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STABILITY OF THE LEPTON BAG MODEL BASEDON THE KERR�NEWMAN SOLUTIONA. Burinskii *Nulear Safety Institute, Russian Aademy of Sienes115191, Mosow, RussiaReeived May 19, 2015We show that the lepton bag model onsidered in our previous paper [10℄, generating the external gravi-tational and eletromagneti �elds of the Kerr�Newman (KN) solution, is supersymmetri and represents aBPS-saturated soliton interpolating between the internal vauum state and the external KN solution. Weobtain Bogomolnyi equations for this phase transition and show that the Bogomolnyi bound determines allimportant features of this bag model, inluding its stable shape. In partiular, for the stationary KN solution,the BPS bound provides stability of the ellipsoidal form of the bag and the formation of the ring�string strutureat its border, while for the periodi eletromagneti exitations of the KN solution, the BPS bound ontrols thedeformation of the surfae of the bag, reproduing the known �exibility of bag models.DOI: 10.7868/S00444510151101031. INTRODUCTION AND OVERVIEWIt has been disussed sine long ago that blakholes may be onneted with elementary partiles.However, the spin/mass ratio of elementary partilesis extremely large, and the orresponding blak holeloses the horizons, turning into an ultra-extreme (over-harged and over-rotating) Kerr�Newman (KN) solu-tion with a naked singular ring, whih forms a topo-logial defet of spae�time. As usual, emergene of asingularity is a hint for a generalization of the theory,and the Kerr singular ring reated the problem of thesoure of the KN solution. This problem proved to bevery ompliated, and this year we an mark the 50thanniversary of its disussions. Earlier attempts to builda soure of the KN solution where disussed by Israelin [1℄, and Israel referred to the paper by Newman andJanis [2℄, wherein the nontriviality of this problem was�rst indiated. Carter obtained in [3℄ that the KN so-lution has the gyromagneti ratio g = 2, orrespondingto that of the Dira eletron, and starting from thisfat, Israel [1℄ suggested a lassial model of the ele-tron based on a rotating disk-like soure of the KNsolution, enlosed by the Kerr singular ring.The onsistent regular model of the KN soure wassuggested by López, who built the KN soure as a*E-mail: bur�ibrae.a.ru

rotating vauum bubble, overing the Kerr singularring. At the same time, many properties of the KNsoure indiated its lose relationships to string mo-dels [4�7℄, and a resolution of this duality was omingfrom the disk-like soliton model [8℄, in whih the va-uum internal state of the López bubble soure wasreplaed by a superonduting false vauum formedby the Higgs mehanism of symmetry breaking. Thering�string emerged in this model as a narrow tube ofthe eletromagneti (EM) potential onentrated at thesharp boundary of the disk-like soure, similar to thewell-known Nielsen�Olesen vortex string model in theLandau�Ginzburg theory [9℄.Reently, this model was generalized to a gravitat-ing bag model [10℄, for whih one of the known featuresis the �exibility and ability to reate string-like stru-tures 1).A prinipal peuliarity of the model onsideredin [10℄ was the requirement to retain the externalgravitational EM �eld of the KN solution, whih isknown [3, 13℄ to have the gyromagneti ratio g = 2,orresponding to that of the Dira eletron. Suh abag an be onsidered as a semilassial model forsome partiles of the eletroweak setor of the Stan-1) Extended partile-like soliton models based on the Higgsmehanism of symmetry breaking, suh as Q-balls, skirmions,bags, and vortex strings, are widely disussed now. Flexibilityof the bag models is used, in partiular, for the �ux-tube stringmodels [11, 12℄.937



