ДЕКОРИРОВАНИЕ УГЛЕРОДНЫХ НАНОТРУБОК ФУЛЛЕРЕНАМИ С₆₀

В. А. Демин^{а*}, В. Д. Бланк^{b,c,d}, А. Р. Караева^b, Б. А. Кульницкий^{b,d},

В. З. Мордкович^{b,d}, Ю. Н. Пархоменко^c, И. А. Пережогин^{b,e,d}, М. Ю. Попов^{b,c,d},

Е. А. Скрылева^с, С. А. Урванов^b, Л. А. Чернозатонский^{a,f}

^а Институт биохимической физики им. Н. М. Эмануэля Российской академии наук 119334, Москва, Россия

^b Технологический институт сверхтвердых и новых углеродных материалов 142190, Троицк, Москва, Россия

 c Национальный исследовательский технологический университет «МИСиС» $$119049,\,\, Москва,\, Россия$

^d Московский физико-технический институт (государственный университет) 141700, Долгопрудный, Московская обл., Россия

^е Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

^f Российский экономический университет им. Г. В. Плеханова 117997, Москва, Россия

Поступила в редакцию 25 февраля 2016 г.

Новый полностью углеродный нанокомпозит был получен путем погружения углеродных нанотрубок в раствор фуллерена в сероуглероде. Исследования ТЕМ и РФЭС показывают наличие плотного слоя молекул фуллерена на внешней поверхности нанотрубки. После длительного воздействия электронным пучком фуллерены перераспределяются на поверхности нанотрубок, что указывает на молекулярную связь нанотрубки и фуллеренов. Теоретические расчеты показывают, что образование фуллереновой оболочки начинается с присоединения одной молекулы C_{60} к дефекту на поверхности нанотрубки.

DOI: 10.7868/S0044451016120099

1. ВВЕДЕНИЕ

Фуллерены и углеродные нанотрубки (УНТ) первые полученные углеродные наноструктуры [1,2] — представляют собой аллотропные модификации углерода с уникальными свойствами. Существует большое разнообразие гибридов на основе нанотрубок и фуллеренов, такие как эндоэдральные «пиподы» [3], экзоэдральные ковалентные нанопочки [4], нековалентные соединения фуллерен–графит [5], функционализированные нанотрубки–фуллерен [6, 7]. Гибриды УНТ-фуллерен интересны для применения в качестве органических солнечных элементов [8], поскольку, с одной стороны, фуллерены являются акцепторами электронов и хорошо возбуждаются светом, а с другой, нанотрубки одномерная структура, представляющая собой идеальный электронный или дырочный проводник в активном слое солнечного элемента. Таким образом, комбинация УНТ и фуллеренов является привлекательной для создания устройств фотовольтаики на их основе.

Одно из свойств фуллеренов — способность образовывать молекулярные структуры: ГЦК-кристалл фуллерит, гексагональный слой толщиной один фуллерен на подложках Cu(110) и Ni(110) [9], фуллереновые кластеры на графене [10]. Ранее были предложены и теоретически рассмотрены модели УНТ внутри фуллереновой шубы — плотноупакованного слоя из C₆₀ [11].

^{*} E-mail: victordemin88@gmail.com

В данной работе приводятся результаты синтеза и теоретического обоснования наблюдаемых фактов «посадки» слоя фуллеренов на многослойных УНТ.

2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Синтез структуры «фуллереновый слой» на углеродной нанотрубке

Многослойные УНТ с диаметром в пределах от 4 до 30 нм были синтезированы из смеси углеродсодержащих прекурсоров (этилен, этанол) в присутствии железоорганического катализатора при температуре 1150 °C по методике, описанной в работах [12, 13]. Проводилась предварительная химическая обработка этих нанотрубок концентрированной азотной кислотой (65 % HNO₃). При этом происходит окисление дефектной поверхности и концевых участков УНТ до кислородсодержащих групп (в основном карбоксильных, гидроксильных, карбонильных и лактонных групп) [14–16]. Также в результате окисления закрытые концы нанотрубок разрушаются — они оказываются открытыми, что приводит к удалению железных частиц, содержащихся в них [17].

