ВЯЗКОСТНЫЕ И АКУСТИЧЕСКИЕ СВОЙСТВА РАСПЛАВОВ AlCu

 $P.\ M.\ Xуснутдинов\ ^{a,b^*},\ A.\ B.\ Мокшин\ ^{a,b^{**}},\ C.\ \Gamma.\ Меньшикова\ ^c,$ $A.\ Л.\ Бельтюков\ ^c,\ B.\ И.\ Ладьянов\ ^c$

^а Казанский (Приволжский) Федеральный университет 420008, Казань, Россия

^b Институт теоретической физики им. Л. Д. Ландау Российской академии наук 142432, Черноголовка, Московская обл., Россия

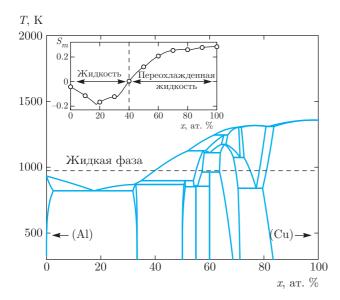
 c Физико-технический институт Уральского отделения Российской академии наук 426000, Ижевск, Россия

Поступила в редакцию 26 сентября 2015 г.

Моделирование атомарной динамики бинарной системы $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ выполнено при температуре T= $=973~{
m K}$ и давлении $p=1.0~{
m бар}$ и различных концентрациях x атомов меди. Такие условия (температура, давление) позволяют охватить равновесную жидкую фазу ${
m Al}_{100-x}{
m Cu}_x$ при концентрациях меди 0% < x < 40%, а также переохлажденный расплав в концентрационной области 40% < x < 100%. Рассчитанные спектральные плотности временных корреляционных функций продольного, $C_L(k,\omega)$, и поперечного, $C_T(k,\omega)$, потоков в расплаве ${
m Al}_{100-x}{
m Cu}_x$ при температуре T=973 K обнаруживают распространяющиеся коллективные возбуждения продольной и поперечной поляризаций в широкой области значений волновых чисел. Показано, что максимальное значение скорости звука на концентрационной зависимости, $v_L(x)$, наблюдается для случая равновесного расплава при концентрациях атомов меди $x=10\pm5\,\%$, в то время как переохлажденный расплав ${
m Al}_{100-x}{
m Cu}_x$, насыщенный атомами меди $(x \geq 40\,\%)$, характеризуется минимальными значениями скорости звука. Установлено, что в случае переохлажденного расплава концентрационная зависимость кинематической вязкости $\nu(x)$ интерполируется линейной зависимостью, а в случае равновесного расплава при $x < 40\,\%$ наблюдается отклонение от линейной зависимости. При этом в области низких концентраций меди ($x < 20\,\%$) наблюдается незначительное «плечо» на зависимости $\nu(x)$, наличие которого подтверждается полученными экспериментальными данными. Появление этого плеча обусловлено особенностями в концентрационной зависимости плотности $\rho(x)$.

DOI: 10.7868/S0044451016050084

1. ВВЕДЕНИЕ


Алюминий-содержащие сплавы меди (дуралюмины и алюминиевые сплавы, основным компонентом которых является медь — алюминиевые бронзы) из-за своих уникальных физико-химических свойств находят широкое применение в машиностроении и авиапромышленности [1]. Так, алюминевомедные сплавы помимо легкости и прочности характеризуются пластичностью и высокой коррозионной стойкостью. При этом их физические свойства (тепло-

проводность, вязкость, электрическое сопротивление, магнитная восприимчивость и т. д.) определяются, главным образом, соотношением концентраций компонентов — атомов Al и Cu [2–5].

Бинарный алюминиевый сплав $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ характеризуется сложной фазовой диаграммой: областью существования расплава для температур $T \geq 820~\mathrm{K}$ (при давлении p=1.0 бар и концентрации атомов меди $x\approx 17.5\,\%$) и протяженной областью, включающей различные кристаллические фазы (см. фазовую диаграмму расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ на рис. 1). Как было показано в работах [5–7], алюминийсодержащие сплавы характеризуются высокой стеклообразующей способностью. Одной из наиболее важных характеристик, определяющих стеклообра-

^{*} E-mail: khrm@mail.ru

^{**} E-mail: anatolii.mokshin@mail.ru

Рис. 1. Фазовая диаграмма системы алюминий—медь $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ [15, 16]. Штриховой линией отмечена изотерма—изобара (T=973 K, p=1.0 бар), на которой рассматривается система. На вставке — зависимость параметра $S_m=(T_m-T)/T_m$ от концентрации x атомов меди

зующую способность вещества, является коэффициент вязкости [8]. Так, в работе [9] из экспериментальных результатов для температурной зависимости коэффициента вязкости переохлажденного расплава $Al_{80}Cu_{20}$ обнаруживались максимальные значения вязкости при $T=1053~{\rm K}$ и $T=1123~{\rm K}$. С другой стороны, на наличие экстремумов на изотермах вязкости в расплаве алюминий—медь Cu_3Al указывалось в работах [10,11]. Появление этих особенностей предположительно связывалось с наличием «квазикристаллических микрогруппировок» в жидкой фазе.