A. Burinskii ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015dard Model, suh as the eletron or the muon, sinethe external gravitational and EM �eld of these par-tiles orresponds to the KN solution with very goodpreision.In this paper, we show that this bag model is super-symmetri and represents a BPS-saturated soliton in-terpolating between a supersymmetri pseudo-vauumstate inside the bag and the external �eld of the exatKN solution. We obtain that all the important featuresof this soliton onsidered in [10℄ follow unambiguouslyfrom the Bogomolnyi equations orresponding to theBPS-saturated solution.1.1. Soure of the KN solution as a spinningsolitonThe Kerr�Shild form of the KN metri is [13℄g�� = ��� + 2Hk�k� ; (1)where ��� is the metri of an auxiliary Minkowskispae2) M4, H = mr � e2=2r2 + a2 os2 � (2)is a salar funtion, r and � are ellipsoidal oordinates,and k� is the null vetor �eld, k�k� = 0, forming theprinipal null ongruene (PNC) K, a vortex polariza-tion of the Kerr spae�time. The surfae r = 0 repre-sents a disk-like �door� from the negative sheet r < 0to the positive one r > 0. A smooth extension of thesolution from the retarded to advaned sheet (togetherwith a smooth extension of the Kerr PNC) ours viathe disk r = 0 spanned by the Kerr singular ring r = 0,os � = 0 (see Fig. 1) and reates another PNC on thenegative sheet. The null vetor �elds k��(x) turns outto be di�erent on these sheets, and two di�erent nullongruenes K� reate two di�erent metrisg��� = ��� + 2Hk�� k��on the same Minkowski bakground.The mysterious two-sheeted struture of the Kerrgeometry motivated the searh for various models forthe soure of the KN solution avoiding the negativesheet. A relevant �regularization� of this spae wassuggested by López [14℄, who exised a singular regiontogether with the negative sheet and replaed it by aregular ore with a �at internal metri ��� . The result-ing vauum bubble should be mathed with the exter-2) We use the signature (�+++).
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xyFig. 1. Null diretions of the Kerr ongruene k� are fo-used on the Kerr singular ring, forming a two-sheetedspae of the advaned and retarded �eldsnal KN solution along the boundary r = R; determinedby the ondition H jr=R(r) = 0; (3)whih in aordane with (1) and (2) leads toR = re = e22m: (4)Sine r is Kerr's oblate radial oordinate (see Fig. 2),the bubble soure takes an ellipsoidal form and oversthe Kerr singular region, forming a �at spae insidethe disk of the radius r � a = ~=m and thikness re,with the degree of �atness re=r � e2 = � � 137�1orresponding to the �ne struture onstant.Developing this model led in [8℄ to a soliton modelwith a domain-wall phase transition, in whih gravityontrols the external lassial spae�time, while quan-tum theory forms a supersymmetri pseudo-vauumstate inside the bubble. The on�it between quan-tum theory and gravity is resolved by the priniple ofthe separation of their zones of in�uene:PI: spae�time should be �at inside the ore,PII: the exterior should be the exat KN solution,PIII: the boundary between regions PI and PII isdetermined by López ondition (4).In [8, 15℄, a mysterious e�etiveness of this prini-ples was mentioned, whih uniquely de�nes the form ofthis soliton and two its peuliarities:(A) the Higgs �eld is osillating with the frequeny! = 2m, and therefore belongs a type of osillons,(B) angular momentum is quantized, J = n=2,n = 1; 2; 3; : : :938