Нанесение фуллеренов на УНТ осуществлялось следующим образом. Нанотрубки помещались в насыщенный раствор фуллеренов C_{60} (чистота исходного порошка 99.5%) в сероуглероде [18] с последующей выдержкой в течение суток при температуре 25 °С. Далее проводилась сушка полученной смеси. Остатки растворителя были удалены в потоке аргона при температуре 100 °С. Все операции (включая приготовление насыщенного раствора фуллерена) проводились в защитной атмосфере аргона.

Продукты синтеза были нанесены на покрытую углеродом подложку для исследований просвечивающим микроскопом JEM-2010.

2.2. Рентгеновская фотоэлектронная спектроскопия (РФЭС)

Исследования проводились на рентгеновском фотоэлектронном спектрометре PHI 5500 ESCA фирмы Physical Electronics. Для возбуждения фотоэмиссии использовалось монохроматизированное K_{α} -излучение Al ($h\nu = 1486.6$ эB).

Исследованы порошкообразные образцы УНТ после обработки в азотной кислоте (исходные УНТ) и образцы, полученные пропиткой исходных УНТ в растворе C_{60} в сероуглероде (УНТ после пропитки

 $\rm C_{60}$). Порошки нанотрубок вдавливались в индиевую фольгу, получались сплошные слои площадью около 30 мм². Измерения проводились при давлении остаточных газов в спектрометре не более 7 \times \times 10^{-8} Topp, диаметр области анализа составлял 600 мкм.

Элементный состав поверхности образцов определялся по обзорным спектрам, снятым при энергии пропускания анализатора 93.9 эВ и размере шага 0.8 эВ. Спектры высокого разрешения снимались при энергии пропускания анализатора 11.75 эВ и размере шага 0.1 эВ. Энергетическое разрешение, определенное как полная ширина по полувысоте пика (ПШПВ) С1*s* для исходных УНТ, составило 0.65 эВ. Аппроксимация спектров ВР выполнялась нелинейным методом наименьших квадратов с использованием функции Гаусса – Лоренца с добавлением асимметрии.

Энергия связи, E_b , спектра C1s при калибровке шкалы E_b по спектрам Au4f7 (83.96 эВ) и Cu2p3 (932.62 эВ) составила 284.5 эВ.

2.3. Теоретическое моделирование

Программный пакет LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [19] был использован для расчетов методом молекулярной механики в периодических граничных условиях. Был выбран потенциал AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order) [20], включающий внутримолекулярный, межмолекулярный, а также торсионный потенциалы. Этот метод успешно применяется для расчета структур с большой расчетной ячейкой (в данной статье до 5000 атомов). Оптимизация геометрии проводилась до тех пор, пока силы, действующие на каждый атом, не становились менее 10⁻⁴ эB/Å.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. ТЕМ-исследование

Характерное ТЕМ-изображение с фокусировкой электронного пучка на поверхности многостенной УНТ, покрытой фуллеренами, приведено на рис. 1. На вставке 1*a* виден фрагмент нанотрубки со сферическими молекулами диаметром 1 нм, которые плотно располагаются на ее поверхности. Там же изображена идеальная модель трех фуллереновых колец (слоя из плотно упакованных молекул C₆₀), расположенных на двустенной нанотрубке диамет-

Рис. 1. ТЕМ-изображение нанотрубки диаметром около 4 нм, покрытой слоем фуллеренов, и модель такой структуры на вставках a, b

20 нм

Рис. 3. *а*) ТЕМ-изображение двух УНТ, покрытых несколькими слоями фуллеренов; *б*,*в* — увеличенные фрагменты, выделенные на рис. *а*; на рис. *б* показан внешний слой покрытия, здесь верхняя окружность выделяет группу отдельных фуллеренов, нижняя — ряды фуллеренов шириной около 1 нм; на рис. *в* показана непокрытая часть нанотрубки

Рис. 2. ТЕМ-изображение двустенной УНТ, частично покрытой фуллеренами. На вставке показана увеличенная часть нанотрубки, черными стрелками указаны молекулы диаметром около 1 нм

ром $D \approx 4$ нм. На вставке 16 показан вид сбоку модельной структуры.

