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We theoretically study nonradiative and radiative energy transfer between two localized quantum emitters, a

donor (initially excited) and an acceptor (receiving the excitation). The rates of nonradiative and radiative pro-

cesses are calculated depending on the spatial and spectral separation between the donor and acceptor states

and for different donor and acceptor lifetimes for typical parameters of semiconductor quantum dots. We find

that the donor lifetime can be significantly modified only due to the nonradiative Förster energy transfer process

at donor–acceptor separations of approximately 10 nm (depending on the acceptor radiative lifetime) and for

the energy detuning not larger than 1–2 meV. The efficiency of the nonradiative Förster energy transfer process

under these conditions is close to unity and decreases rapidly with an increase in the donor–acceptor distance

or energy detuning. At large donor–acceptor separations greater than 40 nm, the radiative corrections to the

donor lifetime are comparable with nonradiative ones but are relatively weak.

Contribution for the JETP special issue in honor of L. V. Keldysh’s 85th birthday

DOI: 10.7868/S0044451016030135

1. INTRODUCTION

Förster energy transfer (ET) processes are now ac-

tively studied in various fields that bridge physics, biol-

ogy, and chemistry. The energy is transferred from the

initially excited (donor) system to the system that is

initially unexcited (acceptor) via the electromagnetic

interaction [1]. This is an incoherent one-way trans-

fer followed by the rapid emission or nonradiative re-

combination from the acceptor state, which must be

distinguished from coherent light-induced coupling [2].

In what follows, we use the terms “donor” and “accep-

tor” for the energy transmitting and receiving systems.

Although these terms are quite established in the lit-

erature on Förster processes, they are somewhat am-

biguous and should not be confused with donor and ac-

ceptor impurities in a semiconductor. Here, they char-

acterize excitation transfer and not the charge trans-

fer. The donor and acceptor systems can be realized

as quantum dots [3–6], quantum wires [7], quantum

wells [8, 9] and colloidal nanoplatelets [10], biologi-

cal molecules [11, 12], and defects in a semiconduc-
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tor [13, 14]. Typically, the range of the Förster inter-

action is of the order of several nm [15]. By placing

the donors and acceptors into the structured electro-

magnetic environment, one can try to enhance the effi-

ciency of the transfer. In particular, the transfer medi-

ated by localized and surface plasmons [16, 17], photons

trapped in a cavity [18] or localized in random glass

[12], as well as modified by metamaterials [19, 20] is

now actively studied. The concept of tailored photon-

induced energy transfer shares many features with the

Purcell enhancement [21] of spontaneous emission in

a cavity as compared to that in the vacuum. Indeed,

in the first case, we can think of nonradiative energy

transfer from the donor to the acceptor via (virtual)

photons, while in the second case, the energy is ra-

diated into the real photonic modes (see Fig. 1). A

general theory of the Förster transfer process has been

developed in detail [22–27]. However, the relation be-

tween transfer processes and the Purcell effect as well as

the character of the transfer in each particular nanosys-

tem, radiative or nonradiative, remains a subject of ac-

tive discussions [17, 19, 28, 29]. Simultaneous enhance-

ment and control of the energy transfer and sponta-

neous emission processes in the same electromagnetic

environment are quite challenging.
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Fig. 1. Schematic illustration of the energy transfer and photon

radiation processes

Here, we study the simplest case of localized donor

and acceptor (e. g., quantum dots) embedded in a di-

electric matrix. We first revisit different approaches to

calculating the rate of the transfer process and obtain

it consistently with the donor spontaneous decay rate

(Sec. 2). Next, we discuss the transfer kinetics (Sec. 3)

and analyze the radiative and nonradiative contribu-

tions to the Förster process depending on the spatial

and spectral separation of the donor and the acceptor

as well as their intrinsic radiative lifetime (Sec. 4).