Концентрационная зависимость сдвиговой вязкости $\eta(x)$ расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при температуре Т = 1500 К экспериментально исследовалась в работе [12]. Было установлено, что на изотерме T= $= 1500 \; \mathrm{K}$ при концентрации атомов меди $x \approx$ $\approx 70\,\%$ наблюдается максимум вязкости. Объяснение данной особенности зависимости $\eta(x)$ было дано в рамках феноменологической модели, учитывающей энтальпию смешения ΔH_{mix} , коэффициент вязкости и энергию активации чистых расплавов Al и Cu. В работе [13] были исследованы изотермы кинематической вязкости ν расплава $\mathrm{Cu}_{100-x}\mathrm{Al}_x$ для широкой области температур между ликвидусом и T=1723 К. На концентрационных зависимостях $\nu(x)$ были обнаружены максимумы вблизи стехиометрической концентрации CuAl₃ и состава $Al_{30}Cu_{70}$, а также ветвление температурных зависимостей кинематической вязкости $\nu(T)$, полученных при нагреве и последующем охлаждении, — так называемый гистерезис вязкости.

Таким образом, к настоящему времени имеются противоречивые экспериментальные сведения, указывающие на особенности вязкости расплавов AlCu. При этом отсутствует общее понимание механизмов, обусловливающих эти особенности. В настоящей работе было выполнено моделирование атомарной динамики бинарной системы $Al_{100-x}Cu_x$ при различных концентрациях x атомов меди при температуре T = 973 K и давлении p = 1.0 бар. Соответствующая изотерма-изобара представлена на фазовой диаграмме на рис. 1 штриховой линией. На вставке к рисунку показана зависимость параметра $S_m = (T_m - T)/T_m$ от концентрации атомов меди xв системе $\mathrm{Al}_{100-x}\mathrm{Cu}_x$. Безразмерный параметр S_m характеризует относительную удаленность состояния системы от состояния плавления с температурой T_m . Так, $S_m = 0$ при температуре плавления Тт. В случае равновесного расплава при температурах, превышающих температуру плавления T_m , имеем $S_m < 0$, в то время как при $T < T_m$ параметр принимает положительные значения, $S_m > 0$. В случае переохлажденной жидкости (расплава) при T< $< T_m$ параметр отождествляется с известной величиной — уровнем переохлаждения [14].

Для выбранных состояний с $T=973~{\rm K}$ и p=1.0 бар при концентрациях меди $x<40\,\%$ рассматривались равновесные расплавы. Как видно из фазовой диаграммы, представленной на рис. 1, при концентрациях меди $x\geq40\,\%$ и заданных температуре и давлении равновесные состояния системы связываются с кристаллическими фазами. Поэтому для этой области концентраций ($x\geq40\,\%$) рассматривались образцы, соответствующие переохлажденным расплавам. Для всей исследуемой области значений концентраций были рассчитаны значения вязкости, а также спектральные плотности временных корреляционных функций продольного и поперечного потоков при различных значениях волновых чисел.

2. ДЕТАЛИ МОДЕЛИРОВАНИЯ

Моделирование атомарной динамики металлического расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ выполнялось при температуре T=973 К и внешнем давлении p=1.0 бар. Исследуемая система состояла из N=4000 атомов, расположенных в кубической

ячейке с периодическими граничными условиями. Взаимодействие между атомами осуществлялось посредством потенциала «погруженного атома» (ЕАМ-потенциала) [17], разработанного 1) для бинарного расплава AlCu. Так, в соответствии с работой [17], потенциальная энергия i-го атома для расплава AlCu может быть выражена соотношением

$$U_i = F_\alpha \left(\sum_{j \neq i} \rho_\beta(r_{ij}) \right) + \frac{1}{2} \sum_{j \neq i} \phi_{\alpha\beta}(r_{ij}). \tag{1}$$

Здесь $\phi_{\alpha\beta}(r_{ij})$ — короткодействующий парный потенциал межатомного взаимодействия, $F(\rho)$ — потенциал «погружения», учитывающий многочастичные взаимодействия через эффективную электронную плотность ρ_i i-го атома. Индексами « α » и « β » обозначены типы элементов, входящих в состав металлического сплава, $\alpha, \beta \in \{Al, Cu\}$.

Система $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ была получена быстрым охлаждением равновесного расплава с температурой T=3000 К. Скорость охлаждения системы составила $dT/dt=10^{12}$ К/с. Интегрирование уравнений движения атомов выполнялось с помощью алгоритма Верле в скоростной форме с временным шагом $\delta t=1.0$ фс [18,19]. Для приведения системы в состояние термодинамического равновесия программой было выполнено $4.5\cdot 10^6$ временных шагов в NpT-ансамбле и $5\cdot 10^6$ шагов в NVT-ансамбле для вычисления временных и спектральных характеристик.

3. ОПИСАНИЕ ЭКСПЕРИМЕНТА

Измерения кинематической вязкости ν расплавов осуществлялись методом крутильных колебаний на автоматизированной установке [20]. Измерения проводились в защитной атмосфере гелия в цилиндрических тиглях из $\mathrm{Al_2O_3}$ с крышкой на верхней границе расплава (внутри тигля). Крышка в ходе измерений выполняла роль второй торцевой поверхности трения [21]. Температурные зависимости вязкости получали в режимах нагрева и последующего охлаждения. Перед началом измерений на каждой температуре проводилась изотермическая выдержка в течение 10 мин. Температуру расплава определяли с точностью ± 5 К при помощи вольфрамрениевой термопары, которая находилась под дном тигля. Показания термопары были откалиброваны

по температурам плавления чистых металлов (Al, Cu, Ni, Co, Fe).

При расчете вязкости с помощью численных методов решалось уравнение [20,22]

$$f(\nu) = \operatorname{Re} \mathcal{L} + \frac{\delta}{2\pi} \operatorname{Im} \mathcal{L} - 2I\left(\frac{\delta}{\tau} - \frac{\delta_0}{\tau_0}\right) = 0,$$
 (2)

где I — момент инерции подвесной системы, δ и τ $(\delta_0$ и $\tau_0)$ — декремент затухания и период колебаний подвесной системы с расплавом (без расплава), $\operatorname{Re} \mathcal{L}$ и $\operatorname{Im} \mathcal{L}$ — действительная и мнимая части функции трения, учитывающей наличие двух торцевых поверхностей трения.

