирования.

Таблица. Рассчитанные параметры свечения. Максимум яркости изображения J_{av}^{max} , энергия излучения E_{emis} , число фотонов N_{ph} , $\zeta_{ext} = 11$, $z_t = 16$ км

δ	z_b , km	J_{av}^{max} , кРл	$E_{emis},$ Дж	N_{ph}
2	11.7	78	53.3	$1.0\cdot 10^{20}$
3	13.8	159	60.5	$1.2\cdot 10^{20}$

Чтобы оценить возможность регистрации свечения, вычисляем яркость изображения на кадре телевизионной камеры, например, использованной в работе [32] для наблюдения оптических явлений, протекающих в мезосфере (спрайтов, эльфов). Для этого необходимо усреднить мгновенную яркость излучения J_{emis} по длительности кадра телекамеры: $T_{frame} = 17$ мс и учесть чувствительность камеры:

$$J_{av}(z,\rho) = \frac{K_s}{T_{frame}} \int_{0}^{t_{run}} J_{emis}(z,\rho,t) dt, \qquad (6)$$

где $K_s = 0.059$ — коэффициент чувствительности камеры [33], t_{run} — время моделирования.

Результаты расчетов светимости разряда приведены в таблице, где J_{av}^{max} — максимальное значение яркости изображения, N_{ph} и E_{emis} — число фотонов во вспышке и полная энергия вспышки, рассчитанные по формулам

$$N_{ph} = \int_{D_{sim}} \int_{0}^{t_{run}} w_{re}(z,\rho,t) dt dV,$$

$$E_{emis} = \int_{D_{sim}} \int_{0}^{t_{run}} \sum_{i \to j} \sum_{v_i,v_j} h\nu_{i \to j}^{v_i,v_j} \times$$

$$\times w_{i \to j}^{v_i,v_j}(z,\rho,t) dt dV,$$
(7)

 D_{sim} — область моделирования.

На рис. 2 иллюстрируется двумерное распределение яркости изображения свечения J_{av} для наиболее реалистичной конфигурации $\delta_{ext} = 2$ и $\zeta_{ext} = 11$. Видно, что излучение локализовано в верхней части области с полем на высоте около 16 км. Поперечный и продольный размеры наиболее яркой области приблизительно равны 500 м. Максимальная яркость излучения равна 78 кРл. Следовательно, излучение, генерируемое ЛРУЭ, может быть зарегистрировано с помощью камер, подобных камерам, использованным в работе [32], где регистрировалось свечение с яркостью 10–50 кРл.

Рис. 2. Распределение яркости изображения. $\delta_{ext}=2$, $\zeta_{ext}=11,\,z_b=11.7$ км, $z_t=16$ км

Рис. 3. Зависимость от времени яркости излучения. $\delta_{ext}=$ = 2, $\zeta_{ext}=$ 11, $z_b=$ 11.7 км, $z_t=$ 16 км

На рис. 3 для той же конфигурации приведена зависимость от времени максимальной яркости излучения в разряде J_{max} . Длительность излучения по уровню $0.1J_{max}$ составляет приблизительно 5 мкс, что существенно меньше длительности кадра 17 мкс. Таким образом, излучение ЛРУЭ даст изображение только на одном кадре, что затруднит регистрацию излучения. Другим фактором, затрудняющим регистрацию свечения, генерируемого ЛРУЭ, является рассеяние в атмосфере.

На рис. 4 иллюстрируется спектр флуоресценции. Видно, что доминирует синяя и ультрафиолетовая часть спектра. Как известно, излучение в

Рис. 4. Спектр излучения. $\delta_{ext}=2$, $\zeta_{ext}=11$, $z_b=11.7$ км, $z_t=16$ км

этой части спектра сильно рассеивается в атмосфере, что затрудняет его регистрацию с поверхности Земли. Обратим внимание на интересные результаты, полученные в рамках кампании STEPS (Severe Thunderstorm Electrification and Precipitation Study), проводившейся летом 2000 г. с целью наблюдения оптических явлений над грозовыми облаками [34]. Во время одного из тестов камерами с чувствительностью в диапазоне длин волн 350-890 нм наблюдалось развитие шторма, причем в течение 20 мин регистрировалось большое количество разнообразных оптических явлений. Среди них на поверхности конвективной ячейки зарегистрирована серия из 83 интенсивных вспышек света. Размер излучающей области оценивается величиной ~ 100 м [34]. Излучение не выходило за пределы одного кадра. Авторы работы [34] назвали данные вспышки «пикси» («pixies»). К сожалению, в работе отсутствуют данные о спектре и яркости свечения; поэтому однозначный вывод о том, что свечение связано с развитием ЛРУЭ, невозможен.