2. CALCULATION OF THE TRANSFER RATES

We consider the energy transfer between two emit-

ters in an unbounded dielectric matrix with a per-

mittivity ε, located at points rD (donor) and rA =

= rD + r (acceptor). The relevant donor and acceptor

states are characterized by the energies ED = ~ωD and

EA = ~ωA and the transition dipole matrix elements

dD and dA. In what follows, we neglect the dispersion

and losses in the matrix. We first present the Fermi

Golden rule result for the transfer rate (Sec. 2.1) and

then compare it with the semiclassical Langevin ap-

proach (Sec. 2.2).

2.1. Fermi Golden rule

The Fermi Golden rule yields the following expres-

sion for the transfer rate:

ΓET,0 =
2π

~
δ(ED − EA)|dDĜ0dA|2 , (1)

where

G0,αβ =
3rαrβ − r2δαβ

εr5
(2)

is the electromagnetic Green’s function evaluated in

the electrostatic approximation and describing the di-

pole–dipole coupling between the donor and the accep-

tor [15]. This result can be applied for quantum dots as

well as molecules. For quantum dots, we have neglected

the local field corrections for the electric field [30, 31],

assuming the permittivities of the dot and the matrix

to be the same. In the case of spherical dots, these cor-

rections lead to a renormalization of the dipole matrix

element, dD,A → dD,A3εQD/(εQD + 2ε), where εQD is

the dot permittivity. In the general case, we have to

introduce the depolarization factors depending on the

dot orientation and shape. Additional local field correc-

tions appear for dense arrays of quantum dots [31, 32].

The result in Eq. (1) scales with the distance as

1/r6. However, Eq. (1) neglects any effects of retar-

dation for the electromagnetic interaction. When the

retardation effects are taken into account, the transfer

rate can still be represented in form (1), but the elec-

trostatic potential in Eq. (2) should be replaced by the

full retarded electromagnetic Green’s tensor [24]

Gαβ =

(

δαβ +
1

q2
∂2

∂xα∂xβ

)

eiqr

εr
(3)

evaluated at the transition frequency ω = ED/~ ≡
≡ EA/~, where q = ωD

√
ε/c, such that

ΓET =
2π

~
δ(ED − EA)|dDĜdA|2 . (4)

In this case, the long-range radiative transfer, which

scales with the distance as 1/r2, becomes possible [15].

The explicit values for the matrix elements of the in-

teraction g = dDĜ0dA in the cases where the dipole

momenta of the donor and the acceptor are parallel to

each other and either parallel or perpendicular to the

vector r = rD − rA are given by

g‖ = dAdD
eiqr

ε

(

2

r3
− 2iq

r2

)

,

g⊥ = dAdD
eiqr

ε

(

− 1

r3
+

iq

r2
+

q2

r

)

.

(5)

For a random mutual orientation of the donor and ac-

ceptor matrix elements, the transfer is described by the

value |g2| = (1/3)|g2‖|+(2/3)|g2⊥|, averaged over the ori-

entations.

2.2. Semiclassical approach

Here, we re-derive Eq. (1) within the Langevin ran-

dom source technique and the semiclassical theory of

light–matter interaction [33–35].

1. Radiative decay of the donor

We start with the radiative decay of the donor state

in the absence of acceptors. The donor electric polari-

zability tensor is given by

αµν(E) =
dD,µdD,ν

ED − E
. (6)
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Its dipole moment pD induced by the external electric

field E at the frequency ~ω is given by

pD =
dD

[

dD ·E(rD)
]

ED − ~ω
. (7)

On the other hand, the electric field of the donor is

determined by the Green’s function in Eq. (3),

E(r) = Ĝ(r− rD)pD . (8)

Combining Eq. (7) and Eq. (8), we obtain the self-con-

sistency condition for the mode of the donor coupled

to its own electromagnetic field:

(ED − ~ω)pD = dD[dD · Ĝ(0, ω)pD] . (9)

