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KINEMATIC DUST VISCOSITY EFFECT ON LINEAR ANDNONLINEAR DUST-ACOUSTIC WAVES IN SPACE DUSTYPLASMAS WITH NONTHERMAL IONSA. M. El-Hanbaly a, M. Sallah a*, E. K. El-Shewy b, H. F. Darweesh aaPhysi
s Department, Fa
ulty of S
ien
e, Mansoura University35516, Mansoura, EgyptbDepartment of Physi
s, Taibah UniversityAl-Madinah Al-Munawarah, Saudi ArabiaRe
eived De
ember 30, 2014Linear and nonlinear dust-a
ousti
 (DA) waves are studied in a 
ollisionless, unmagnetized and dissipative dustyplasma 
onsisting of negatively 
harged dust grains, Boltzmann-distributed ele
trons, and nonthermal ions.The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependen
e of the wavedamping rate on the 
arrier wave number, the dust vis
osity 
oe�
ient, the ratio of the ion temperature tothe ele
tron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via theredu
tive perturbation method that gives the KdV�Burgers equation. Some interesting physi
al solutions areobtained to study the nonlinear waves. These solutions are related to soliton, a 
ombination between a sho
kand a soliton, and monotoni
 and os
illatory sho
k waves. Their behaviors are illustrated and shown graphi
ally.The 
hara
teristi
s of the DA solitary and sho
k waves are signi�
antly modi�ed by the presen
e of nonthermal(fast) ions, the ratio of the ion temperature to the ele
tron temperature, and the dust kinemati
 vis
osity. Thetopology of the phase portrait and the potential diagram of the KdV�Burgers equation is illustrated, whoseadvantage is the ability to predi
t di�erent 
lasses of traveling wave solutions a

ording to di�erent phase orbits.The energy of the soliton wave and the ele
tri
 �eld are 
al
ulated. The results in this paper 
an be generalizedto analyze the nature of plasma waves in both spa
e and laboratory plasma systems.DOI: 10.7868/S00444510151001441. INTRODUCTIONThere has been a great interest in the understan-ding of di�erent types of 
olle
tive pro
esses in dustyplasmas, be
ause of their vital role in the study of as-trophysi
al and spa
e environments, su
h as 
ometarytails, asteroid zones, planetary rings, the insterstellarmedium, Earth's environment, et
. [1�4℄. The dustgrains are usually negatively 
harged be
ause of a num-ber of 
harging pro
esses, su
h as �eld emission, ultra-violet radiation, plasma 
urrents, et
. [5�7℄. The pres-en
e of this 
harged dust 
omponent not only modi-�es the existing plasma wave spe
tra but also intro-du
es new eigenmodes, su
h as the dust-a
ousti
 (DA)*E-mail: msallahd�mans.edu.eg

mode [8, 9℄, dust�ion a
ousti
 mode [10℄, dust 
y-
lotron mode [11℄, dust drift mode [12℄, dust latti
emode [13, 14℄, et
. The DA wave is the most well stud-ied of su
h new modes. It arises due to the restoringfor
e provided by the plasma thermal pressure ele
tronsand ions, while the inertia is due to the dust mass [8, 9℄.In parti
ular, the hot ele
trons may not follow theMaxwellian distribution. In [15℄, the e�e
t of non-thermal ele
trons was proposed for observations by theFreja satellite. On the other hand, nonthermal (fast)ions have been observed in Earth's bow-sho
k [16℄. The
ombined e�e
ts of the nonadiabati
 dust 
harge �u
-tuation and the fast (nonthermal) ions on the propaga-tion of linear DA waves in inhomogeneous dusty plas-mas were studied in [17℄. The presen
e of nonther-mality of ions was shown to modify the frequen
y anddamping of the low-frequen
y plasma mode. Therefore,it is reasonable to 
onsider the nonthermality of plasmaions throughout this work.766
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 dust vis
osity e�e