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ρFig. 2. Kerr's oblate spheroidal oordinates over thespae�time twie, for r > 0 and r < 0In this paper, we show that the KN bubble soureforms a BPS-saturated soliton, and both peuliarities(A) and (B) are uniquely determined by the Bogomol-nyi equations, whih also determine the shape of thesoliton and therefore its dynamis and stability.Starting in Se. 2 from the desription of our ap-proah used in previous paper [10℄, we derive the Bo-gomolnyi equations adapted to spei� Kerr's oordi-nates in Se. 3, and integrate them by reduing theproblem to two dimensions (t; r), time and the Kerrradial oordinate.In Se. 4, we generalize the stationary KN bag tothe bag model �exible to deformations and obtain thatthese deformations are also ontrolled by the Bogomol-nyi bound. Considering stringy deformations of thebag aused by EM exitations of the KN solution, weshow that traveling waves may reate deformations thatbreak smoothness of the solution and reate a travelingsingular pole onneted with a traveling irular wave.We onlude in Se. 5.2. GRAVITATING BAG MODEL AND THESUPERSYMMETRIC SCHEME OF PHASETRANSITIONThe bubble soure formed by the López boundarywas generalized to a soliton [8℄, and then to a gravi-tating bag model [10, 16℄. The onept of a bag modelassumes inorporating the fermioni setor, in whihthe Dira equation aquires mass through a Yukawaoupling to the Higgs �eld [11, 12℄. As a onsequene,the mass turns out to be a variable funtion of the

spae�time distribution of the Higgs ondensate. Theboundary of the bag is modeled by a domain wall inter-polating between the external KN solution and the �atinternal pseudo-vauum state, and the phase transitionbetween these states is ontrolled by the Higgs meha-nism of symmetry breaking, whih is used in many soli-ton models as well as in the well-known Nielsen�Olesenmodel [9℄, whih is in fat the Landau�Ginzburg (LG)�eld model for the vortex string in a superondutingmedia.As it was shown in [10℄, the typial quarti poten-tial �, V (j�j) = g(��� � �2)2; � = hj�ji; (5)used for the Higgs �eld in all these models, is not suit-able for the soure of the KN solution beause the exter-nal Higgs �eld distorts the external KN solution, turn-ing the EM �eld into a short-range one.Contrary to the standard bag model forming a av-ity in the Higgs ondensate [11℄, ondition PII requiresthe Higgs ondensate to be enlosed inside the bag.This annot be done with potential (5), and a moreomplex sheme of a phase transition was used in [10℄,whih ontained three hiral �elds �(i), i = 1; 2; 3. Infat, it is a supersymmetri generalization of the LGmodel [17℄.One of the �elds, say �(1), was identi�ed as theHiggs �eld �. Hene the new notation(�; Z;�) � (�1;�2;�3) (6)was used.Due to ondition PI, the bag is to be plaed inthe �at region, and the domain wall phase transitionmay be onsidered with the �at bakground metri,g�� = ��� . Therefore, the domain-wall boundary ofthe bag and the bag as a whole are not dragged byrotation. Beause of that, the hiral part of the Hamil-tonian is simpli�ed toH(h) = T 0(h)0 == 12 3Xi=1 " 3X�=0 jD(i)� �ij2 + j�iW j2# ; (7)where the ovariant derivativesD(i)� � �� + ieAi�are �at. As in [18℄, the potential V is determined bythe superpotentialV (r) =Xi j�iW j2: (8)939



A. Burinskii ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015It was shown in [10℄ that the superpotentialW (�i; ��i) = Z ����� �2�+ (Z + �)��� (9)suggested by Morris [19℄, where � and � are real on-stants, provides the neessary onentration of theHiggs �eld inside the bag, and from the supersymme-try ondition �iW = 0, two vauum states were deter-mined:(I) internal: r < R � Æ,V (r) = 0; j�j = � = onst; Z = ��;� = 0; Win = ��2; (10)(II) external: r > R+ Æ,V (r) = 0; � = 0; Z = 0;� = �; Wext = 0; (11)(III) the transition zone R � Æ < r < R + Æ, wherevaua (I) and (II) are separated by a positive spike ofthe potential V .The prinipal result obtained here is that the po-sition of the domain wall boundary satisfying require-ments PI�PIII is uniquely determined by the Bogomol-nyi bound, and therefore these requirements determinestability of the bag, leading to a supersymmetri andBPS-saturated soure of the KN solution.As was disussed in [10℄ (and earlier in [8℄), insidethe bag and in the transition zone (III), the spae is �at,the �elds �2 and �3 are onstant, and only the om-plex Higgs �eld �(x) = j�(x)jei�(x), interating withthe vetor