Для расчета погрешности измерений вязкости использовался метод, подробно изложенный в работе [23]. Общая относительная погрешность определения вязкости не превышает $4\,\%$ при погрешности в единичном эксперименте $2\,\%$.

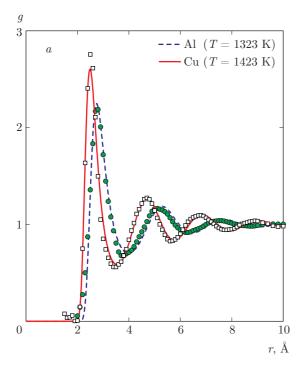
4. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

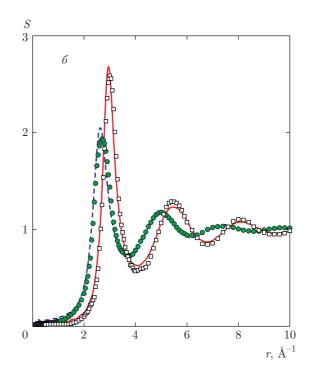
4.1. Структурные особенности расплава ${ m Al}_{100-x}{ m Cu}_x$

Анализ структурных особенностей расплава ${\rm Al}_{100-x}{\rm Cu}_x$ может быть осуществлен с помощью функции радиального распределения атомов [24]

$$g(r) = \sum_{\alpha=\beta} W_{\alpha,\beta} g_{\alpha,\beta}(r) + 2 \sum_{\alpha \neq \beta} W_{\alpha,\beta} g_{\alpha,\beta}(r), \quad (3)$$

где $W_{\alpha,\beta} = c_{\alpha}c_{\beta}f_{\alpha}f_{\beta}/\left(\sum c_{i}f_{i}\right)^{2}$ — весовой множитель, c_{i} и f_{i} — соответственно концентрация и атомный формфактор атома i-го сорта. Парциальные компоненты радиальной функции распределения $g_{\alpha,\beta}(r)$ определялись из выражения [25,26]


$$g_{\alpha,\beta}(r) = \frac{L^3}{N_{\alpha}N_{\beta}} \left\langle \sum_{j=1}^{N_{\alpha}} \frac{n_{j\beta}(r)}{4\pi r^2 \Delta r} \right\rangle,$$


$$\alpha, \beta \in \{\text{Al, Cu}\},$$
(4)

где $n_{j\beta}(r)$ — число атомов сорта β в сферическом слое толщиной Δr , удаленном на расстояние r от j-й частицы, L — длина ребра моделируемой ячейки, N_{α} и N_{β} — число атомов сорта α и β .

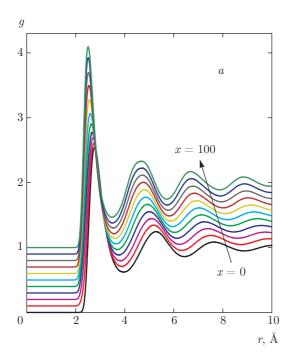
Рассчитанные из моделирования атомарной динамики функции радиального распределения g(r) и статического структурного фактора S(k) для чистых жидких Al и Cu при температурах соответственно $T=1323~{\rm K}$ и $T=1423~{\rm K}$ представлены на рис. 2. На этом рисунке результаты расчетов сопоставляются с экспериментальными данными по дифракции рентгеновских лучей [27]. Из рисунка видно, что результаты моделирования хорошо

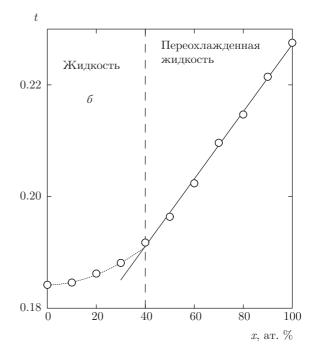
 $^{^{1)}\;}$ Данная модель потенциала применима к металлам Al, Ag, Au, Cu, Ni, Pd, Pt, а также к их бинарным расплавам.

Рис. 2. a) Радиальная функция распределения атомов в расплаве алюминия и в расплаве меди при температурах соответственно T=1323 К и T=1423 К, сплошные и штриховые линии представляют результаты моделирования атомарной динамики; значки — экспериментальные данные по дифракции рентгеновских лучей [27]. δ) Статический структурный фактор для расплава алюминия и расплава меди

согласуются с экспериментальными данными: верно воспроизводят структурные особенности чистых расплавов меди и алюминия.

На рис. 3 представлены зависимости радиальной функции распределения g(r) для расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при температуре $T=973~\mathrm{K}$ и параметра трансляционного порядка [28,29]


$$t = \frac{1}{r_m} \int_{0}^{r_m} |g(r) - 1| dr$$
 (5)


при различных концентрациях x атомов меди. В выражении (5) величина r_m определяет расстояние, на котором коррелированность в расположении двух частиц становится несущественной. В настоящей работе $r_m = 20\,\text{Å}$. Отметим, что параметр трансляционного порядка $t\to 0$ для неупорядоченных систем и $t\to 1$ для кристаллических тел. Из рис. 3a видно, что с изменением концентрации атомов меди в системе $\text{Al}_{100-x}\text{Cu}_x$ существенных изменений в структуре расплава не наблюдается. Рассчитанная концентрационная зависимость трансляционного параметра порядка указывает на то, что в случае равновесного расплава (при концентрациях меди $0\,\% \le x < 40\,\%$) значения параметра t(x) из-

меняются в диапазоне $0.184 \le t \le 0.192$, в то время как в случае переохлажденного расплава с концентрацией меди $40\% \le x \le 100\%$ обнаруживается линейный рост от t(x=40%)=0.192 до t(x=100%)=0.228. Интересно отметить, что изменение в характере зависимости наблюдается непосредственно при значении концентрации x=40%, которая на данной изотерме–изобаре (см. рис. 1) соответствует границе раздела между равновесной жидкостью и переохлажденной жидкостью. Весьма примечательно, что линейный характер концентрационной зависимости параметра t(x) в области концентраций $40\% \le x \le 100\%$ совершенно аналогичен температурной зависимости этого параметра для переохлажденных жидкостей [28].