t on linear : : :It is important to investigate the nonlinear DAwaves to understand the properties of lo
alized ele
t-rostati
 perturbations in spa
e and laboratory dustyplasmas [1; 18�20℄. Re
ently, the nonlinear DA waveshave been investigated theoreti
ally [8; 21�24℄ as wellas experimentally [25, 26℄. All of the theoreti
al andexperimental investigations have been 
arried out atroom temperature.In most of the theoreti
al studies on dustyplasma, the redu
tive perturbation method has beenused for deriving the Korteweg�de Vries (KdV),Korteweg�de Vries�Burgers (KdV�Burgers), Zakha-rov�Kuznetsov, and Kadomtsev�Petviashvili equations[27�29℄. The redu
tive perturbation method is mostlyapplied to small-amplitude nonlinear waves [30℄. Thismethod res
ales both spa
e and time in the governingequations of the system in order to introdu
e spa
e andtime variables that are appropriate for the des
riptionof long-wavelength phenomena.Moreover, dusty plasmas with dissipative 
hara
-teristi
s support the existen
e of sho
k waves insteadof soliton waves. The dissipation in dusty plasmas 
anbe 
aused by the Landau damping, dust �uid vis
os-ity, dust�dust 
ollisions, and dust 
harge �u
tuations,whi
h 
ould modify the wave properties [31, 32℄. Ex-perimentally, the e�e
ts of dissipation 
aused by thekinemati
 vis
osity on the propagation of solitary wavestru
tures are observed and dis
ussed in [33℄. The DAsho
k waves in dusty plasma with dust 
harge �u
tu-ations and nonthermal ion e�e
ts were studied in [34℄using the redu
tive perturbation te
hnique to derive aKdV�Burgers equation. The e�e
t of nonthermal ionswas 
onsidered in [35℄ and the KdV equation was ob-tained; in [36℄, the same nonthermal plasma model was
onsidered and the modi�ed KdV equation was derived.The results in [35, 36℄ showed the solitary waves with�nite amplitude only.In this paper, we 
onsider a homogeneous sys-tem of an unmagnetized, 
ollisionless and dissipativedusty plasma that 
onsists of negatively 
harged dustgrains, Boltzmann-distributed ele
trons, and nonther-mal (fast) ions (Se
. 2). The linear dispersion relation isanalyzed by using the normal mode te
hnique. It showsthe dependen
e of the plasma damping rate on the dif-ferent plasma parameters (Se
. 3). To emphasize thenonlinearity of the analysis, the redu
tive perturbationmethod is used, whi
h yields a nonlinear partial dif-ferential equation, the KdV�Burgers equation (Se
. 4).Topologi
ally, we illustrate the bifur
ation and phaseportrait of the KdV�Burgers equation in order to re-
ognize the di�erent 
lasses of nonlinear waves.

2. GOVERNING EQUATIONSWe 
onsider a homogeneous system of an unmagne-tized, 
ollisionless and dissipative dusty plasma whose
onstituents are negatively 
harged dust grains, non-thermal ions, and ele
trons obeying the Boltzmannthermal distribution. The dynami
s of the DA wavesare governed by the basi
 set of equations�nd�t + � (ndud)�x = 0; (1)�ud�t + ud�ud�x + q ���x � �d �2ud�x2 = 0; (2)�2��x2 + qnd � ne + ni = 0; (3)where nd is the dust grain number density, ud is thedust �uid velo
ity, q is the number of 
harges on thedust grains, � is the ele
trostati
 potential, �d is thedust vis
osity 
oe�
ient, ne is the ele
tron number den-sity and ni is the ion number density.As usual, the dust 
harge is a fun
tion of the plasmaparameters, but as a 
onsequen
e of that, the typi
aldust 
harging time s
ale may be longer than the DAtime s
ale, and we anti
ipate that the dust 
harge �u
-tuations have no essential e�e
t on the DA mode, andthe dust 
harge 
an therefore be assumed to be 
on-stant [37, 38℄. When the e�e
ts of plasma turbulen
e,parti
le re�e
tion, Landau damping, and 
harge �u
tu-ations are not signi�
ant, the kinemati
 dust vis
osityprovides an alternative physi
al me
hanism that 
ausesdissipation in a dusty plasma and leads normally tosho
k waves. Here, the kinemati
 dust vis
osity is 
on-sidered to be 
onstant [39℄.The thermal and nonthermal distributions of theele
trons and ions are 
hosen to bene = �e exp (�i�) ; (4)ni = �i �1 + ��+ ��2� exp (��) ; (5)where �i and �e are the initial equilibrium density ofions and ele
trons, � = 4�=(1 + 3�), � is a parameterdetermining the number of fast nonthermal ions, and�i = Ti=Te, where Te is the temperature of ele
tronsand Ti is the temperature of ions.3. LINEAR ANALYSISTo derive a dynami
al equation for the dispersionrelation of DA waves from the basi
 equations (1)�(5),767



A. M. El-Hanbaly, M. Sallah, E. K. El-Shewy, H. F. Darweesh ÆÝÒÔ, òîì 148, âûï. 4 (10), 2015we use the normal mode method. With this method,the dependent variables nd, ud, and � are expandedin terms of their equilibrium and perturbed parts asnd = 1 + ~nd, ud = 0 + ~ud, and � = 0 + ~�. The per-turbed quantities are proportional to exp[i(kx � !t)℄,and then the basi
 equations (1)�(5) are linearized andtheir 
orresponding �rst-order approximation yields~nd = qk2! (! + i�dk2) ~�; (6a)~ud = qk! + i�dk2 ~�: (6b)From Poisson's equation (3), the linear dispersionrelation follows�k2 + �i (1� �) + �e�i�!2 ++ i�dk2 �k2 + �i (1� �) + �e�i�! � q2k2 = 0: (7)We set 
onsider ! = !r + i!i; (8)where !r and !i are the real and imaginary parts ofthe plasma frequen
y !. Inserting Eq. (8) into Eq. (7),we obtain 2 �k2 + �i (1� �) + �e�i�!r!i ++ �dk2 �k2 + �i (1� �) + �e�i�!r = 0; (9a)�k2 + �i (1� �) + �e�i�!2i �� �k2 + �i (1� �) + �e�i�!2r ++�dk2 �k2 + �i (1� �) + �e�i�!i + q2k2 = 0: (9b)Solving Eqs. (9), we obtain !r = 0 and!i = �k2�d2 ++ p�4q2k2+k4�2d(k2+�i (1��) +�e�i)2pk2 + �i (1� �) + �e�i ; (10)whi
h depends mainly on the plasma parameters k, �d,�i, and �. The behavior of the damping rate !i withsu
h parameters is illustrated in Figs. 1 and 2. Fromthese �gures, we 
an see that the instability dampingrate !i in
reases as the plasma parameters (the 
arrierwave number k, the dust kinemati
 vis
osity 
oe�
ient�d, and the ion-to-ele
tron temperature ratio �i) in-
rease, and de
reases as the nonthermal parameter �in
reases. 4. NONLINEAR ANALYSISTo derive a dynami
al equation for the nonlinearpropagation of ele
trostati
 waves in our plasma sys-tem, we use the redu
tive perturbation method. The
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tive perturbation method should be applied tosmall-amplitude nonlinear waves [30℄. This methodres
ales both spa
e and time in the governing equationsof the system so as to introdu
e spa
e and time vari-ables that are appropriate for the des
ription of long-wavelength phenomena. A

ording to this method, theindependent variables are stret
hed as� = "3=2t; � = "1=2(x� �t); �d = "1=2 �; (11)768
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 dust vis
osity e�e
t on linear : : :where " is a small dimensionless expansion parametermeasuring the strength of the nonlinearity and � is thewave speed. All physi
al quantities appearing in thebasi
 equations (1)�(5) are expanded in power series in" about their equilibrium values asnd = 1 + "nd1 + "2nd2 + "3nd3 + : : : ; (12a)ud = "ud1 + "2ud2 + "3ud3 + : : : ; (12b)� = "�1 + "2�2 + "3�3 + : : : (12
)We substitute Eqs. (11) and (12) in the basi
 equa-tions (1)�(5) and equate the 
orresponding 
oe�
ientsof like powers of ". From the lowest-order equations in", we then have nd1 = q�2 �1; (13)ud1 = q� �1; (14)and Poisson's equation gives the 
ompatibility 
ondi-tion �2 = q2�e�i � �i(� � 1) : (15)Pro