This equation allows determining the modification of

the lifetime of the donor state due to interaction with

light. The energy shift of the donor state can be ob-

tained as well, but this requires regularizing the Green’s

function taking the finite extent of the wave function

into account (see Refs. [30, 33]). Below, we assume that

such a regularization has already been performed and

is included in the definition of the energy ED. We also

use the weak-coupling approximation, with the Green

function in the right-hand side of Eq. (9) evaluated at

the frequency ωD. The spontaneous emission rate is

then determined from Eq. (9) as

Γrad,0 ≡ −2 Imω = 2dD,α Im Ĝαβ(0, ωD)dD,β , (10)

or, explicitly [36],

Γrad,0 =
4d2D
3~

(ωD

c

)3 √
ε . (11)

2. Donor decay in the presence of an acceptor

Equation (11) is a textbook result for the sponta-

neous emission rate [36]. However, the approach above

can be straightforwardly generalized to include energy

transfer processes [37, 38]. For this, Eqs. (8), (9) should

be modified to account for the electromagnetic coupling

of the donor and the acceptor as follows:

(ωD − ω)pD =

=
1

~
dD[dD · (Ĝ(0, ω)pD) + Ĝ(r, ω)pA],

(ωA − iγA − ω)pA =
1

~
dA[dA · Ĝ(r, ω)pD].

(12)

Here, we include the phenomenological (nonradiative)

decay rate γA for the acceptor excited state. The de-

cay is due to the energy relaxation to the lower acceptor

states. We are interested in the weak-coupling regime,

and consider the energy relaxation of the acceptor state

to be much faster than the energy transfer and the ra-

diative decay of both donor and acceptor states. Hence,

the donor lifetime in the presence of the acceptor is

given by the perturbative solution of system (12) at a

frequency close to ωD. The result can be represented

as

1

τD,0

= Γrad,0 ,
1

τD
= Γrad,0 + ΓD, (13)

ΓD =
2

~
×

× Im

[

1

ωA − iγA − ωD

1

~2

(

dD · Ĝ(r)dA

)2
]

. (14)

The second term in Eq. (13) describes the acceptor-

induced contribution to the decay rate of the donor

state. This expression is quite different from the stan-

dard result in Eq. (4). First, Eq. (14) includes a finite

lifetime of the acceptor state. Second, the functional

dependence of Eq. (4) and Eq. (14) on the (complex)

Green’s function is different. The difference between

Eq. (4) and Eq. (14) constitutes the central result in

this paper. Qualitatively, it occurs because Eq. (4)

describes only the rate of the generation of particles

in the acceptor state. On the other hand, Eq. (14)

is the total acceptor-induced modification of the donor

decay rate, to which both the energy transfer to the ac-

ceptor and the modification of the spontaneous decay

rate contribute. In Sec. 4 below, we analyze Eq. (4)

and Eq. (14) in more detail. Here, we only mention

that in the case where the distance between the donor

and the acceptor becomes much smaller than the wave-

length, qr ≪ 1, and the retardation effects are ne-

glected, Eq. (14) reduces to

ΓD,0 =
2π

~

1

π~

γA
(ωD − ωA)2 + γ2

A

|dDĜ0dA|2. (15)

This expression is equivalent to the Fermi Golden rule

result in Eq. (1) in the limit of the vanishing acceptor

decay rate. Here, we consider only the case of a trans-

parent medium, Im ε = 0. The more general case of a

lossy medium, where the additional decay channel due

to medium heating is possible, has been analyzed in

Ref. [39] (see also Ref. [40]).

3. Population of acceptors

In the preceding paragraph, we have calculated the

decay rates of donor state. Now we obtain the accep-

tor population using the same semiclassical technique.

For this, we consider the regime of stationary incoher-
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ent pumping and use the random source approach [35].