4.2. Микроскопическая динамика металлического расплава ${ m Al}_{100-x}{ m Cu}_x$

Анализ коллективной динамики частиц в металлическом расплаве $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ был выполнен на основе расчета спектральных плотностей

Рис. 3. a) Радиальная функция распределения атомов расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при температуре $T=973\,$ К. b) Параметр трансляционного порядка t в зависимости от концентрации атомов меди

$$\widetilde{C}_{\alpha}(k,\omega) = \frac{k_B T}{\pi m} \int_{0}^{\infty} C_{\alpha}(k,t) e^{i\omega t} dt, \quad \alpha \in \{L,T\}, \quad (6) \qquad \qquad \widetilde{C}_{\alpha}^{av}(k,\omega) = \int_{-\infty}^{\infty} R(\omega - \omega') \widetilde{C}_{\alpha}(k,\omega') d\omega',$$

нормированных временных корреляционных функций (ВКФ) продольного потока,

$$C_L(k,t) = \frac{\langle (\mathbf{e}_k \cdot \mathbf{j}_k^*(0) \cdot \mathbf{e}_k \cdot \mathbf{j}_k(t)) \rangle}{\langle |\mathbf{e}_k \cdot \mathbf{j}_k(0)|^2 \rangle}, \tag{7}$$

и поперечного потока [30, 31],

$$C_T(k,t) = \frac{\left\langle \left[\mathbf{e}_k \times \mathbf{j}_k^*(0) \right] \cdot \left[\mathbf{e}_k \times \mathbf{j}_k(t) \right] \right\rangle}{\left\langle \left| \left[\mathbf{e}_k \times \mathbf{j}_k(0) \right] \right|^2 \right\rangle}.$$
 (8)

Здесь $\mathbf{j}(k,t)$ — микроскопический поток, определяемый выражением [25, 32]

$$\mathbf{j}(k,t) = \frac{1}{\sqrt{N}} \sum_{l}^{N} \mathbf{v}_{l}(t) \exp\left[-i(\mathbf{k} \cdot \mathbf{r}_{l}(t))\right], \quad (9)$$

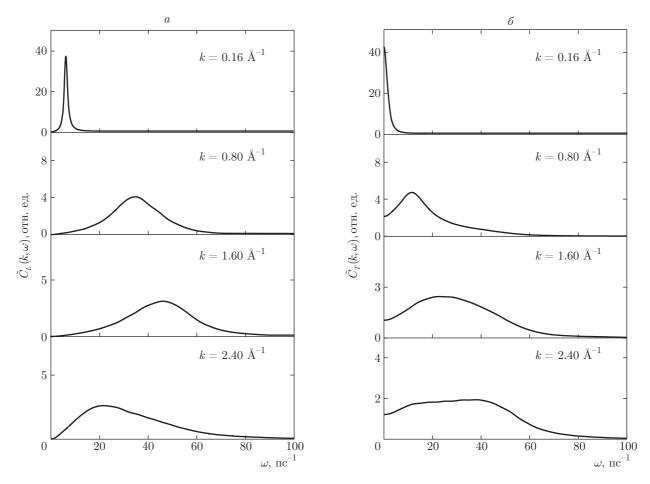
где $\mathbf{v}_l(t)$ — скорость l-й частицы в момент времени tи $\mathbf{e}_k = \mathbf{k}/|\mathbf{k}|$ — единичный вектор, сонаправленный с волновым вектором \mathbf{k} .

Для удаления шумов из спектральных плотностей ВКФ продольного и поперечного потоков была применена процедура «оконного» усреднения с гауссовой функцией [29]

$$\widetilde{C}_{\alpha}^{av}(k,\omega) = \int_{-\infty}^{\infty} R(\omega - \omega') \widetilde{C}_{\alpha}(k,\omega') d\omega',$$

$$\alpha \in \{L, T\},$$
(10)

где функция разрешения


$$R(\omega) = \frac{1}{\sqrt{\pi\omega_0}} \exp\left(-\frac{\omega^2}{\omega_0^2}\right) \tag{11}$$

удовлетворяет условию нормировки

$$\int_{-\infty}^{\infty} R(\omega) d\omega = 1.$$
 (12)

Частота ω_0 определялась временным масштабом моделирования и составила $\omega_0 = 2\pi/N \, \delta t \approx 1.2 \, \text{нc}^{-1}$.

На рис. 4 представлены спектральные плотности временных корреляционных функций $C_L(k,\omega)$ и $C_T(k,\omega)$ для переохлажденного расплава $\mathrm{Al}_{50}\mathrm{Cu}_{50}$ при температуре $T=973~{
m K}$ для широкой области значений волновых чисел k=0.16– $2.40\,\mathrm{\mathring{A}^{-1}}.$ В обеих спектральных характеристиках, $C_L(k,\omega)$ и $C_T(k,\omega)$, отчетливо наблюдаются высокочастотные пики, указывающие на наличие коллективных колебательных процессов в расплаве. Однако, несмотря на подобие форм спектров $C_L(k,\omega)$ и $C_T(k,\omega)$, характер колебательных процессов у них существенно различен.