eeding to the order "2, we obtain�nd1�� � ��nd2�� + �ud2�� + � (nd1ud1)�� = 0; (16a)�ud1�� � ��ud2�� + ud1 �ud1�� ++ q ��2�� � � �2ud1��2 = 0; (16b)�3�1��3 + q �nd2�� � q2�2 ��2�� ++ (�i � �e�2i )�1 ��1�� = 0: (16
)Eliminating the se
ond-order perturbed quantitiesnd2, ud2, and �2 and solving this system with the aidof Eqs. (13)�(15), we �nally obtain the KdV�Burgersequation��1�� +A �1 ��1�� +B �3�1��3 + C �2�1��2 = 0; (17)where A = 3q2� + �32q2 (�i � �e�2i ); (18a)B = �32q2 ; C = ��2 : (18b)

4.1. Bifur
ation analysis and solutions of theKdV�Burgers equationWe introdu
e the variable � = � � U� , where �is the transformed 
oordinate relative to a frame thatmoves with the velo
ity U . Integrating Eq. (17) withrespe
t to � leads tod2�1d�2 + CB d�1d� + A2B�21 � UB�1 = 0: (19)Owing to the presen
e of the Burgers termCB d�1d� ;Eq. (19) des
ribes homogeneous and dissipative dustyplasmas. Hen
e, the phase paths of su
h equation are,in general, no longer level 
urves of the energyH ��1; d�1d� � :In the dissipative 
ase, it is therefore reasonable to dealwith dH=d� rather than H . The KdV�Burgers equa-tion (19) 
an be written in the general formd2�1d�2 + h��1; d�1d� � d�1d� +G(�1) = 0; (20)where h and G are two fun
tions that 
an be deter-mined by 
omparing Eqs. (19) and (20).In the 
onservative 
ase (h = 0), the total energyasso
iated with Eq. (20) isH = 12 �d�1d� �2 + V (�1); (21)where V (�1) is the potential fun
tion; thendHd� = d�1d� �d2�1d�2 + dVd�1� : (22)With G(�1) = dV =d�1 in Eq. (20), the total deriva-tive of H is given bydHd� = �h��1; d�1d� ��d�1d� �2 ; (23)whi
h is a de
reasing fun
tion of � if h > 0. This equa-tion is very important for studying the stability of thesystem. In our 
ase, dH=d� 
orresponds to the KdV�Burgers equation:dHd� = CB �d�1d� �2 ; (24)9 ÆÝÒÔ, âûï. 4 (10) 769
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h shows that the energy of the plasma system isnot 
onserved and hen
e it is not easy to �nd an exa
tanalyti
 solution of the KdV�Burgers equation.In terms of the vis
osity 
oe�
ient �, Eq. (24) 
anbe written as dHd� = �q2��3 �d�1d� �2 ; (25)whi
h is always a de
reasing fun
tion be
ause q2, �,and � are always positive quantities.In parti
ular, if the Burgers 
oe�
ient C = 0, thesystem of equations be
omes 
onservative (dH=d� = 0)and the total energy isH = 12 �d�1d� �2 � U2B�21 + A6B�31; (26)where the potential fun
tion isV (�1) = � U2B�21 + A6B�31: (27)Equations (26) and (27) are ne
essary to furnish thebifur
ation and the phase portrait asso
iated with thistype of the KdV�Burgers equation. The pro�le of thepotential fun
tion and the phase portrait are investi-gated under the 
onditions A > 0, B > 0, and U > 0;they are shown graphi
ally in Figs. 3 and 4. The poten-tial fun
tion is shown as a fun
tion of �1 for di�erentvalues of �i in Fig. 3. It is 
lear that the potential wellhas one hump and a pit and the potential well be
omesdeeper as �i in
reases. The hump 
orresponds to asaddle point at (0; 0) and the pit 
orresponds to the
entral point at (2U=A; 0) in the phase portrait. Fromthe topology of the phase portrait diagram in Fig. 4,
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φ1Fig. 4. The variation of d�1=d� versus �1 at di�erentvalues of H for �e = 3, �i = 2, � = 0:2, �i = 0:3,u0 = 0:4, q = 1we 
an see a family of periodi
 orbits at (2U=A; 0),whi
h predi
t a family of periodi
 wave solutions, andone homo
lini
 orbit at (0; 0), that relates to one soli-tary wave solution. Moreover, Fig. 4 shows a seriesof bounded open orbits that 
orrespond to a series ofbreaking wave solutions.The traje
tories shown in Fig. 4 point to the exis-ten
e of a stable solitoni