potential of the KN solution A� penetratinginside has a nontrivial dynamis. As a result, the �eldmodel in this zone redues to the Abelian �eld modelin �at spae�time, whih has only one hiral �eld �and oinides with the model for the vortex string usedby Nielsen�Olesen [9℄. The orresponding Lagrangianleads to the equations����� = ���V; (12)����A� = I� = ej�j2(�;� + eA�); (13)whih are onsistent with the vauum states in zones(I) and (II).Equation (13), whih is indeed Eq. (2.4) of theNielsen�Olesen model [9℄, indiates that the urrentmust not penetrate inside the bag beyond a thin sur-fae layer. Setting I� = 0 inside the bag, we obtain����A� = 0 and �;� + eA� = 0; (14)
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ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015 Stability of the lepton bag model based : : :of the bag in the equatorial plane, and in aordanewith (14) it should also be ompensated by the hangein the phase of the Higgs �eld �;�. In [8℄, using theKerr relation J = ma; we obtained the seond remark-able onsequene (B): angular momentum is quantized,J = n=2, n = 1; 2; 3; : : :We now onsider these result as a onsequene of thesupersymmetry of the bag model. We use the reipedesribed in [20, 21℄ for a similar problem for a pla-nar domain wall with one hiral �eld and redue theproblem to solvable �rst-order Bogomolnyi equations,in partiular implying (A) and (B).3. SOURCE OF THE KN SOLUTION AS ABPS-SATURATED SOLITONThe full Lagrangian orresponding to the bosonipart of the N=1 supersymmetri model with three hi-ral �elds �(i) = f�; Z;�g, i = 1; 2; 3; has the form [18℄L = �14F��F�� �� 12Xi (D(i)� �(i))(D(i)��(i))� � V: (17)As we mentioned earlier, the part of the Lagrangianrelated to the �eld �(i) = �(1) � � is the same as inthe Nielsen�Olesen model.The orresponding stress�energy tensor deomposesinto a pure EM part T (em)�� and ontributions from thehiral �elds T (h)�� :T (tot)�� = T (em)�� +Xi (D(i)� �i)(D(i)� �i)�� 12g�� "Xi (D(i)� �i)(D(i)��i) + V # : (18)The �atness of the metri inside the bubble and inthe viinity of the domain wall boundary leads to thedisappearane of dragging of the hiral �elds, and sim-ilarly to previous treatment, we an use the hiral partof the Hamiltonian in form (7).The domain-wall boundary of the bag and the bagas a whole do not rotate. Nevertheless, the in�ueneof gravity is saved in the shape of the bag and also asa drag e�et ating of the KN EM �eld, whih retainsorrelation with a twisted Kerr ongruene even in the�at-spae limit. We have to take it into aount, andit is advisable to use the Kerr oordinate systemx+ iy = (r + ia)ei� sin �;z = r os �; t = �� r; (19)

whih is adapted to the shape of the bag, and whereKN vetor potential (15) takes the simple form ([13℄,Eq. (7.7))A�dx� = �Re� er + ia os ���� (dr � dt� a sin2 � d�): (20)As we have seen, the omponents A� and At havevery spei� behavior, and are ompensated by thephase of the osillating Higgs �eld�(x) � �1(x) = j�1(r)jei�(t;�); (21)whih is equivalent to the equationsD(1)t �1 = 0; D(1)� �1 = 0; (22)whih are analogs of (13), and lead to respetive onse-quenes (A) and (B). As a result, these terms drop outfrom expression (7), and all the remainder hiral �eldsdepend only on the Kerr radial oordinate r:�2 = �2(r); �3 = �3(r): (23)The sumP3�=0 jD(i)� �ij2 in (7) redues to a single term,H(h) = T 0(h)0 = 12 3Xi=1 [jD(i)r �ij2 + j�iW j2℄; (24)where the oordinate r parameterizes the oblate sur-fae of the bag and, similarly to parallel surfaes of theplanar domain walls, the surfaes r and r + dr an beregarded as �loally parallel� to eah other (see Figs. 4and 5).Following [20, 21℄, we now use a �trik�, by introdu-ing the angles �i, whih allow us to rewrite expression(24) in the equivalent formH(h�r) = 3Xi=1 12 ����D(i)r �i � ei�i � �W� ��i ����2 ++Re exp(�i�i)� �W� ��iD(i)r �i; (25)where the phases �i should be independent of r andbe hosen so as to ensure the vanishing of the squareterms, i. e., D(i)r �i = exp(i�i)� �W� ��i : (26)The funtions W and Z are real, and without lossof generality we an also set a real �3, whih allows usto take �2 = �3 = 0. For the Higgs �eld, representedby the funtion941