Рис. 4. Спектральные плотности ВКФ продольного $\widetilde{C}_L(k,\omega)$ (a) и поперечного $\widetilde{C}_T(k,\omega)$ (б) потоков расплава $\mathrm{Al}_{50}\mathrm{Cu}_{50}$ при температуре T=973 К

Расчет спектральных плотностей ВКФ продольного $\widetilde{C}_L(k,\omega)$ и поперечного $\widetilde{C}_T(k,\omega)$ потоков позволяет оценить дисперсионные зависимости $\omega_c^{(\alpha)}(k)$ (см. рис. 5). Так, для случая переохлажденного расплава Al₅₀Cu₅₀ обнаруживается наличие колебательных мод продольной и поперечной поляризаций. Установлено, что дисперсионная кривая, связанная с колебательными процессами поперечной поляризации, характеризуется «окном» ширины k_0^T : рост значения $\omega_c^{(T)}(k)$ начинается не с нулевого значения волнового числа k, а смещен вдоль оси k на величину k_0^T . Наличие $k_0^T \neq 0$ обусловлено отсутствием макроупругих свойств расплава (как равновесного, так и переохлажденного) [33]. Установлено, что ширина «окна» с увеличением концентрации меди в расплаве уменьшается. Так, если $k_0^T = 0.37 \, \text{Å}^{-1}$ для случая расплава чистого алюминия, то в случае переохлажденного расплава чистой меди получаем $k_0^T = 0.097 \, \text{Å}^{-1}$. Примечательно, что концентрационная зависимость k_0^T плавно убывает и на ней не обнаруживается никаких особенностей при переходной концентрации $x=40\,\%.$

Коллективная динамика атомов расплава характеризуется частотными моментами спектральных плотностей ВКФ продольного $\widetilde{C}_L(k,\omega)$ и поперечного $\widetilde{C}_T(k,\omega)$ потоков [34]:

$$\omega_{\alpha}^{(2n)}(k) = \int_{-\infty}^{\infty} \omega^{2n} \widetilde{C}_{\alpha}(k,\omega) d\omega / \int_{-\infty}^{\infty} \widetilde{C}_{\alpha}(k,\omega) d\omega =$$

$$= (-1)^n \left(\frac{d^{(2n)} C_{\alpha}(k,t)}{dt^{(2n)}} \right) \Big|_{t=0}, \quad n = 1, 2, \dots \quad (13)$$

Ненулевые значения принимают лишь четные частотные моменты. Так, значения вторых моментов спектральных плотностей $\widetilde{C}_L(k,\omega)$ и $\widetilde{C}_T(k,\omega)$ в случае сферического парного потенциала межчастич-

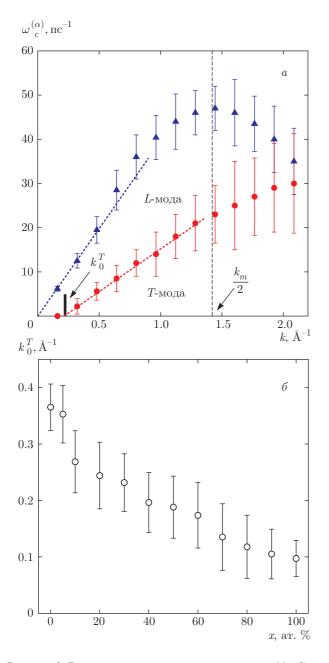
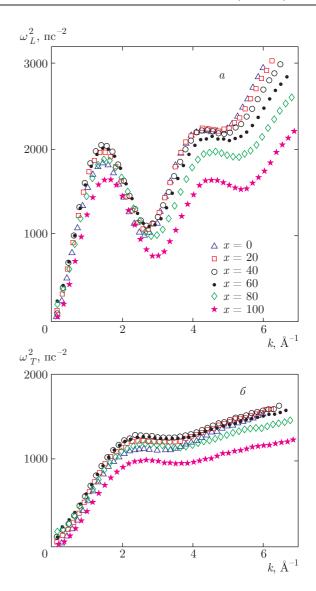
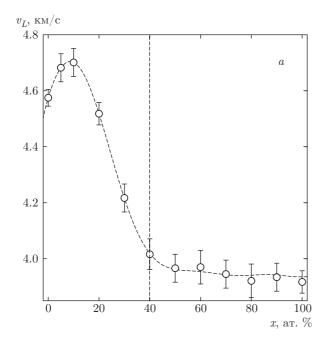
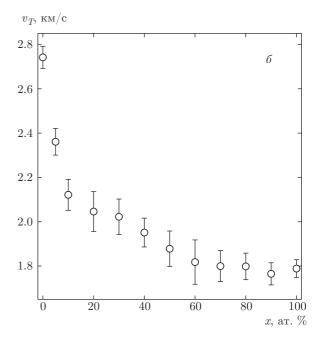



Рис. 5. a) Дисперсионные кривые для расплава ${\rm Al}_{50}{\rm Cu}_{50}$ в зависимости от волнового числа k при температуре T=973 К. Пунктирные линии отображают экстраполированный гидродинамический результат $\omega_c^{(\alpha)}(k)=$ $=v_{\alpha}(k-k_0^{\alpha})$, где v_{α} — скорости распространения звука продольной $(\alpha\equiv L)$ и поперечной $(\alpha\equiv T)$ поляризаций, k_0^{α} — значение волнового числа k, при котором $\omega(k)$ начинает принимать ненулевые значения. Здесь для продольной моды имеем $k_0^L=0$ Å $^{-1}$, для поперечной получаем $k_0^T=0.188$ Å $^{-1}$. Штриховая линия определяет границу первой псевдозоны Бриллюэна при $k_m/2$, где k_m — положение главного максимума в статическом структурном факторе S(k). δ) Концентрационная зависимость ширины щели $k_0^T(x)$ в дисперсионной кривой поперечной поляризации $\omega_c^{(T)}(k)$



