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KINEMATIC DUST VISCOSITY EFFECT ON LINEAR ANDNONLINEAR DUST-ACOUSTIC WAVES IN SPACE DUSTYPLASMAS WITH NONTHERMAL IONSA. M. El-Hanbaly a, M. Sallah a*, E. K. El-Shewy b, H. F. Darweesh aaPhysis Department, Faulty of Siene, Mansoura University35516, Mansoura, EgyptbDepartment of Physis, Taibah UniversityAl-Madinah Al-Munawarah, Saudi ArabiaReeived Deember 30, 2014Linear and nonlinear dust-aousti (DA) waves are studied in a ollisionless, unmagnetized and dissipative dustyplasma onsisting of negatively harged dust grains, Boltzmann-distributed eletrons, and nonthermal ions.The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependene of the wavedamping rate on the arrier wave number, the dust visosity oe�ient, the ratio of the ion temperature tothe eletron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via theredutive perturbation method that gives the KdV�Burgers equation. Some interesting physial solutions areobtained to study the nonlinear waves. These solutions are related to soliton, a ombination between a shokand a soliton, and monotoni and osillatory shok waves. Their behaviors are illustrated and shown graphially.The harateristis of the DA solitary and shok waves are signi�antly modi�ed by the presene of nonthermal(fast) ions, the ratio of the ion temperature to the eletron temperature, and the dust kinemati visosity. Thetopology of the phase portrait and the potential diagram of the KdV�Burgers equation is illustrated, whoseadvantage is the ability to predit di�erent lasses of traveling wave solutions aording to di�erent phase orbits.The energy of the soliton wave and the eletri �eld are alulated. The results in this paper an be generalizedto analyze the nature of plasma waves in both spae and laboratory plasma systems.DOI: 10.7868/S00444510151001441. INTRODUCTIONThere has been a great interest in the understan-ding of di�erent types of olletive proesses in dustyplasmas, beause of their vital role in the study of as-trophysial and spae environments, suh as ometarytails, asteroid zones, planetary rings, the insterstellarmedium, Earth's environment, et. [1�4℄. The dustgrains are usually negatively harged beause of a num-ber of harging proesses, suh as �eld emission, ultra-violet radiation, plasma urrents, et. [5�7℄. The pres-ene of this harged dust omponent not only modi-�es the existing plasma wave spetra but also intro-dues new eigenmodes, suh as the dust-aousti (DA)*E-mail: msallahd�mans.edu.eg

mode [8, 9℄, dust�ion aousti mode [10℄, dust y-lotron mode [11℄, dust drift mode [12℄, dust lattiemode [13, 14℄, et. The DA wave is the most well stud-ied of suh new modes. It arises due to the restoringfore provided by the plasma thermal pressure eletronsand ions, while the inertia is due to the dust mass [8, 9℄.In partiular, the hot eletrons may not follow theMaxwellian distribution. In [15℄, the e�et of non-thermal eletrons was proposed for observations by theFreja satellite. On the other hand, nonthermal (fast)ions have been observed in Earth's bow-shok [16℄. Theombined e�ets of the nonadiabati dust harge �u-tuation and the fast (nonthermal) ions on the propaga-tion of linear DA waves in inhomogeneous dusty plas-mas were studied in [17℄. The presene of nonther-mality of ions was shown to modify the frequeny anddamping of the low-frequeny plasma mode. Therefore,it is reasonable to onsider the nonthermality of plasmaions throughout this work.766



ÆÝÒÔ, òîì 148, âûï. 4 (10), 2015 Kinemati dust visosity e�et on linear : : :It is important to investigate the nonlinear DAwaves to understand the properties of loalized elet-rostati perturbations in spae and laboratory dustyplasmas [1; 18�20℄. Reently, the nonlinear DA waveshave been investigated theoretially [8; 21�24℄ as wellas experimentally [25, 26℄. All of the theoretial andexperimental investigations have been arried out atroom temperature.In most of the theoretial studies on dustyplasma, the redutive perturbation method has beenused for deriving the Korteweg�de Vries (KdV),Korteweg�de Vries�Burgers (KdV�Burgers), Zakha-rov�Kuznetsov, and Kadomtsev�Petviashvili equations[27�29℄. The redutive perturbation method is mostlyapplied to small-amplitude nonlinear waves [30℄. Thismethod resales both spae and time in the governingequations of the system in order to introdue spae andtime variables that are appropriate for the desriptionof long-wavelength phenomena.Moreover, dusty plasmas with dissipative hara-teristis support the existene of shok waves insteadof soliton waves. The dissipation in dusty plasmas anbe aused by the Landau damping, dust �uid visos-ity, dust�dust ollisions, and dust harge �utuations,whih ould modify the wave properties [31, 32℄. Ex-perimentally, the e�ets of dissipation aused by thekinemati visosity on the propagation of solitary wavestrutures are observed and disussed in [33℄. The DAshok waves in dusty plasma with dust harge �utu-ations and nonthermal ion e�ets were studied in [34℄using the redutive perturbation tehnique to derive aKdV�Burgers equation. The e�et of nonthermal ionswas onsidered in [35℄ and the KdV equation was ob-tained; in [36℄, the same nonthermal plasma model wasonsidered and the modi�ed KdV equation was derived.The results in [35, 36℄ showed the solitary waves with�nite amplitude only.In this paper, we onsider a homogeneous sys-tem of an unmagnetized, ollisionless and dissipativedusty plasma that onsists of negatively harged dustgrains, Boltzmann-distributed eletrons, and nonther-mal (fast) ions (Se. 2). The linear dispersion relation isanalyzed by using the normal mode tehnique. It showsthe dependene of the plasma damping rate on the dif-ferent plasma parameters (Se. 3). To emphasize thenonlinearity of the analysis, the redutive perturbationmethod is used, whih yields a nonlinear partial dif-ferential equation, the KdV�Burgers equation (Se. 4).Topologially, we illustrate the bifuration and phaseportrait of the KdV�Burgers equation in order to re-ognize the di�erent lasses of nonlinear waves.