ТЕМ-изображение (рис. 2) показывает другой образец — двустенная нанотрубка, частично покрытая молекулами С₆₀. Ряд из упорядоченных молекул диаметром около 1 нм виден на вставке рис. 2. Черными стрелками показаны отдельные фуллерены из этого ряда.

На ТЕМ-микрографии рис. 3*е* фокусировкой электронного пучка на поверхности показано, что возможно образование структур с нанотрубкой, покрытой несколькими слоями фуллеренов. По-видимому, на левом крае фрагмента трубки (рис. 36) располагаются три слоя фуллеренов, верхний из которых неполон. Рисунок 36 показывает ряды молекул толщиной около 1 нм (верхняя окружность демонстрирует отдельные фуллереновые ряды, которые показаны внутри окружности). На рис. 36 изображена нанотрубка с неравномерным фуллереновым покрытием, состоящим из одного или двух слоев молекул. Диаметр структуры равен 7.9 нм, диаметр участка нанотрубки без покрытия составляет 3.1 нм, следовательно, толщина покрытия в среднем равна 1.4 нм, что говорит о том, что оно состоит из двух-трех слоев молекул.

Таким образом, TEM-исследование показало наличие структур, состоящих из многостенных УНТ, покрытых одним или несколькими слоями фуллеренов.

3.2. РФЭС-исследование

В обзорных РФЭС-спектрах образцов УНТ обнаружены линии кислорода, рис. 4*a*. Концентрации кислорода, рассчитанные методом факторов относительной элементной чувствительности, составили 4.5 ат. % и 5.5 ат. % соответственно в исходных УНТ и после пропитки С₆₀. Обычно на поверхности многослойных УНТ содержание кислорода не превышает 1.5 ат. %. Довольно высокое содержание кислорода, очевидно, связано с обработкой в кислоте HNO₃. Аппроксимация спектров O1*s* выявила два пика с

Рис. 4. Обзорные спектры (*a*,*b*), C1*s*-спектры (*b*,*c*) УНТ-образцов до (*a*, *b*) и после (*b*,*c*) насыщения молекулами C₆₀; на вставке — C1*s*-спектр конденсированных C₆₀-фуллеренов

энергиями связи 531.8 эВ и 533.2 эВ соответственно от двойных и одинарных связей кислорода с углеродом. Концентрация серы в образце УНТ после пропитки C₆₀ не превышает 0.1 ат. %, что соответствует уровню обнаружения серы методом РФЭС.

Спектр углерода C1s образца исходного УНТ представлен одним асимметричным пиком при 284.5 эВ с ПШПВ равным 0.65 эВ и его π -сателлитом при 290.5 эВ, рис. 4e. Связи с кислородом можно видеть как слабые пики при 286.7 эВ (одинарные) и 288.5 эВ (двойные). Спектр углерода C1s образца УНТ после пропитки C₆₀ стал заметно пире, рис. 4z. Основная часть спектра состоит уже из двух пиков примерно равной интенсивности: из узкого асимметричного пика 1 ($E_b = 284.5$ эВ, ПШПВ = 0.65 эВ) и широкого симметричного пика 2 ($E_b = 284.65$ эВ, ПШПВ = 1.35 эВ). Дополняют спектр C1s еще два пика меньшей интенсивности: пик 3 ($E_b = 285.4$ эВ) и пик 4 ($E_b = 286.7$ эВ) с относительными интенсивностями соответственно 14% и 8%. Часть спектра, связанная с потерями на возбуждение π - π *-переходов и π -плазмона, в данном образце лучше описывается не одним пиком, как в случае первого образца, а тремя пиками P1, P2, P3.