5. ЗАКЛЮЧЕНИЕ

На основе двумерной модели атмосферного разряда, развивающегося в режиме генерации лавин релятивистских убегающих электронов в самосогласованном электрическом поле без учета релятивистской обратной связи выполнены расчеты флуоресценции атмосферы, возбуждаемой электронами высоких энергий. Расчеты выполнены для условий, при которых параметры ЭМИ, вычисленные в работах [20, 24], близки к параметрам зарегистрированных узких биполярных импульсов NBPs. Рассчитаны эволюция в пространстве и времени интенсивности флуоресценции и ее спектр. Мгновенная яркость флуоресценции в максимуме импульса (см. рис. 3) в 19 раз больше мгновенной яркости в максимуме пространственного распределения свечения в работе [23] (рис. 4), ~ 1 ГРл, в момент максимума TGF. Энергия излучения E_{emis} в полосы $2PN_2$ $(C^3\Pi_u \rightarrow B^3\Pi_g), 1PN_2 (B^3\Pi_g \rightarrow A^3\Sigma_u^+)$ и $1NN_2^+$ $(B^2\Sigma_u \to X^2\Sigma_q^+)$ молекулы N₂ и иона N₂⁺ разряда, генерирующего TGF, в работе [23] оценивается величиной 40 Дж, причем основной вклад дает полоса $1NN_2^+$. Согласно данным таблицы, в нашем случае E_{emis} несущественно больше (в зависимости от δ в 1.3–1.5 раза), чем в [23], но в спектре доминирует вторая положительная система молекулы азота 2PN₂, что типично для разрядов в воздухе, в том числе развивающихся в режиме генерации убегающих электронов высоких энергий ([35], с. 170–171).

Длительность свечения на рис. 4 из [23], а следовательно, и самого разряда, генерирующего измеренную TGF, приблизительно равна 100 мкс, тогда как длительность NBP примерно 10–20 мкс; таким образом, разряд, развивающийся в режиме релятивистской обратной связи, не может отвечать за генерацию регистрируемых NBPs.

Хотя вывод работы [23] о том, что «... молниеподобные события, ответственные за TGFs, испускают относительно немного видимого света и, таким образом, являются принципиально темными», относится и к разрядам, генерирующим NBPs, нами показано, что флуоресценция, возбуждаемая ЛРУЭ, может регистрироваться с помощью камер, используемых для регистрации высотных оптических явлений над грозовыми облаками. Отмечается возможная связь между определенным классом оптических явлений, наблюдаемых на вершинах грозовых облаков, и излучением ЛРУЭ.

Авторы выражают глубокую благодарность коллабораторам от США в проектах МНТЦ № 490-1996 и № 1480-2000 R. А. Roussel-Dupre и Е. М. D. Symbalisty за многолетнее сотрудничество по атмосферному электричеству, продолжением которого является эта статья. Авторы благодарны С. Haldoupis и Т. Neubert, коллабораторам от ЕС в проекте МНТЦ № 3993-2009 в той же области, N. Crosby, S. Cummer, A. van Deursen, J. R. Dwyer, R. Roussel-Dupre, D. Smith, T. Torii, E. Williams за поддержку предложения по этому проекту.

Авторы благодарны рецензенту, чьи комментарии позволили существенно улучшить представление результатов работы.