Hence, system (12) is modified as

(ωD − ω)pD =
1

~
dD[dD · (Ĝ(0, ω)pD)+

+ Ĝ(r, ω)pA] + dDξ(ω),

(ωA − iγA − ω)pA =
1

~
dA[dA · Ĝ(r, ω)pD],

(16)

where ξ(ω) is a random source term describing the sta-

tionary incoherent generation of excitons in the donor

state. Generally, the correlations of random sources are

determined by the pumping mechanism [41], the sim-

plest approximation corresponding to white Gaussian

noise

〈ξ∗(ω)ξ(ω′)〉 = S

2π
δ(ω − ω′),

〈ξ∗(t)ξ(t′)〉 = Sδ(t− t′),
(17)

where S is the exciton generation rate. We first calcu-

late the stationary donor state population as

ND =
〈|pD(t)|2〉
|dD|2 , (18)

where

pD(t) =

∫

dω

2π
pD(ω)e−iωt (19)

and the angular brackets denote averaging over the ran-

dom source realizations. Explicitly, we obtain

ND =

〈

∣

∣

∣

∣

∫

dω

2π
DD(ω)ξ(ω)e−iωt

∣

∣

∣

∣

2
〉

, (20)

where

DD(ω) =
1

ωD − ω − i/(2τD)
(21)

is the donor Green’s function calculated including both

the energy transfer and radiative decay processes. Ave-

raging and integrating yields ND = SτD, i. e., the donor

population equal to the lifetime times the generation

rate. The acceptor population is obtained in a similar

way as

NA ≡ 〈|pA|2〉
|dA|2

= S|dD · Ĝ0dA|2×

×
∫

dω

2π
|DA(ω)|2|DD(ω)|2 (22)

with

DA(ω) =
1

ωA − ω − iγA
. (23)

The result of integration is

NA =
2π

~
SτDτA

1

π~

γA
(ωA − ωD)2 + γ2

A

×

× |dDĜ0dA|2 , (24)

where τA = 1/(2γA). It is instructive to rewrite this

result in the form of a kinetic equation for balance of

the (nonradiative) decay in the acceptor state and the

energy transfer from the donors:

NA

τA
= ΓETND . (25)

Using this equation as the definition of the energy tran-

sfer rate ΓET , we find from Eq. (24) that

ΓET =
2π

~
Θ|dD · ĜdA|2,

Θ =
1

π~

γA
(ωA − ωD)2 + γ2

A

,
(26)

which is the generalization of Eq. (4) to the case of a

finite acceptor state lifetime. Equation (26) directly

corresponds to the expression commonly used for real-

istic multilevel systems [3, 5] (e. g., Eq. (1) in Ref. [5])

with Θ being the overlap integral between the donor

emission and the acceptor absorption spectra for the

considered model with the two-level donor and accep-

tor. We note that these results can be equivalently

obtained using the Keldysh diagram technique [42]; its

correspondence to the Langevin source technique for

this problem is discussed in Refs. [35, 41].

2.3. Ohmic losses approach

The acceptor excitation rate in Eq. (26) can also

be calculated in a slightly different but equivalent way

as the rate of the absorption of donor emission [8, 16].

This allows interpreting the energy transfer process in

the form of Ohmic losses for the donor emission. Thus,

we can separate the contributions to the total donor

decay rate (14) into those determined by the energy

transfer process and by the modification of the far-field

emission by the acceptor.

In particular, the acceptor dipole moment induced

by the donor with the dipole moment pD = dD is ob-

tained from the second equation in (12) as

pA,α =
dA,αdA,βGβγdD,γ

~(ωA − ωD − iγA)
, (27)

and the electric field at the acceptor position is given

by

Eα(rA) = Gαβ′(r) dD,β′ . (28)

The rate of power absorption is then determined by the

standard electrodynamic expression [43]

1

τET

≡ ΓET = 2 Im pA,αE
∗
D,α. (29)
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Substituting Eqs. (27) and (28) in Eq. (29), we recover

Eq. (26).