Симметричная форма и ширина пика 2, как и мультиплетность π -сателлита, являются характерными признаками конденсированного фуллерена C_{60} , спектр которого представлен на вставке рис. 4*г*. Наличие нескольких пиков в π -сателлите C_{60} , обусловлено угловым квантованием орбиталей вокруг центра сферической молекулы [21].

Пик 3 (285.4 эВ) также может быть обусловлен слоем C_{60} , который не имеет прямого контакта с проводящей поверхностью нанотрубки, например, второй молекулярный слой. В этом слое при сборе фотоэмиссионных спектров без нейтрализации заряда возникает дифференциальная зарядка, приводящая к положительному сдвигу данного пика относительно пика 2. Подобным образом можно объяснить и пик 4 (286.7 эВ) — наличием третьего молекулярного слоя C₆₀, одинарные связи с кислородом также дают вклад в этот пик.

Таким образом, методом РФЭС показано, что пропитка C_{60} приводит к появлению на поверхности УНТ фуллеренового покрытия, которое может быть как однослойным, так и многослойным.

3.3. Продолжительное воздействие электронным пучком

Нас интересовал вопрос, как изменится структура при длительном (примерно 10-15 мин) воздействии сфокусированного электронного пучка. Выше (на основе ТЕМ-микрографий на рис. 1-3) мы полагали, что фуллерены С₆₀ молекулярно связываются с поверхностью УНТ. С целью более тщательного подтверждения было проведено наблюдение одного и того же фрагмента структуры до и после воздействия электронного пучка. На микрофотографиях рис. 5а, б, полученных на начальном этапе эксперимента, видно, что на УНТ располагаются отдельные кластеры фуллеренов (отметки 1 и 2 на рис. 56), а на другой части УНТ — фрагмент слоя из молекул С₆₀ (отметка 3, рис. 56). После длительного воздействия пучка структура претерпела изменения (рис. 56, г). Как и следовало ожидать [22], сильное воздействие электронного пучка привело к разрушению стенок УНТ (рис. 5г). Оно же привело к изменению и фуллеренового покрытия, показанного на рис. 56. Так, на месте 1 (рис. 56) был кластер — остался один фуллерен, возможно в виде «нанопочки» [4] (1', рис. 5г). На обрыве верхнего слоя УНТ, где наблюдалось аморфное образование 2, образовался кластер из C_{60} (2', рис. 5*г*). Скорее всего, фуллерены мигрировали на место 2', а аморфная составляющая испарилась. На нижней части УНТ (3, рис. 5б) тоже произошло преобразование. Слой фуллеренов вместе с внешней поверхностью УНТ деформировался в разрушенный слой с отдельными фуллеренами (3', puc. 5r).

Данный эксперимент показал, что слои состоят из молекул C₆₀, которые двигаются по поверхности трубы под воздействием электронного пучка. Это говорит об их молекулярной связи с нанотрубкой.

3.4. Теоретическое моделирование

Проведенные эксперименты показывают, что молекулярно присоединенные к поверхности фулле-

Рис. 5. ТЕМ-микрографии покрытой фуллеренами нанотрубки до (a, δ) и после (e, e) продолжительного воздействия электронным пучком; δ и e являются выделенными прямоугольниками фрагментами соответственно a и δ

рены могут двигаться вдоль трубы, а также формировать кластеры и плотноупакованные слои на ней. Известно, что наиболее распространенным дефектом нанотрубок является дефект Стоун – Валеса [23]. Мы считаем, что фуллереновый слой начинает свой рост от прикрепленного к такому дефекту фуллерена (рис. 6a). Выгодность подобного молекулярного прикрепления была показана ранее в работе [11]. Затем мигрирующие по поверхности УНТ фуллерены последовательно присоединяются к первому, образуя кластер (рис. 66).