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H(h�r) = 3Xi=1 12 �����r�i � �W��i ����2 ++Re��W��i� �r�i; (28)where the replaement of the ovariant derivatives D(1)rwith the partial �r is valid due to the onrete form ofsuperpotential (9).A minimum of the energy density H(h�r) isahieved forD(i)r �i = �W��i ; D(i)r ��i = � �W� ��i ; (29)whih are the Bogomolnyi equations orresponding tothe saturated Bogomolnyi bound. Expression (28)turns into a full di�erential,H(h�r) = Re��W��i� �r�i = �W�r : (30)We an now obtain the mass�energy of the bag to-gether with its domain-wall boundaryMbag �Mh = Z dx3p�g T 0(h)0 : (31)For the Kerr oordinate system,p�g = (r2 + a2 os2 �) sin �: (32)Axial symmetry allows us to integrate over �, leadingtoMbag = 2� Z dr d�(r2 + a2 os2 �) sin �T 0(h)0 : (33)Using (30), we obtainMbag = 2� Z d�(r2 + a2 os2 �) sin ��rW dr: (34)Taking into aount that superpotential W (r) is on-stant inside and outside the soure,Wint = ��2; Wext = 0; (35)we have �rW = 0 inside and outside the bag and, byrossing the bag boundary, we obtain the di�erene�W =W (R+ Æ)�W (R � Æ) = ���2:After integration over r 2 [0; R℄ and then overX = os �, we obtainMbag = 2��W 1Z�1 dX(R2 + a2X2) == 4��R2 + 13a2��W: (36)942



ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015 Stability of the lepton bag model based : : :4. STRINGY DEFORMATIONS OF THE KNBAGAs disussed in [10℄, taking the bag model onept,we should also aept the dynamial point of view thatthe bags are to be soft and deformed, aquiring exi-tations similar to exitations of the dual string mod-els [12, 22, 23℄. By deformations, the bags may formstringy strutures. Generally onsidered are the radialand rotational exitations, forming open strings or �uxtubes. The old Dira model of an �extensible� spheri-al eletron [24℄ may also be onsidered as a prototypeof the bag model with spherially symmetri deforma-tions � radial exitations.The bag-like soure of the KN solution without ro-tation, a = 0, represents the Dira model of a spherial�extensible� eletron, whih has the lassial eletronradius R = re = e2=2m at rest. The KN rotating disk-like bag (see Fig. 1 in [10℄) may be onsidered as theDira bag strethed by rotation to a disk of the Comp-ton radius, a = ~=2m, whih orresponds to the zoneof vauum polarization of a �dressed� eletron.It has been obtained long ago that the Kerr geom-etry is losely related to strings [7℄. In partiular, inour old work [4, 5℄, the Kerr singular ring was assoi-ated with a losed ring�string that may arry travelingwaves like a waveguide3). In the soliton bag model,the Kerr singularity disappears, but this role is playedby the sharp boundary of the disk-like bag. Like theKerr singular ring [4℄, it an serve as arrier of travelingwaves. It was shown in [6℄ that the �eld struture ofthis string is similar to the struture of the fundamentalstring, obtained by Sen as a solitoni string-like solu-tion of low energy string theory [26℄. As it was shownin [4, 5℄ and reently in [27℄, the EM and spinor exi-tations of the KN solution are onentrated near theKerr ring, forming string-like traveling waves. For thestationary KN solution, the EM �eld forms a frozenwave [4℄, loated along the boundary of the disk-likesoure. Loally, this frozen string is a typial plane-fronted EM wave with null invariants,E �H = 0; E2 = H2; (37)and with the Poynting vetorS = 14�E�Hdireted along the tangent to the Kerr singular ring,k �S > 0. In the regularized KN solution, the Kerr sin-gular ring is regularized, aquiring a ut-o� parameter3) Another, omplex string appears in the omplex strutureof the Kerr geometry [7, 25℄.