To distinguish between the energy transfer and the

far-field emission processes, we use the identity [34]

∫

d3r′′Gµν(r, r
′′)G∗

µ′ν(r
′, r′′)ε′′(r′′) =

= 4π ImGµµ′ (r, r′) (30)

valid for the Green’s function in an arbitrary medium

in the case of a zero external stationary magnetic field.

For r = r′, the right-hand side determines the local den-

sity of photonic states and the radiative decay rate [44].

For µ = ν′ and r = r′, Eq. (30) is simplified to

Im

∫

d3r′′
ε(r′′)− 1

4π
|G∗

µ′ν(r
′′, r)|2 =

= ImGµµ(r, r) . (31)

The radiative decay rate is due to the far-field emis-

sion and due to the Joule heating of the medium. The

Joule losses are determined as the integral in the left-

hand side over the finite volume where Im ε 6= 0. The

far-field emission is given from the contribution to the

integral at r′′ → ∞ for Im ε(r′′) → 0. For a given µ,

the integral can be rewritten as Im
∫

d3r′′Π(r′′)E∗(r′′),

where Π is the polarizability tensor,

Πβ(r
′′) =

ε(r′′)− 1

4π
Gβα(r

′′, r),

Eβ(r
′′) = Gβα(r

′′, r) .

(32)

This expression is equivalent to Eq. (29) and corres-

ponds to the transfer rate ΓET in Eq. (26). The total

acceptor-induced decay rate of the donor state ΓD in

Eq. (14) includes contribution (26) due to the Ohmic

losses and a correction to the far-field emission. Thus,

the far-field contribution is obtained as the difference

between ΓD and ΓET ,

∆Γrad = ΓD − ΓET . (33)

3. KINETIC EQUATIONS

In the preceding section, we have presented four

approaches yielding consistent results, namely (i) the

Fermi Golden rule to calculate the transfer rate to the

acceptor state, Eq. (1), neglecting the losses and re-

tardation, (ii) the coupled-dipole technique to calcu-

late the donor decay rate, Eq. (14), (iii) the random

sources technique, and (iv) the Joule power losses ap-

proach to calculate the transfer rate for the acceptor

state, Eq. (26).

These results allow us to formulate the following

system of phenomenological kinetic equations for the

population of the donor and acceptor states ND and

NA, and the population NA,0 of the acceptor ground

(emitting) state whose lifetime τA,0 is controlled by

spontaneous emission:

dND

dt
= − (Γrad,0+∆Γrad)ND−ΓETND+S ≡

≡ −ND

τD
+ S ,

dNA

dt
= −NA

τA
+ ΓETND ,

dNA,0

dt
= −NA,0

τA,0

+
NA

τA
.

(34)

Here, S is the exciton generation rate for the donor

state, and the total acceptor-induced correction to the

donor decay rate ΓD = ΓET + ∆Γrad consists of two

parts, the correction due to acceptor excitation (ΓET )

and the correction corresponding to the far-field emis-

sion (∆Γrad). In the case of a short distance between

the donor and the acceptor, the value of g is almost

real, ΓD = ΓA and Γrad ≪ ΓD. The expression for

Γrad can be explicitly written as

∆Γrad = − 4

~

2(Im g)2γA + 2∆ Im(g)Re g

∆2 + γ2

A

, (35)

where g = dD · ĜdA and ∆ = ωD − ωA. Hence, ∆Γrad

is not equal to zero only when the retardation effects

are taken into account (Im g 6= 0). This means that

the term ∆Γrad corresponds to the radiation of real

photons. On the other hand, ΓET is proportional to

(Re g)2+(Im g)2, i. e., it includes contributions of both

real and virtual photons [25].