Наименышая по диаметру из всех полученных структура состояла из нанотрубки диаметром $D \approx \approx 4$ нм и покрывающих ее 1–2 слоя фуллеренов (рис. 1), поэтому в данном разделе рассматривается двустенная нанотрубка (25,25)@(30,30), внешняя из которых имеет диаметр $D_o = 4.0$ нм, а внутренняя — $D_i = 3.4$ нм (нижний индекс от слов «outer» и «inner»), покрытая одним слоем фуллеренов.

Рассмотрим последовательное присоединение фуллеренов к поверхности углеродной нанотрубки. Полученные в эксперименте углеродные нанотрубки имеют малую плотность дефектов, поэтому моделируем УНТ-фуллереновую структуру с одним

Рис. 6. (В цвете онлайн) Фрагмент нанотрубки (25,25)@(30,30), *a*) с фуллереном (фиолетовый), прикрепленным к дефекту Стоун – Валеса (пара гептагонов и пара пентагонов, отмеченные красным цветом) и шесть фуллеренов, случайно расположенных на поверхности нанотрубки, *б*) с кластером из семи фуллеренов (с центральным, присоединенным к дефекту), *в*) с полностью покрытой слоем фуллеренов поверхностью

дефектом Стоун – Валеса на 20 элементарных ячеек нанотрубки (48.5 Å) УНТ (25,25)@(30,30). Рассмотрим поворот одной из С–С-связей в гексагонном цикле на угол $\pi/2$, так что связь становится параллельной оси нанотрубки и образуется (5775)-дефект Стоун – Валеса. Для сравнения смоделируем две ситуации роста кластера из молекул С₆₀: 1) когда он начинает расти от дефекта и 2) когда он образуется на ровной поверхности трубки. Покажем, что в рассматриваемом случае 1) присоединение к дефекту УНТ энергетически выгоднее, чем к бездефектной части.

Введение дефекта Стоун–Валеса в УНТ приводит к появлению вогнутого участка и к увеличению полной энергии суперячейки, состоящей из 4400 атомов, на 5.2 эВ. Оценим энергию присоединения фуллеренов E_b по следующей формуле:

$$E_b = (E_{tot} - NE_{C_{60}} - E_{CNT})/N,$$

где E_{tot} — полная энергия суперячейки, N — число фуллеренов на участке нанотрубной суперячейки, $E_{C_{60}}$ — полная энергия изолированного фуллерена, E_{CNT} — полная энергия УНТ с дефектом.

Если фуллерен будет помещен на «чистую» сторону УНТ, то $E_b = -0.68$ эВ/атом. Перемещение фуллерена с гладкой поверхности на дефект уменьшает энергию до $E_b = -0.8$ эВ/атом. Уменьшение связано с тем, что область контакта фуллерен–УНТ увеличивается из-за вогнутости дефекта. Дальнейшее присоединение шести фуллеренов еще уменьшает энергию, но разница энергии связи между случаями присоединения к дефекту и «чистой» стороны УНТ остается в пределах 0.03–0.05 эВ

Рис. 7. Зависимость энергии связи E_b от числа фуллеренов N, находящихся на суперячейке нанотрубки. Линия 1 — фуллереновый кластер прикрепляется к дефекту, линия 2 — кластер расположен на бездефектной поверхности нанотрубки. Энергия суперячейки нанотрубки (25,25)@(30,30) с одним дефектом E_{tot} взята за нуль

(рис. 7). Данные значения соответствуют температурам 80–300 °С, следовательно, при температуре 25 °С, при которой проводилось покрытие нанотрубок молекулами С₆₀, энергетически более выгодно образование фуллереновых кластеров на дефекте Стоун–Валеса, а не на бездефектных участках УНТ.