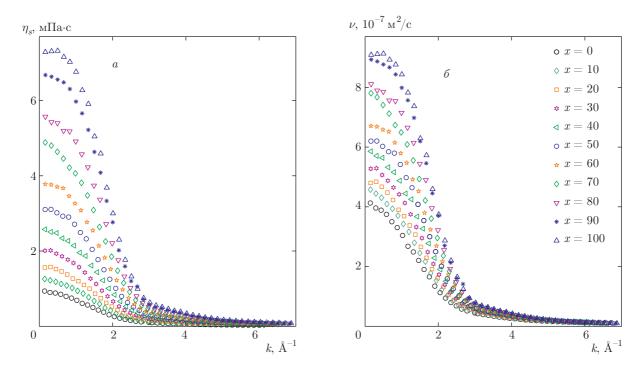

Рис. 6. Нормированные частотные моменты спектральной плотности ВКФ продольного (a) и поперечного (δ) потоков для металлического расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ в зависимости от волнового числа k при различных концентрациях атомов меди

ного взаимодействия $\mathcal{U}(r)$ могут быть определены из следующих микроскопических выражений [35,36]:

$$\omega_L^2(k) = 3v_{th}^2 k^2 + \frac{n}{m} \int_0^\infty g(r) \left[1 - \cos(kz) \right] \times \frac{\partial^2 \mathcal{U}(r)}{\partial z^2} d^3r, \quad (14)$$

$$\omega_T^2(k) = 3v_{th}^2 k^2 + \frac{n}{m} \int_0^\infty g(r) \left[1 - \cos(kz) \right] \times \frac{\partial^2 \mathcal{U}(r)}{\partial x^2} d^3 r. \quad (15)$$

Рис. 7. Скорости распространения звука продольной (a) и поперечной (b) поляризаций в металлическом расплаве $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ в зависимости от концентрации атомов меди при температуре T=973 K


Здесь $v_{th} = \sqrt{k_B T/m}$ — тепловая скорость частиц, n = N/V — количественная плотность системы и q(r) — полная функция радиального распределения двух частиц. Результаты моделирования для частотных моментов спектральной плотности ВКФ продольного и поперечного потоков для широкой области значений волновых чисел, рассчитанные с помощью соотношения (13), представлены на рис. 6. Из рисунка видно, что частотные моменты спектральных плотностей ВКФ продольного $C_L(k,\omega)$ и поперечного $C_T(k,\omega)$ потоков, $\omega_L(k)$ и $\omega_T(k)$, имеют k-зависимость, подобную дисперсионным кривым $\omega_c^{(L)}(k)$ и $\omega_c^{(T)}(k)$. Отметим, что положения максимумов на кривых $\omega_L^2(k)$ и $\omega_T^2(k)$ точно соответствуют положениям пиков на зависимостях $\omega_c^{(L)}(k)$ и $\omega_c^{(T)}(k)$.

Из дисперсионных кривых рассчитаны концентрационные зависимости скорости распространения звука продольной и поперечной поляризаций. На рис. 7 представлены скорости звука продольной v_L и поперечной v_T поляризаций в системе $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при различных концентрациях атомов меди. Величина $v_L(x)$ при малых концентрациях атомов меди растет. При концентрациях атомов меди $x=10\pm5\,\%$ скорость звука v_L достигает максимального значения $v_L\approx4.7$ км/с. Далее, с увеличением концентрации x, она убывает. При концентрации $x=40\,\%$,

соответствующей переходу равновесного расплава в переохлажденный расплав, уменьшение v_L практически прекращается. Таким образом, максимальное значение скорости звука на концентрационной зависимости $v_L(x)$ наблюдается для случая равновесного расплава, в то время как переохлажденный расплав $\mathrm{Al}_{100-x}\mathrm{Cu}_x$, насыщенный атомами меди, характеризуется минимальными значениями скорости звука $v_L \approx 3.94$ км/с. Примечательно, что характер зависимости $v_L(x)$ коррелирует с концентрационной зависимосты идаметра $S_m(x)$ (см. рис. 1), характеризующего удаленность системы от температуры плавления T_m . Так, максимальное значение скорости звука v_L соответствует состоянию равновесного расплава, максимально удаленного от температуры плавления

Скорость распространения звука поперечной поляризации, $v_T(x)$, с увеличением концентрации меди уменьшается от $v_T=2.74$ км/с до значения 1.79 км/с. Отношения скоростей звука продольной и поперечной поляризаций, v_L/v_T , для расплава алюминия $(x=0\,\%)$ и для переохлажденного расплава меди $(x=100\,\%)$ при температуре T=973 К составили соответственно 1.67 и 2.19.

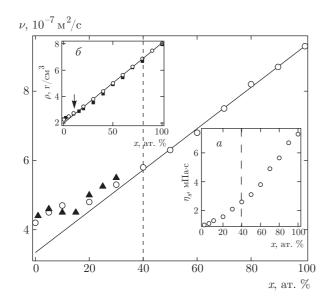
На основе данных моделирования атомарной динамики из нормированной ВКФ поперечного потока $C_T(k,t)$ были рассчитаны сдвиговая вязкость [37]

Рис. 8. Зависимости от волнового числа k сдвиговой (a) и кинематической (b) вязкостей расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при температуре T=973 K, давлении p=1.0 бар и различных концентрациях атомов меди

$$\eta_s(k) = \rho \left(k^2 \int_0^\infty C_T(k, t) dt \right)^{-1}$$
 (16)

и кинематическая вязкость [38, 39]

$$\nu = \eta_s/\rho. \tag{17}$$


Здесь ρ — массовая плотность системы. На рис. 8 представлены результаты моделирования сдвиговой $\eta(k)$ и кинематической $\nu(k)$ вязкостей в зависимости от значения волнового числа k при различных концентрациях атомов меди. Для экстраполяции результатов моделирования использовалась функция, предложенная в работе [40],

$$\eta_s(k) = \frac{\eta_0}{1 + \alpha^2 k^2},\tag{18}$$

с подгоночными параметрами α и η_0 .