 solution that should satisfythe 
ondition �d2Vd�21 ��1=0 < 0;whi
h explains that there must exist a nonzero 
rossingpoint �1 = �0 su
h that V (�1 = �0) = 0. In addition,there must exist a �1 between �1 = 0 and �1 = �0 su
hthat V (�1) < 0. Obviously, it follows from Eq. (27)that the 
ondition of the existen
e of a stable solitoni
solution is satis�ed be
ause�d2Vd�21 ��1=0 = �UB < 0; (28)where the parameters U and B are positive. The 
or-responding stable solitoni
 solution is given by�1 = �0 se
h2 � �W � ; (29)where �0 = 3U=A is the soliton wave amplitude andW = p4B=U is the width of the soliton wave in theabsen
e of the Burgers term. The behavior of the ob-tained solution and its amplitude and width are pre-sented in Figs. 5�9. Figures 5 and 6 show the variationin �1 with � at di�erent values of � (the nonthermal770
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tron temperature). The amplitude of the soli-ton wave de
reases (in
reases) with in
reasing of � (�i),while the width in
reases (de
reases) with in
reasing �(�i). The single-pulse soliton solution �1 is plottedversus �, and its propagation is shown at di�erent times
ales � in Fig. 7. Both the amplitude and the widthof the soliton waves are plotted against � and �i inFigs. 8 and 9, and the same behavior as in Figs. 5 and6 is observed.The soliton energy En is obtained as the integralEn = 1Z�1 u2d1(�) d�: (30)
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1.0Fig. 10. Contour plot of En versus � and �i for �e == 1:4, �i = 0:4, u0 = 0:4, q = 1With Eqs. (14) and (29), Eq. (30) is readily integratedand yields the soliton energyEn = 24q2U2�2A2pU=B : (31)It is 
lear that the soliton energy depends mainlyon the plasma parameters via the 
oe�
ients A and B.The behavior of the soliton energy as a fun
tion of �and �i is shown graphi
ally in Fig. 10. We see from this�gure that the soliton energy En in
reases (de
reases)with in
reasing the value of �i (�).The asso
iated ele
tri
 �eld is obtained asE = �r�1; (32)whi
h givesE = 3UpU=BA se
h2 12rUB�!�� tanh 12rUB�! : (33)The behavior of the ele
tri
 �eld E is presentedgraphi
ally in Figs. 11�13. Figures 11 and 12 show thevariation of the ele
tri
 �eld E as a fun
tion of � and �i.Obviously, the amplitude of the ele
tri
 �eld de
reases
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reases) with in
reasing the value of � (�i), while thewidth of the ele
tri
 �eld in
reases (de
reases) with in-
reasing the value of � (�i). Figure 13 represents theevolution of the ele
tri
 �eld E versus � at di�erenttime s
ales � .In the presen
e of the Burgers term, the system ofequations is dissipative and the total energy H is not
onservative. Therefore, the exa
t solution of Eq. (19)
an be 
onstru
ted by means of di�erent mathemati
almethods [29; 40�42℄. Among these, the tanh methodhas proved to be a powerful mathemati
al te
hniquefor solving nonlinear di�erential equations.Following the pro
edure of the tanh method [43℄,we 
onsider the solution in the series form as�1 = NXn=0 an tanhn(�); (34)772
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oe�
ients an and N are to be deter-mined. Balan
ing the nonlinear and dispersion termsin Eq. (19), we obtain N = 2. Substituting Eq. (34) inEq. (19) and equating the di�erent 
oe�
ients of dif-ferent powers of tanh(�) fun
tions to zero, we obtainthe set of algebrai
 equations2a2 � UBa0 + A2Ba20 + CBa1 = 0; (35a)2a1 + UBa1 � ABa0a1 � 2CB a2 = 0; (35b)8a2+UBa2� A2Ba21�ABa0a2+CBa1 = 0; (35
)2a1 + ABa1a2 � 2CB a2 = 0; (35d)6a2 + A2Ba22 = 0: (35e)Solving these algebrai
 equations, we obtaina0 = UB + 8BA + C225AB ; (36a)a1 = 12C5A ; a2 = �12BA ; (36b)C = �10B; U = 24B: (36
)Hen
e, we 