ЛИТЕРАТУРА

- G. J. Fishman, P. N. Bhat, R. Mallozzi et al., Science 264, 1313 (1994).
- D. M. Smith, L. I. Lopez, R. P. Lin, and C. P. Barrington-Leigh, Science 307, 1085 (2005).
- M. S. Briggs, G. J. Fishman, V. Connaughton et al., J. Geophys. Res. 115, A07323, doi:10.1029/2009 JA015242 (2010).
- M. Tavani et al., Phys. Rev. Lett. 106, 018501, doi: 10.1103/Phys.RevLett.106.01851 (2011).
- M. S. Briggs et al., J. Geophys. Res. Space Phys. 118, doi:10.1002/jgra.50205 (2013).
- B. M. Hare, M. A. Uman, J. R. Dwyer et al., J. Geophys. Res. Atmos. **121**, 1 (2016), doi:10.1002/2015 JD024426.
- A. V. Gurevich, G. M. Milikh, and R. A. Roussel-Dupre, Phys. Lett. A 165, 463 (1992).
- U. S. Inan, S. C. Reising, G. J.Fishman, and J. M. Horack, Geophys. Res. Lett. 23, 1017 (1996).
- Л. П. Бабич, Е. Н. Донской, И. М. Куцык, ЖЭТФ 134, 65 (2008) [JETP 107, 49 (2008)].
- J. R. Dwyer and D. M. Smith, Geophys. Res. Lett. 32, L22804, doi:10.1029/2005GL023848 (2005).
- A. V. Gurevich and G. M. Milikh, Phys. Lett. A 262, 457, doi:10.1016/S0375-9601(99)00695-7 (1999).
- A. V. Gurevich and K. P. Zybin, Phys. Lett. A 237, 240, doi:10.1016/S0375-9601(97)00868-2 (1998).
- А. В. Гуревич, К. П. Зыбин, УФН 171, 1177 (2001)
 [A. V. Gurevich and K. P. Zybin, Phys. Usp. 44, 1119, doi:10.1070/PU2001v044n11ABEH000939 (2001)].
- A. V. Gurevich and K. P. Zybin, Phys. Lett. A **329**, 341, doi:10.1016/j.physleta.2004.06.094 (2004).
- A. V. Gurevich, Y. V. Medvedev, and K. P. Zybin, Phys. Lett. A **321**, 179, doi:10.1016/j.physleta.2003. 10.062 (2004).
- 16. J. R. Dwyer and L. P. Babich, J. Geophys. Res. 116, A0931, doi:10.1029/2011JA016494 (2011).
- J. C. Willett, J. C. Bailey, and E. P. Krider, J. Geophys. Res. 94(D13), 16255 (1989).
- 18. D. A. Smith, X. M. Shao, D. N. Holden et al., J. Geophys. Res. 104, 4189 (1999).
- 19. A. Nag, V. A. Rakov, D. Tsalikis, and J. A. Cramer, J. Geophys. Res. 115, D14115, doi:10.1029/2009 JD012957 (2010).

- Е. И. Бочков, Л. П. Бабич, И. М. Куцык, ЖЭТФ 144, 205 (2013) [JETP 117, 177 (2013)].
- 21. J. R. Dwyer, Geophys. Res. Lett. 30, 2055, doi: 10.1029/2003GL017781 (2003).
- 22. L. P. Babich, E. N. Donskoy, I. M. Kutsyk, and R. A. Roussel-Dupré, Geophys. Res. Lett. 32, 1, doi: 10.1029/2004GL021744 (2005).
- 23. J. R. Dwyer, N. Liu, and H. K. Rassoul, Geophys. Res. Lett. 40, 1 (2013), doi:10.1002/grl.50742.
- 24. Л. П. Бабич, Е. И. Бочков, И. М. Куцык, ДАН
 462, 471 (2015) [Doklady Earth Sci. 462, Part 2, 596 (2015), doi:10.1134/S1028334X15060021].
- 25. R. A. Roussel-Dupre, A. V. Gurevich, T. Tunnel, and G. M. Milikh, *Kinetic Theory of Runaway* Air Breakdown and the Implications for Lightning Initiation, Los Alamos Nat. Lab., Los Alamos (1993), Rep. LA-12601.
- 26. H. Bethe and U. Ashkin, in *Experimental Nuclear Physics*, ed. by E. Segre, Wiley, New York (1953); Изд-во иностр. лит., Москва (1955), Vol. 1, Part 2.
- 27. Л. П. Бабич, Е. Н. Донской, Р. И. Илькаев, И. М. Куцык, Р. А. Рюссель-Дюпре, Физика плаз-

мы **30**, 666 (2004) [Plasma Physics Rep. **30**, 616 (2004)].

- Л. П. Бабич, Е. И. Бочков, И. М. Куцык, ЖЭТФ 139, 1028 (2011) [JETP 112, 902 (2011)].
- 29. L. P. Babich, E. I. Bochkov, J. R. Dwyer, and I. M. Kutsyk, J. Geophys. Res. 117, A09316, doi: 10.1029/2012JA017799 (2012).
- **30**. Л. П. Бабич, Е. И. Бочков, ЖЭТФ **139**, 568 (2011) [JETP **112**, 494 (2011)].
- 31. А. Ю. Кудрявцев, Дисс. ... канд. физ.-матем. наук, РФЯЦ–ВНИИЭФ, Саров (2005).
- 32. D. D. Sentman and E. M. Wescott, Geophys. Res. Lett. 20, 2857 (1993).
- 33. Е. И. Бочков, Л. П. Бабич, И. М. Куцык, ЖЭТФ 145, 540 (2014) [JETP 118, 472 (2014)].
- 34. W. A. Lyons et al., Bull. Amer. Meteor. Soc. 84(4), 445 (2003).
- 35. L. P. Babich, High-energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment and Natural Phenomena, Futurepast Inc., Arlington, Virginia, USA (2003).