2. GOVERNING EQUATIONSWe onsider a homogeneous system of an unmagne-tized, ollisionless and dissipative dusty plasma whoseonstituents are negatively harged dust grains, non-thermal ions, and eletrons obeying the Boltzmannthermal distribution. The dynamis of the DA wavesare governed by the basi set of equations�nd�t + � (ndud)�x = 0; (1)�ud�t + ud�ud�x + q ���x � �d �2ud�x2 = 0; (2)�2��x2 + qnd � ne + ni = 0; (3)where nd is the dust grain number density, ud is thedust �uid veloity, q is the number of harges on thedust grains, � is the eletrostati potential, �d is thedust visosity oe�ient, ne is the eletron number den-sity and ni is the ion number density.As usual, the dust harge is a funtion of the plasmaparameters, but as a onsequene of that, the typialdust harging time sale may be longer than the DAtime sale, and we antiipate that the dust harge �u-tuations have no essential e�et on the DA mode, andthe dust harge an therefore be assumed to be on-stant [37, 38℄. When the e�ets of plasma turbulene,partile re�etion, Landau damping, and harge �utu-ations are not signi�ant, the kinemati dust visosityprovides an alternative physial mehanism that ausesdissipation in a dusty plasma and leads normally toshok waves. Here, the kinemati dust visosity is on-sidered to be onstant [39℄.The thermal and nonthermal distributions of theeletrons and ions are hosen to bene = �e exp (�i�) ; (4)ni = �i �1 + ��+ ��2� exp (��) ; (5)where �i and �e are the initial equilibrium density ofions and eletrons, � = 4�=(1 + 3�), � is a parameterdetermining the number of fast nonthermal ions, and�i = Ti=Te, where Te is the temperature of eletronsand Ti is the temperature of ions.3. LINEAR ANALYSISTo derive a dynamial equation for the dispersionrelation of DA waves from the basi equations (1)�(5),767



A. M. El-Hanbaly, M. Sallah, E. K. El-Shewy, H. F. Darweesh ÆÝÒÔ, òîì 148, âûï. 4 (10), 2015we use the normal mode method. With this method,the dependent variables nd, ud, and � are expandedin terms of their equilibrium and perturbed parts asnd = 1 + ~nd, ud = 0 + ~ud, and � = 0 + ~�. The per-turbed quantities are proportional to exp[i(kx � !t)℄,and then the basi equations (1)�(5) are linearized andtheir orresponding �rst-order approximation yields~nd = qk2! (! + i�dk2) ~�; (6a)~ud = qk! + i�dk2 ~�: (6b)From Poisson's equation (3), the linear dispersionrelation follows�k2 + �i (1� �) + �e�i�!2 ++ i�dk2 �k2 + �i (1� �) + �e�i�! � q2k2 = 0: (7)We set onsider ! = !r + i!i; (8)where !r and !i are the real and imaginary parts ofthe plasma frequeny !. Inserting Eq. (8) into Eq. (7),we obtain 2 �k2 + �i (1� �) + �e�i�!r!i ++ �dk2 �k2 + �i (1� �) + �e�i�!r = 0; (9a)�k2 + �i (1� �) + �e�i�!2i �� �k2 + �i (1� �) + �e�i�!2r ++�dk2 �k2 + �i (1� �) + �e�i�!i + q2k2 = 0: (9b)Solving Eqs. (9), we obtain !r = 0 and!i = �k2�d2 ++ p�4q2k2+k4�2d(k2+�i (1��) +�e�i)2pk2 + �i (1� �) + �e�i ; (10)whih depends mainly on the plasma parameters k, �d,�i, and �. The behavior of the damping rate !i withsuh parameters is illustrated in Figs. 1 and 2. Fromthese �gures, we an see that the instability dampingrate !i inreases as the plasma parameters (the arrierwave number k, the dust kinemati visosity oe�ient�d, and the ion-to-eletron temperature ratio �i) in-rease, and dereases as the nonthermal parameter �inreases. 4. NONLINEAR ANALYSISTo derive a dynamial equation for the nonlinearpropagation of eletrostati waves in our plasma sys-tem, we use the redutive perturbation method. The