an write the expli
it solution ofKdV�Burgers equation (19) as�1 = 1A �U + 8B + C225B + 12C5 tanh(�) �� 12B tanh2(�)� ; (37)or
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Fig. 15. The variation of �1 versus � at di�erent valuesof � for �e = 6, �i = 5, � = 0:2, �i = 0:2, � = 0:4,u0 = 0:4, q = 1�1 = 1A �U � 4B + C225B + 12C5 tanh(�) ++ 12B se
h2(�)� : (38)This 
lass of solutions represents a parti
ular 
om-bination of a solitary wave (the se
h2(�) term in theright-hand side of Eq. (38)) with a Burgers sho
k wave(the tanh(�) term). The behavior of this solution interms of the 
oordinates � and � is shown graphi
allyin Figs. 14 and 15. We 
an see from these �gures thatboth soliton and sho
k stru
tures are obtained due tothe presen
e of dispersive and dissipative 
oe�
ients.Another type of solution 
an be obtained when thedissipative term is dominant over the dispersive term.In this 
ase, Eq. (19) redu
es to the nonlinear �rst-or-der di�erential equation773
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Fig. 16. The variation of �1 versus � at di�erent va-lues of � for �e = 1:4, �i = 0:4, �i = 0:2, � = 0:3,u0 = 0:4, q = 1
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Fig. 17. The variation of �1 versus � at di�erent va-lues of �i for �e = 1:4, �i = 0:4, � = 0:2, � = 0:3,u0 = 0:4, q = 1d�1d� = UC�1 � A2C�21; (39)whi
h admits the solution�1 = 2U exp (U�=C)1 +A exp (U�=C) ; (40)or �1 = UA �1 + tanh� U2C��� : (41)This type of solution a
tually des
ribes a monotoni
sho
k wave, whose behavior is shown in Figs. 16�19.These �gures investigate the e�e
t of plasma parame-ters like �, �i, and the dust kinemati
 vis
osity 
oef-
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Fig. 18. The variation of �1 versus � at di�erent va-lues of � for �e = 1:4, �i = 0:4, � = 0:2, �i = 0:2,u0 = 0:4, q = 1
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Fig. 19. The variation of �1 versus � at di�erent va-lues of � for �e = 1:4, �i = 0:4, � = 0:2, �i = 0:2,� = 0:2, u0 = 0:4, q = 1�
ient � on the existen
e of monotoni
 sho
ks. Figu-res 16 and 17 indi
ate that the monotoni
 sho
k wavestrength de
reases (in
reases) with in
reasing the valueof � (�i). However, in Fig. 18, the monotoni
 sho
kwave width in
reases with in
reasing the value of �.The propagation of a monotoni
 sho
k wave at di�er-ent time s
ales is shown in Fig. 19.On the other hand, another type of solution of spe-
ial interest 
an be obtained if we 
onsider the asymp-toti
 boundary 
ondition�! �1) d2�1d�2 = d�1d� = 0;whi
h yields the asymptoti
 solution of the nonlinearKdV�Burgers di�erential equation as774
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Fig. 20. The variation of �1 versus � at di�erent va-lues of � for �e = 1:8, �i = 0:8, �i = 0:2, � = 0:3,u0 = 0:4, q = 1�
 = 2UA : (42)Using that �1 = �
 + � for j�
j � j�j, Eq. (19)
an be linearized to the se
ond-order linear di�erentialequation d2�d�2 + CB d�d� + UB� = 0: (43)The solution of linear di�erential equation (43) 
anbe expressed in the exponential form � = exp(M�),where M = C2B "�1�r1� 4UBC2 # : (44)For C2 � 4UB, the os
illatory sho
k wave solutionis given by�1 = �
 +Q exp�� C2B�� 
os rUB�! : (45)where Q is an arbitrary 
onstant. The behavior of theobtained solution with the parameters �, �i, and � isshown graphi
ally in Figs. 20�22. These �gures showthat the amplitude of the os
illatory sho
k wave de-
reases with in
reasing the value of � and in
reaseswith in
reasing the values of both �i and �.Obviously, in addition to an os
illatory sho
kwave, the KdV�Burgers equation exhibits solitoni
 andmonotoni
 sho
k waves due to the Burgers term arisingfrom the �uid vis
osity.