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y v = 
Fig. 6. Regularization of the KN EM �eld. A setion ofthe disk-like bag in the equatorial plane. The distanefrom positions of the boundary of the bag from theposition of the (former) singular ring ats as a ut-o�parameter R. a) Axially symmetri KN solution gives aonstant ut-o� R = re. b ) The boundary of the bagis deformed by a traveling wave, reating a irulatingsingular point of tangeny (zitterbewegung)R, whih for the axially symmetri KN solution is theonstant R = re, Eq. (4) (see Fig. 6a).Sine the null vetor of the Kerr ongruene k� istangent to the Kerr singular ring, and sine R � a,the ring�string at the boundary is almost light-like,and its struture is very lose to the known pp-wavestrings [28�30℄. However, for an external observer, thelight-like losed string should shrink to a point due toLorentz ontration, [27℄. The extended KN string,positioned along the boundary of the bag, annot belosed, [31℄, sine the end points of the string world-sheet x�(�; t) and x�(� + 2�; t) must not oinide4).There are two ways to make a onsistent extendedstring struture:1) to onsider this string as an open one and toomplete it to a onsistent sum omprising the left andright modes,2) to form an orientifold string, whih means thatthe open string is built from a losed one by foldingits worldsheet [31℄: the interval � 2 [0; 2�℄ is repre-sented as a half-interval �+ 2 [0; �℄, doubled by thereversed half-interval �� 2 [�; 2�℄, with x�(��; t) == x�(2� � ��; t).4) Otherwise the worldsheet beomes a worldline. We are faedhere with an odd peuliarity of the Kerr spinning partile, wherethe hiral �elds form an extended bag, while the assoiated EM�eld forms a light-like string that looks like a point for an externalobserver.943
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Fig. 7. The irular left mode formed by a travelingwave along the KN string is ompleted by the time-likeright mode formed by the frozen traveling wave of thestationary KH solution qHere, we follow the �rst way, and onsider theabove �frozen� solution as a right mode of an exitation.We omplete it by the left ounterpart, whih we �ndamong other admissible exitations. All exat solutionsfor the EM �eld on the Kerr bakground were obtainedin [13℄, and they are de�ned by an analyti funtionA =  (Y; �)=P 2, where Y = ei� tan(�=2) is a omplexprojetive angular variable, � = t�r�ia os� is a om-plex retarded-time parameter, and P = 2�1=2(1+Y �Y )for the Kerr geometry at rest. The vetor potential isdetermined by the funtion  as follows [13℄:A�dx� = �Re�  r + ia os �� e3 + �d �Y ;� = 2 Z (1 + Y �Y )�2 dY: (38)The simplest funtion  = �e yields the stationaryKN solution with funtion (2). It orresponds to thefrozen irular EM wave disussed above (see Fig. 7).This irular traveling mode is loally plane wave �pro-pagates� along the Kerr singular ring. By regulariza-tion, the EM �eld aquires the onstant ut-o� param-eter R = re (see Fig. 6a).Along with many other possible stringy waves, aninteresting e�et is manifested by the lowest wave so-lutions5)  = e�1 + 1Y ei!�� : (39)It is easy to �nd the bak reation of this exitation.The boundary of the disk is very lose to the position5) Remarkable features of this ombination were disussedin [4℄.