Таким образом, расчет энергетических характеристик подтверждает возможность формирования фуллеренового слоя на поверхности нанотрубки, обнаруженного в эксперименте (рис. 1–3).

4. ЗАКЛЮЧЕНИЕ

Были получены новые полностью углеродные наноструктуры из многостенных углеродных нанотрубок, декорированных фуллеренами. ТЕМ- и РФЭС-исследования показывают, что фуллерены образуют оболочку и покрывают УНТ одним или несколькими плотноупакованными слоями. Моделирование показало, что образование оболочки из C₆₀ энергетически выгодно и происходит последовательно — сначала один фуллерен прикрепляется к дефекту на нанотрубке (рассмотрен дефект Стоун-Валеса), а далее мигрирующим по поверхности УНТ фуллеренам выгодно собраться в кластеры вокруг первой молекулы.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проект 14.577.21.0094) (уникальный идентификатор прикладных научных исследований RFMEFI57714X0094). Работа выполнена на оборудовании Объединенного исследовательского центра «Материаловедение и металлургия». Работа двух соавторов (В. А. Д. и Л. А. Ч.) выполнена в рамках Европейской программы F7 (проект 318617-FAEMCAR).

ЛИТЕРАТУРА

- H. W. Kroto, J. R. Heath, S. C. O'Brien et al., Nature 318, 162 (1985).
- Carbon Nanotubes: Synthesis, Structure, Properties and Applications Topics, ed. by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, in Applied Physics 80, Springer-Verlag, Berlin, Heidelberg (2001).
- B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature 396, 323 (1998).
- A. G. Nasibulin, P. V. Pikhitsa, H. Jiang et al., Nature Nanotechnology 2, 156 (2007).
- Ch. Girard, Ph. Lambin, A. Dereux et al., Phys. Rev. B 49, 11425 (1994).
- T. Umeyama, N. Tezuka, M. Fujita et al., Chem. Eur. J. 14, 4875 (2008).

- N. Tezuka, T. Umeyama, S. Seki et al., J. Phys. Chem. C 114, 3235 (2010).
- C. Li, Y. Chen, Y. Wang et al., J. Mater. Chem. 17, 2406 (2007).
- P. W. Murray, M. Ø. Pedersen, E. Lægsgaard et al., Phys. Rev. B 55, 9360 (1997).
- A. Hashimoto, H. Terasaki, A. Yamamoto et al., Diamond & Related Materials 18, 388 (2009).
- Л. А. Чернозатонский, А. А. Артюх, В. А. Демин, Письма в ЖЭТФ 97, 119 (2013).
- A. R. Karaeva, M. A. Khaskov, E. B. Mitberg et al., Fullerenes, Nanotubes and Carbon Nanostructures 20, 411 (2012).
- 13. В. З. Мордкович, А. Р. Караева, М. А. Хасков и др., Способ получения длинных углеродных нанотрубок, Патент РФ № 2497752 от 10.11.2013, опубл. Бюл. № 31.
- V. Esumi, A. Ishigami, A. Nakajimaet et al., Carbon 34, 279 (1996).
- 15. B. C. Satishkumar, A. Govindaraj, J. Mofokeng et al., J. Phys. 29, 4925 (1996).
- V. Datsyuk, M. Kalyva, K. Papagelis et al., Carbon 46, 833 (2008).
- 17. А. В. Елецкий, УФН 167, 9945 (1997).
- 18. K. N. Semenov, N. A. Charykov, V. A. Keskinov et al., J. Chem. Ens. Data 55, 13 (2010).
- 19. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
- 20. S. J. Stuart, A. B. Tutein, J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).
- D. M. Poirier, J. H. Weaver, K. Kikuchi et al., Z. Phys. D: Atoms, Molecules and Clusters 26, 79 (1993).
- P. M. Ajayan, C. Colliex, P. Bernier et al., Microsc. Microanal. Microstruct. 4, 501 (1993).
- 23. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).