На основе результатов моделирования атомарной динамики также рассчитаны концентрационные зависимости коэффициентов сдвиговой $\eta_s(x)$ и кинематической $\nu(x)$ вязкостей. Полученные результаты в сравнении с экспериментальными данными представлены на рис. 9. Как видно из рисунка, результаты моделирования корректно воспроизводят экспериментальные данные по кинематической вязкости для расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при температуре

 $T = 973 \; {\rm K}$ для диапазона концентраций атомов меди от x > 0 % до x = 30 %. Более того, как результаты моделирования, так и экспериментальные данные указывают на то, что рост концентрации атомов меди в расплаве приводит к увеличению вязкости. Так, с увеличением концентрации меди значение коэффициента кинематической вязкости увеличивается от $\nu = 4.2 \cdot 10^{-7} \text{ м}^2/\text{с}$ до $\nu = 9.3 \cdot 10^{-7} \text{ м}^2/\text{с}$. Примечательно, что полная концентрационная зависимость характеризуется двумя режимами. В случае переохлажденного расплава, насыщенного атомами меди $(x \ge 40 \%)$, кинематическая вязкость интерполируется линейной зависимостью $\nu(x) = ax + b$, где $a = 5.9 \cdot 10^{-9} \,\mathrm{m}^2/\mathrm{ar}$. %-с, $b = 3.34 \cdot 10^{-7} \,\mathrm{m}^2/\mathrm{c}$. В случае равновесного расплава при $x < 40\,\%$ наблюдается отклонение от линейной зависимости. При этом в области низких концентраций меди (x < 20%) наблюдается незначительное «плечо» на зависимости $\nu(x)$, наличие которого также подтверждается экспериментальными результатами. Появление этого плеча обусловлено особенностями в концентрационной зависимости плотности $\rho(x)$ (см. вставку б на рис. 9). Данная особенность $\nu(x)$ проявляется при тех же значениях концентрации меди, при которых наблюдается максимальное значение скорости звука продольной поляризации (см. рис. 7).

Рис. 9. Концентрационная зависимость кинематической вязкости расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при температуре T=973 К: \circ — результаты моделирования атомарной динамики; \blacktriangle — экспериментальные данные. Вставки: a — зависимость сдвиговой вязкости расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ от концентрации атомов меди при температуре T=973 К; δ — концентрационная зависимость плотности системы ρ : \circ — результаты моделирования; \blacksquare — экспериментальные данные при температуре T=1020 К [41,42]

5. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Выполнено крупномасштабное моделирование атомарной динамики расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при температуре $T=973~\mathrm{K}$ и различных концентрациях атомов меди (от 0 % до 100 %). На основе анализа равновесных структурных характеристик расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ показано, что концентрационная зависимость параметра трансляционного порядка правильно предсказывает переход из состояния равновесной жидкости в состояние переохлажденного расплава при концентрации атомов меди $x=40~\mathrm{K}$.

Рассчитанные спектральные плотности временных корреляционных функций продольного $\widetilde{C}_L(k,\omega)$ и поперечного $\widetilde{C}_T(k,\omega)$ потоков для расплава $\mathrm{Al}_{100-x}\mathrm{Cu}_x$ при температуре $T=973~\mathrm{K}$ обнаруживают распространяющиеся коллективные возбуждения продольной и поперечной поляризаций в широкой области значений волновых чисел. Установлена корреляция между структурными особенностями и акустическими свойствами системы алюминий—медь во всей исследуемой области концентраций атомов меди. Показано, что максимальное значение скорости звука на

концентрационной зависимости $v_L(x)$ наблюдается для случая равновесного расплава $(x < 40\,\%)$, в то время как переохлажденный расплав $\mathrm{Al}_{100-x}\mathrm{Cu}_x$, насыщенный атомами меди $(x \ge 40\,\%)$, характеризуется минимальными значениями скорости звука $v_L \approx 3.94$ км/с. Установлено, что характер зависимости $v_L(x)$ коррелирует с концентрационной зависимостью параметра $S_m(x)$, в то время как скорость распространения звука поперечной поляризации $v_T(x)$ с увеличением концентрации меди монотонно уменьшается от 2.74 до 1.79 км/с.

На основании данных моделирования атомарной динамики рассчитаны концентрационные зависимости коэффициентов сдвиговой $\eta_s(x)$ и кинематической $\nu(x)$ вязкостей. Установлено, что с увеличением концентрации меди значение коэффициента кинематической вязкости увеличивается от $4.2 \cdot 10^{-7}$ до $9.3 \cdot 10^{-7}$ м²/с. Обнаружено, что полная концентрационная зависимость характеризуется двумя режимами. В случае переохлажденного расплава, насыщенного атомами меди ($x \ge 40\%$), кинематическая вязкость $\nu(x)$ интерполируется линейной зависимостью, а в случае равновесного расплава (x < 40%) наблюдается отклонение от линейной зависимости. При этом в области низких концентраций меди (x < 20%) наблюдается незначительное плечо на зависимости $\nu(x)$, появление которого может быть обусловлено особенностями в концентрационной зависимости плотности $\rho(x)$ системы.