of the Kerr singular ring, and regularization of the sta-tionary KN soure in fat represents a onstant ut-o�parameter R = re, Eq. (4), for the Kerr singularity.The EM traveling waves deform the bag surfae, andthe boundary of the deformed bag an be determinedfrom the ondition H = 0, Eq. (3).Like the stationary KN solution, the funtion  atson the metri through the funtion H , whih in thegeneral ase has the formH = mr � j j2=2r2 + a2 os2 � ; (40)and the ondition H = 0 determines the boundary ofdisk R = j j2=2m, whih ats as the ut-o� parame-ter for EM �eld. The orresponding deformations ofthe bag boundary are shown in Fig. 6b. We see thatsolution (39) takes the form = e(1 + e�i(��!t));in the equatorial plane os � = 0 and the ut-o� param-eter R = j j22m = e2m (1 + os(�� !t))depends on �� !t. The vanishing of R at � = !t re-ates a singular pole, whih irulates along the ring�string together with the traveling wave of the exita-tion, reproduing light-like zitterbewegung of the Diraeletron. This pole may be interpreted as a single endpoint of the ring�string: either as a point-like bare ele-tron or as a light-like quark, if it is also present in theassoiated fermioni setor.5. CONCLUSIONThe mysterious problem of the soure of two-shee-ted Kerr geometry leads to a gravitating soliton-bubblemodel, whih has to retain the external long-rangegravitational and EM �eld of the KN solution. Therequirement of onsisteny with gravity leads to a su-persymmetri �eld model of a phase transition in whihthe Higgs ondensate forms a supersymmetri ore ofa spinning partile-like solution. The resulting modelonsidered in [10℄ has muh in ommon with the fa-mous MIT and SLAC bag models, as well as with thebasi onept of the Standard Model, where the ini-tially massless leptons (left and right) aquire a massinside the bag from the Higgs mehanism of symmetrybreaking.In the present extension of [10℄, we showed thatthe KN bag model forms a BPS-saturated solution ofthe Bogomolnyi equations, and therefore the stationary944



ÆÝÒÔ, òîì 148, âûï. 5 (11), 2015 Stability of the lepton bag model based : : :bag forms a stable on�guration determined by the KNparameters: harge, spin, and the rotation parametera = J=m, while the mass is related to the parametersof the domain-wall bubble enoded in the superpoten-tial W .Similar to the other bag models, the KN bag ispliant to deformations. The spinning bag takes theshape of a thin disk, whose sharp boundary representsa ring�string, whih an support traveling waves. Thedomain-wall boundary of the disk is determined by theBPS bound, whih oinides with the López boundarydetermined by priniples PI�PIII. For the stationaryKN solution, this orresponds to the bag of an oblateellipsoidal form taking the Compton zone of a dressedeletron. The boundary of the disk is ompleted by a�frozen� light-like ring�string of the Compton radius.Sine the tangent diretion to this string is light-likewith great preision, it shrinks by the Lorentz ontra-tion, and its spae�time extension annot be �seen� byan external observer [27; 32℄6).On the other hand, we showed that the ring�stringtraveling waves lead to deformations of the bagsurfae, and the lowest EM exitation of the KNsolution breaks the regularization of the KN solution,reating a singular pole that reprodues the knownzitterbewegung, irulating with speed of light alongthe ring�string together with traveling wave. Thebag model aquires an additional point-like elementthat may be interpreted as an analog of the bareeletron, while the model as a whole turns into a singlebag�string�quark system, whih should be assoiatedwith a dressed eletron.The author would like to thank P. Kondratenkoand Yu. Obukhov and all olleagues of the TheoretialPhysis Laboratory, NSI RAS, for the useful disussion.The author also thanks V. Dokuhaev,V. Rubakov, andother members of the Theoretial Division, INR RAS,for the invitation to a seminar talk and the useful dis-ussion. The author thanks J. Morris for reading a ver-sion of this paper, a very useful onversation, and or-reting some signs. The results of this work were alsoreently delivered at the International Conferene �Soli-tons: Topology, Geometry, and Appliations�, Thes-saloniki, Greee, and the author would like to thankthe organizers for the invitation and all partiipants,in partiular, T. Manton and B. Shröers, for the use-6) However, it is was supposed in [27; 32℄ that the real Comptonextension of this string would be observable in some experimentswith low-energy sattering.
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