In the general case, the values of ∆Γrad and ΓD can

be negative. For the vanishing detuning between the

donor and the acceptor (∆ = 0), we have |ΓD| < ΓET ,

and ∆Γrad < 0 and hence the far-field emission is sup-

pressed (see Eq. (35)). For a large detuning (|∆| ≫
≫ γA), the value of Γrad can be positive, i. e., the far

field emission enhanced. It is also possible that ΓD is

equal to zero, but ΓET is not zero. This means that the

growth of the donor decay rate due to the transfer is

exactly compensated by the suppression of the far-field

emission from the donor.

We stress that the lifetime of the acceptor excited

state τA is determined in our model by the nonradia-

tive process and is the shortest time in the system,

while the lifetime of the acceptor ground state τA,0 is

of the same order as τD,0, such that τA ≪ τA,0 ≈ τD,0.

As discussed above, the donor lifetime τD can be de-
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creased or increased in the presence of an acceptor, but

the condition τA ≪ τD remains valid.

The dynamics of the system Eq. (24) in the absence

of stationary pumping for a given population of donors

at t = 0 under these conditions is given by

ND = ND(0) exp

(

− t

τD

)

,

NA = ΓETND(0)
τAτD

τA − τD
×

×
(

exp

(

− t

τA

)

− exp

(

− t

τD

))

≈

≈ ΓETND(0)τA exp

(

− t

τD

)

,

NA,0 = ΓETND(0)
τA,0τD

τA,0 − τD
×

×
(

exp

(

− t

τA,0

)

− exp

(

− t

τD

))

.

(36)

For stationary pumping, the solution of Eqs. (24) is

given by

ND = GτD, NA = ΓET τAND,

NA,0 = ΓET τA,0ND.
(37)

The acceptor population in the ground (emitting) state

can also be rewritten as

NA,0 = GτA,0KET , (38)

where

KET =
ΓET

1/τD,0 + ΓD

=
ΓET τD,0

1 + ΓDτD,0

(39)

is the efficiency of the energy transfer. If we assume

that the quantum yield of donor emission without an

acceptor is equal to unity and its intensity is just given

by ID = G, the modified donor intensity in the presence

of the acceptor is given by I∗D = G(1−KET ), while the

intensity from the acceptor is I∗A = GKET . It turns out

that in the presence of FRET with ΓET > 0, the quan-

tum efficiency of the donor PL is always decreased even

in the case ∆Γrad > 0 (increase in the donor radiative

rate). However, the increase in the donor radiative rate

decreases the efficiency of the energy transfer and vice

versa, without changing the energy transfer rate ΓET .

4. RESULTS AND DISCUSSION

We now proceed to the analysis of the transfer effi-

ciency and transfer rates. We study their dependence

on the donor–acceptor distance r (Fig. 2), radiative

lifetimes τrad,0 (Fig. 3), and the spectral detunings ∆

(Fig. 4). Figure 2 examines the distance dependence of

the efficiency KET (a,b ) and the rates ΓET , ΓD, Γrad,

and ΓD + Γrad,0 (c,d). We have chosen two respresen-

tative values of the dipole matrix elements dD = dA,

resulting in the bare radiative lifetimes τrad,0 = 1 ns

(Fig. 2a and 2c) and τrad,0 = 100 ns (Fig. 2b and 2d).

The typical values of the radiative decay times for the

bright exciton in quantum dots can range from 0.2–

0.3 ns to 20 ns depending on the dot type [45, 46], while

for the dark quantum dot exciton transitions, the times

can range from 100 ns to 1–2 µs [5, 46]. It was demon-

strated recently that at low temperatures, dark exci-

tons determine the energy transfer in a dense ensemble

of colloidal CdTe nanocrystals [5]. The nonradiative

decay rate of the acceptor state τA is equal to 1 ps

[47]. For the short radiative lifetime τrad,0 = 1 ns, the

transfer is efficient (KET > 0.5) up to the distance r ≈
≈ 13 nm, which is by definition the radius of the Förster