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ÆÝÒÔ, òîì 148, âûï. 4 (10), 2015 Kinemati dust visosity e�et on linear : : :where " is a small dimensionless expansion parametermeasuring the strength of the nonlinearity and � is thewave speed. All physial quantities appearing in thebasi equations (1)�(5) are expanded in power series in" about their equilibrium values asnd = 1 + "nd1 + "2nd2 + "3nd3 + : : : ; (12a)ud = "ud1 + "2ud2 + "3ud3 + : : : ; (12b)� = "�1 + "2�2 + "3�3 + : : : (12)We substitute Eqs. (11) and (12) in the basi equa-tions (1)�(5) and equate the orresponding oe�ientsof like powers of ". From the lowest-order equations in", we then have nd1 = q�2 �1; (13)ud1 = q� �1; (14)and Poisson's equation gives the ompatibility ondi-tion �2 = q2�e�i � �i(� � 1) : (15)Proeeding to the order "2, we obtain�nd1�� � ��nd2�� + �ud2�� + � (nd1ud1)�� = 0; (16a)�ud1�� � ��ud2�� + ud1 �ud1�� ++ q ��2�� � � �2ud1��2 = 0; (16b)�3�1��3 + q �nd2�� � q2�2 ��2�� ++ (�i � �e�2i )�1 ��1�� = 0: (16)Eliminating the seond-order perturbed quantitiesnd2, ud2, and �2 and solving this system with the aidof Eqs. (13)�(15), we �nally obtain the KdV�Burgersequation��1�� +A �1 ��1�� +B �3�1��3 + C �2�1��2 = 0; (17)where A = 3q2� + �32q2 (�i � �e�2i ); (18a)B = �32q2 ; C = ��2 : (18b)

4.1. Bifuration analysis and solutions of theKdV�Burgers equationWe introdue the variable � = � � U� , where �is the transformed oordinate relative to a frame thatmoves with the veloity U . Integrating Eq. (17) withrespet to � leads tod2�1d�2 + CB d�1d� + A2B�21 � UB�1 = 0: (19)Owing to the presene of the Burgers termCB d�1d� ;Eq. (19) desribes homogeneous and dissipative dustyplasmas. Hene, the phase paths of suh equation are,in general, no longer level urves of the energyH ��1; d�1d� � :In the dissipative ase, it is therefore reasonable to dealwith dH=d� rather than H . The KdV�Burgers equa-tion (19) an be written in the general formd2�1d�2 + h��1; d�1d� � d�1d� +G(�1) = 0; (20)where h and G are two funtions that an be deter-mined by omparing Eqs. (19) and (20).In the onservative ase (h = 0), the total energyassoiated with Eq. (20) isH = 12 �d�1d� �2 + V (�1); (21)where V (�1) is the potential funtion; thendHd� = d�1d� �d2�1d�2 + dVd�1� : (22)With G(�1) = dV =d�1 in Eq. (20), the total deriva-tive of H is given bydHd� = �h��1; d�1d� ��d�1d� �2 ; (23)whih is a dereasing funtion of � if h > 0. This equa-tion is very important for studying the stability of thesystem. In our ase, dH=d� orresponds to the KdV�Burgers equation:dHd� = CB �d�1d� �2 ; (24)9 ÆÝÒÔ, âûï. 4 (10) 769
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Fig. 15. The variation of �1 versus � at di�erent valuesof � for �e = 6, �i = 5, � = 0:2, �i = 0:2, � = 0:4,u0 = 0:4, q = 1�1 = 1A �U � 4B + C225B + 12C5 tanh(�) ++ 12B seh2(�)� : (38)This lass of solutions represents a partiular om-bination of a solitary wave (the seh2(�) term in theright-hand side of Eq. (38)) with a Burgers shok wave(the tanh(�) term). The behavior of this solution interms of the oordinates � and � is shown graphiallyin Figs. 14 and 15. We an see from these �gures thatboth soliton and shok strutures are obtained due tothe presene of dispersive and dissipative oe�ients.Another type of solution an be obtained when thedissipative term is dominant over the dispersive term.In this ase, Eq. (19) redues to the nonlinear �rst-or-der di�erential equation773
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Fig. 16. The variation of �1 versus � at di�erent va-lues of � for �e = 1:4, �i = 0:4, �i = 0:2, � = 0:3,u0 = 0:4, q = 1
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Fig. 17. The variation of �1 versus � at di�erent va-lues of �i for �e = 1:4, �i = 0:4, � = 0:2, � = 0:3,u0 = 0:4, q = 1d�1d� = UC�1 � A2C�21; (39)whih admits the solution�1 = 2U exp (U�=C)1 +A exp (U�=C) ; (40)or �1 = UA �1 + tanh� U2C��� : (41)This type of solution atually desribes a monotonishok wave, whose behavior is shown in Figs. 16�19.These �gures investigate the e�et of plasma parame-ters like �, �i, and the dust kinemati visosity oef-