Крупномасштабные молекулярно-динамические расчеты выполнены на вычислительном кластере Казанского федерального университета и суперкомпьютере Межведомственного суперкомпьютерного центра Российской академии наук. Работа частично поддержана РФФИ (проекты №№ 14-02-00335-а, 15-02-06288-а).

ЛИТЕРАТУРА

- 1. N. H. March, Liquid Metals: Concepts and Theory, Cambridge Univ. Press, Cambridge (1990).
- 2. R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys, Metals Park, Ohio: Amer. Soc. Metals (1973).
- **3.** A. T. Dinsdale and P. N. Quested, J. Mater. Sci. **39**, 7221 (2004).
- 4. The 140th Committee of Japan Society for Promotion of Science: Handbook of Physico-Chemical Properties

- at High Temperature, ed. by Y. Kawai and Y. Shiraishi, ISIJ, Tokyo (1988).
- Р. М. Хуснутдинов, А. В. Мокшин, Изв. РАН, сер. физ. 74, 677 (2010).
- Y. He, S. J. Poon, and G. J. Shiflet, Science 241, 1640 (1988).
- A. P. Tsai, A. Inoue, and T. Masumoto, J. Mater. Sci. Lett. 7, 805 (1988).
- **8**. В. В. Бражкин, УФН **176**, 745 (2006).
- 9. M. Sun and X. Bian, Mater. Lett. 56, 620 (2002).
- W. R. D. Jones and W. L. Bartlett, J. Inst. Metals 83, 59 (1954).
- **11**. К. И. Еретнов, А. П. Любимов, Изв. вузов, цветная металлургия **1**, 119 (1966).
- M. Schick, J. Brillo, I. Egry, and B. Hallstedt, J. Mater. Sci. 47, 8145 (2012).
- **13**. Н. Ю. Константинова, П. С. Попель, Д. А. Ягодин, ТВТ **47**, 354 (2009).
- **14**. А. В. Мокшин, А. В. Чванова, Р. М. Хуснутдинов, ТМФ **171**, 135 (2012).
- V. T. Witusiewicz, U. Hecht, S. G. Fries, and S. Rex, J. Alloys Comp. 385, 133 (2004).
- **16**. C. W. Bale, P. Chartrand, S. A. Degterov et al., Calphad **26**, 189 (2002), http://www.crct.polymtl.ca/fact/download.php.
- 17. J. Cai and Y. Y. Ye, Phys. Rev. B 54, 8398 (1996).
- 18. Д. К. Белащенко, УФН 183, 1281 (2013).
- R. M. Khusnutdinoff, A. V. Mokshin, and I. I. Khadeev, J. Phys.: Conf. Ser. 394, 012012 (2012).
- **20**. А. Л. Бельтюков, В. И. Ладьянов, ПТЭ **2**, 155 (2008).
- **21**. О. Ю. Гончаров, Н. В. Олянина, А. Л. Бельтюков, В. И. Ладьянов, ЖФХ **89**, 292 (2015).
- **22**. Е. Г. Швидковский, *Некоторые вопросы вязкости* расплавленных металлов, Гостехиздат, Москва (1955).
- **23**. А. Л. Бельтюков, С. Г. Меньшикова, В. И. Ладьянов, ТВТ **53**, 517 (2015).
- **24**. Р. М. Хуснутдинов, А. В. Мокшин, И. И. Хадеев, Поверхность. Рентген., синхротр. и нейтрон. исслед. **1**, 90 (2014).

- J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Acad. Press, New York (2006).
- **26**. А. В. Мокшин, Р. М. Юльметьев, Р. М. Хуснутдинов, П. Хангги, ЖЭТФ **130**, 974 (2006).
- Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids, McGraw-Hill, New York (1980).
- T. M. Truskett, S. Torquato, and P. G. Debenedetti, Phys. Rev. E 62, 993 (2000).
- **29**. Р. М. Хуснутдинов, А. В. Мокшин, Р. М. Юльметьев, ЖЭТФ **135**, 477 (2009).
- **30**. W. Montfrooij and I. de Schepper, *Excitations in Simple Liquids, Liquid Metals and Superfluids*, Oxford Univ. Press, New York (2010).
- **31**. Р. М. Хуснутдинов, А. В. Мокшин, Письма в ЖЭТФ **100**, 42 (2014).
- **32**. Р. М. Хуснутдинов, А. В. Мокшин, И. Д. Тахавиев, ФТТ **57**, 393 (2015).
- **33**. А. В. Мокшин, Р. М. Хуснутдинов, А. Г. Новиков и др., ЖЭТФ **148**, 1 (2015).
- **34.** D. Pines, *Elementary Excitations in Solids*, W. A. Benjamin Inc., New York-Amsterdam (1963).
- **35**. U. Balucani and M. Zoppi, *Dynamics of the Liquid State*, Clarendon, Oxford (1994).
- A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, and P. Hänggi, J. Phys.: Condens. Matter 19, 046209 (2007).
- **37**. T. Gaskell, U. Balucani, M. Gori, and R. Vallauri, Phys. Scripta **35**, 37 (1987).
- V. I. Lad'yanov, A. L. Bel'tyukov, S. G. Menshikova, and A. U. Korepanov, Phys. Chem. Liquids 52, 46 (2014).
- A. L. Bel'tyukov, S. G. Menshikova, and V. I. Lad'yanov, J. Non-Crystal. Sol. 410, 1 (2015).
- 40. W. E. Alley and B. J. Alder, Phys. Rev. A 27, 3158 (1983).
- **41**. J. Brillo, I. Egry, and J. Westphal, Int. J. Mater. Res. **99**, 162 (2008).
- **42**. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych et al., Metal. Mater. Trans. A **39**, 3040 (2008).