process. For a larger radius, ΓET becomes smaller than

Γrad (cf. solid and dotted curves in Fig. 2c) and the

transfer is suppressed. Comparing thick and thin solid

curves in panel (c), we can see that up to r . 40 nm,

we have ΓET ≈ ΓD. This means that the transfer is

purely nonradiative for r . 40 nm. At longer distances,

when the curves deviate, the radiative correction be-

comes comparable with the transfer rate, although still

smaller than Γrad. However, at such long distances,

the transfer is quite inefficient, KET ≪ 1. Thus, we

conclude from the analysis of Fig. 2a and 2c that when

the Förster process is efficient, it is nonradiative. For

a longer radiative lifetime τrad,0 = 100 ns (Fig. 2b and

2d ), the distance dependence of the transfer remains

qualitatively the same, but the Förster radius shrinks

to about 6 nm. The sensitivity of the Förster radius

to the radiative lifetime reflects the fact that the radia-

tive rate Γrad,0 and the Förster rate ΓET are respec-

tively proportional to the second and fourth powers of

the dipole matrix element. In Fig. 2, the dipole ma-

trix element is chosen equal for donors and acceptors,

dD = dA, and hence its increase boosts the relative ef-

ficiency of the transfer. Therefore, in order to enhance

the Förster interaction between the quantum states of

the same origin, it is beneficial to select the acceptor

states with a radiative lifetime that is short (but still

longer than the nonradiative time τA). The dependence

of the Förster radius on the radiative lifetime is further

analyzed in Fig. 3. It shows the transfer efficiencies at

different donor–acceptor distances as functions of the

radiative rate. The calculation confirms that the trans-

fer at the distances beyond 10 nm requires the radiative
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lifetime of the acceptor excited state to be as short as

1 ns.

Finally, in Fig. 4, we present the dependence of the

transfer efficiency KET on the energy detuning ∆ be-

tween the donor and the acceptor for distances r =

= 13 nm, 8 nm, 6 nm, 4 nm (the respective thick

solid, dotted, thin solid, and dashed curves) and for

two different radiative lifetimes τrad,0 = 1 ns (a) and

τrad,0 = 100 ns (c). The transfer efficiency is a

Lorentzian function of the detuning with a maximum

at ∆ = 0. For τrad,0 = 1 ns (a), the spectral range

of the transfer is of the order of meV and increases at

shorter donor–acceptor distances. For the long radia-

tive lifetime τrad,0 = 100 ns, the spectral range strongly

decreases and the transfer becomes possible only for

the detuning less than 1 meV and the donor–acceptor

distance r . 5 nm. The detuning range allowing the

transfer is also inversely proportional to the nonradia-

tive lifetime of the acceptor state τA = 1/2γA, directly

entering the overlap integral Θ in Eq. (26).

5. SUMMARY

To summarize, we have presented a theory of the

Förster interaction, accounting both for the transfer

of the energy from the donor to the acceptor (Förster

effect) and for the antenna-like modification of the far-

field donor emission by the acceptor (Purcell effect).

We have demonstrated for typical parameters corre-

sponding to the semiconductor quantum dots that the

Purcell effect is negligible if the transfer efficiency is

high, KET > 0.5. In other words, the fast transfer is
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purely nonradiative. The radiative corrections start to

play a role only at relatively long distances r > 40 nm

when the transfer is quenched. We have analyzed the

dependence of the Förster radius on the radiative life-

time and revealed that the radius above 10 nm can be

achieved only by using bright donor and acceptor ex-

citonic states with the radiative lifetime of the order

of 1 ns. In this case, the transfer takes place if the

detuning between the donor and the acceptor does not

exceed several meV.

While our theory is quite general, it should be

stressed that the numerical results above are appli-

cable only to the transfer in a homogeneous dielectric

matrix. The competition between radiative and nonra-

diative transfer mechanisms in the case of a structured

electromagnetic environment (plasmonic [19, 20] or

dielectric [29]) requires further studies.
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