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Fig. 20. The variation of �1 versus � at di�erent va-lues of � for �e = 1:8, �i = 0:8, �i = 0:2, � = 0:3,u0 = 0:4, q = 1� = 2UA : (42)Using that �1 = � + � for j�j � j�j, Eq. (19)an be linearized to the seond-order linear di�erentialequation d2�d�2 + CB d�d� + UB� = 0: (43)The solution of linear di�erential equation (43) anbe expressed in the exponential form � = exp(M�),where M = C2B "�1�r1� 4UBC2 # : (44)For C2 � 4UB, the osillatory shok wave solutionis given by�1 = � +Q exp�� C2B�� os rUB�! : (45)where Q is an arbitrary onstant. The behavior of theobtained solution with the parameters �, �i, and � isshown graphially in Figs. 20�22. These �gures showthat the amplitude of the osillatory shok wave de-reases with inreasing the value of � and inreaseswith inreasing the values of both �i and �.Obviously, in addition to an osillatory shokwave, the KdV�Burgers equation exhibits solitoni andmonotoni shok waves due to the Burgers term arisingfrom the �uid visosity.
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A. M. El-Hanbaly, M. Sallah, E. K. El-Shewy, H. F. Darweesh ÆÝÒÔ, òîì 148, âûï. 4 (10), 2015the arrier wave number k, the kinemati dust visosityoe�ient �d, and the ratio of the ion temperature tothe eletron temperature �i inrease, while it dereasesas the nonthermal parameter � inreases. In the nonli-near analysis, the redutive perturbation tehnique hasbeen used to derive the KdV�Burgers equation, whihis not an integrable Hamiltonian system. This meansthat the energy of the plasma system is not onserveddue to the Burgers dissipation term.In the absene of the Burgers term (C = 0), the bi-furation and the phase portrait assoiated with thistype of the KdV�Burgers equation are investigatedgraphially in Figs. 3 and 4, under the onditions A >> 0, B > 0, and U > 0. The topology of the phaseportrait and potential diagram refer to wide lasses oftraveling wave solutions. One of these solutions is re-lated to soliton solution (29), whih is obtained whenthe dissipation e�et is negligible in omparison withthat of the nonlinearity and dispersion. The behavior ofsuh a solution is shown graphially in Figs. 5�9, whihindiate that the amplitude of the soliton wave de-reases (inreases) with inreasing �(�i), but the widthinreases (dereases) with inreasing � (�i). Also, theenergy of the soliton wave is alulated and plotted inFig. 10. It is observed that the soliton energy En in-reases (dereases) with inreasing the value of �i (�).The eletri �eld assoiated with the potential fun-tion �1, Eq. (29), is also plotted with the wave variable�, Figs. 11�13. Clearly, the amplitude of the eletri�eld dereases (inreases) with inreasing the value of� (�i), while its width inreases (dereases) with in-reasing the value of � (�i).In the presene of the Burgers term, C 6= 0, theKdV�Burgers equation admits three lasses of analytisolutions of physial interest. But these solutions arerelated to a ombination of shok and soliton waves,monotoni and osillatory shoks. A ombination ofshok and soliton waves is obtained expliitly by usingthe tanh method, and its behavior is shown in Figs. 14and 15. The monotoni shok wave an also exist whenthe dissipation term is dominant over the dispersiveterm and its behavior is shown in Figs. 16�19. These�gures indiate that the monotoni shok wave strengthdereases (inreases) with inreasing the value of � (�i),while its width inreases with inreasing the value of �.The osillatory shok wave an exist when the disper-sive term is dominant over the dissipative term. Fi-gures 20�22 show that the amplitude of suh a wavedereases with inreasing the value of � and inreaseswith inreasing the values of both �i and �. Finally, weonlude that the Burgers term due to �uid visosityplays an essential role in formation of soliton, mono-
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