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Fig. 21. The variation of �1 versus � at di�erent va-lues of �i for �e = 1:8, �i = 0:8, � = 0:2, � = 0:3,u0 = 0:4, q = 1
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Fig. 22. The variation of �1 versus � at di�erent va-lues of � for �e = 2:2, �i = 1:2, � = 0:2, �i = 0:2,u0 = 0:4, q = 15. CONCLUSIONThe present investigation des
ribes the formationand basi
 properties of linear and nonlinear DA wavesin a homogeneous system of an unmagnetized, 
olli-sionless and dissipative dusty spa
e plasma whose 
on-stituents are negatively 
harged dust grains, nonther-mal ions, and ele
trons obeying the Boltzmann thermaldistribution. In the linear analysis, the normal modemethod is used to redu
e the basi
 set of �uid equa-tions to a linear dispersion relation. An expressionfor the damping rate !i is obtained and its behaviorwith the plasma parameters is plotted in Figs. 1 and2. These plots show that the damping rate in
reases as775
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arrier wave number k, the kinemati
 dust vis
osity
oe�
ient �d, and the ratio of the ion temperature tothe ele
tron temperature �i in
rease, while it de
reasesas the nonthermal parameter � in
reases. In the nonli-near analysis, the redu
tive perturbation te
hnique hasbeen used to derive the KdV�Burgers equation, whi
his not an integrable Hamiltonian system. This meansthat the energy of the plasma system is not 
onserveddue to the Burgers dissipation term.In the absen
e of the Burgers term (C = 0), the bi-fur
ation and the phase portrait asso
iated with thistype of the KdV�Burgers equation are investigatedgraphi
ally in Figs. 3 and 4, under the 
onditions A >> 0, B > 0, and U > 0. The topology of the phaseportrait and potential diagram refer to wide 
lasses oftraveling wave solutions. One of these solutions is re-lated to soliton solution (29), whi
h is obtained whenthe dissipation e�e
t is negligible in 
omparison withthat of the nonlinearity and dispersion. The behavior ofsu
h a solution is shown graphi
ally in Figs. 5�9, whi
hindi
ate that the amplitude of the soliton wave de-
reases (in
reases) with in
reasing �(�i), but the widthin
reases (de
reases) with in
reasing � (�i). Also, theenergy of the soliton wave is 
al
ulated and plotted inFig. 10. It is observed that the soliton energy En in-
reases (de
reases) with in
reasing the value of �i (�).The ele
tri
 �eld asso
iated with the potential fun
-tion �1, Eq. (29), is also plotted with the wave variable�, Figs. 11�13. Clearly, the amplitude of the ele
tri
�eld de
reases (in
reases) with in
reasing the value of� (�i), while its width in
reases (de
reases) with in-
reasing the value of � (�i).In the presen
e of the Burgers term, C 6= 0, theKdV�Burgers equation admits three 
lasses of analyti
solutions of physi
al interest. But these solutions arerelated to a 
ombination of sho
k and soliton waves,monotoni
 and os
illatory sho
ks. A 
ombination ofsho
k and soliton waves is obtained expli
itly by usingthe tanh method, and its behavior is shown in Figs. 14and 15. The monotoni
 sho
k wave 
an also exist whenthe dissipation term is dominant over the dispersiveterm and its behavior is shown in Figs. 16�19. These�gures indi
ate that the monotoni
 sho
k wave strengthde
reases (in
reases) with in
reasing the value of � (�i),while its width in
reases with in
reasing the value of �.The os
illatory sho
k wave 
an exist when the disper-sive term is dominant over the dissipative term. Fi-gures 20�22 show that the amplitude of su
h a wavede
reases with in
reasing the value of � and in
reaseswith in
reasing the values of both �i and �. Finally, we
on
lude that the Burgers term due to �uid vis
osityplays an essential role in formation of soliton, mono-

toni
, and os
illatory sho
k waves in plasmas. Thepresent study has 
ontributed to a better understan-ding of the propagation 
hara
teristi
s of the DA waves,whi
h are of vital importan
e in laboratory plasma andas in spa
e plasma.The nonideality e�e
ts su
h as vis
osity, turbu-len
e, parti
le re�e
tion, Landau damping and 
harge�u
tuations 
ause dissipation and then the sho
kwaves stru
ture may be generated. The e�e
t of otherintera
tions 
an be investigated in our future worktaking the nonuniform distribution of the dust densityinto a
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