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Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty
plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions.
The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave
damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to
the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the
reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are
obtained to study the nonlinear waves. These solutions are related to soliton, a combination between a shock
and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically.
The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal
(fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The
topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose
advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits.
The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized
to analyze the nature of plasma waves in both space and laboratory plasma systems.
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1. INTRODUCTION

There has been a great interest in the understan-
ding of different types of collective processes in dusty
plasmas, because of their vital role in the study of as-
trophysical and space environments, such as cometary
tails, asteroid zones, planetary rings, the insterstellar
medium, Earth’s environment, etc. [1-4]. The dust
grains are usually negatively charged because of a num-
ber of charging processes, such as field emission, ultra-
violet radiation, plasma currents, etc. [5—7]. The pres-
ence of this charged dust component not only modi-
fies the existing plasma wave spectra but also intro-
duces new eigenmodes, such as the dust-acoustic (DA)
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mode [8, 9], dust—ion acoustic mode [10], dust cy-
clotron mode [11], dust drift mode [12], dust lattice
mode [13, 14], etc. The DA wave is the most well stud-
ied of such new modes. It arises due to the restoring
force provided by the plasma thermal pressure electrons
and ions, while the inertia is due to the dust mass [8, 9].

In particular, the hot electrons may not follow the
Maxwellian distribution. In [15], the effect of non-
thermal electrons was proposed for observations by the
Freja satellite. On the other hand, nonthermal (fast)
ions have been observed in Earth’s bow-shock [16]. The
combined effects of the nonadiabatic dust charge fluc-
tuation and the fast (nonthermal) ions on the propaga-
tion of linear DA waves in inhomogeneous dusty plas-
mas were studied in [17]. The presence of nonther-
mality of ions was shown to modify the frequency and
damping of the low-frequency plasma mode. Therefore,
it is reasonable to consider the nonthermality of plasma
ions throughout this work.
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It is important to investigate the nonlinear DA
waves to understand the properties of localized elect-
rostatic perturbations in space and laboratory dusty
plasmas [1,18-20]. Recently, the nonlinear DA waves
have been investigated theoretically [8,21-24] as well
as experimentally [25, 26]. All of the theoretical and
experimental investigations have been carried out at
room temperature.

In most of the theoretical studies on dusty
plasma, the reductive perturbation method has been
used for deriving the Korteweg—de Vries (KdV),
Korteweg—de Vries—Burgers (KdV-Burgers), Zakha-
rov—Kuznetsov, and Kadomtsev—Petviashvili equations
[27-29]. The reductive perturbation method is mostly
applied to small-amplitude nonlinear waves [30]. This
method rescales both space and time in the governing
equations of the system in order to introduce space and
time variables that are appropriate for the description
of long-wavelength phenomena.

Moreover, dusty plasmas with dissipative charac-
teristics support the existence of shock waves instead
of soliton waves. The dissipation in dusty plasmas can
be caused by the Landau damping, dust fluid viscos-
ity, dust—dust collisions, and dust charge fluctuations,
which could modify the wave properties [31, 32]. Ex-
perimentally, the effects of dissipation caused by the
kinematic viscosity on the propagation of solitary wave
structures are observed and discussed in [33]. The DA
shock waves in dusty plasma with dust charge fluctu-
ations and nonthermal ion effects were studied in [34]
using the reductive perturbation technique to derive a
KdV-Burgers equation. The effect of nonthermal ions
was considered in [35] and the KdV equation was ob-
tained; in [36], the same nonthermal plasma model was
considered and the modified KdV equation was derived.
The results in [35, 36] showed the solitary waves with
finite amplitude only.

In this paper, we consider a homogeneous sys-
tem of an unmagnetized, collisionless and dissipative
dusty plasma that consists of negatively charged dust
grains, Boltzmann-distributed electrons, and nonther-
mal (fast) ions (Sec. 2). The linear dispersion relation is
analyzed by using the normal mode technique. It shows
the dependence of the plasma damping rate on the dif-
ferent plasma parameters (Sec. 3). To emphasize the
nonlinearity of the analysis, the reductive perturbation
method is used, which yields a nonlinear partial dif-
ferential equation, the KdV-Burgers equation (Sec. 4).
Topologically, we illustrate the bifurcation and phase
portrait of the KdV-Burgers equation in order to re-
cognize the different classes of nonlinear waves.
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2. GOVERNING EQUATIONS

We consider a homogeneous system of an unmagne-
tized, collisionless and dissipative dusty plasma whose
constituents are negatively charged dust grains, non-
thermal ions, and electrons obeying the Boltzmann
thermal distribution. The dynamics of the DA waves
are governed by the basic set of equations

6nd 0 (ndud) o
o ar O (1)
8ud 8ud 6¢ 82Ud o
oy Tlag, Tlgy TG =Y (2)
5%

) (3)
where ng is the dust grain number density, ug is the
dust fluid velocity, ¢ is the number of charges on the
dust grains, ¢ is the electrostatic potential, 1y is the
dust viscosity coefficient, n, is the electron number den-
sity and n, is the ion number density.

As usual, the dust charge is a function of the plasma
parameters, but as a consequence of that, the typical
dust charging time scale may be longer than the DA
time scale, and we anticipate that the dust charge fluc-
tuations have no essential effect on the DA mode, and
the dust charge can therefore be assumed to be con-
stant [37, 38]. When the effects of plasma turbulence,
particle reflection, Landau damping, and charge fluctu-
ations are not significant, the kinematic dust viscosity
provides an alternative physical mechanism that causes
dissipation in a dusty plasma and leads normally to
shock waves. Here, the kinematic dust viscosity is con-
sidered to be constant [39].

The thermal and nonthermal distributions of the
electrons and ions are chosen to be

+qng —ne+n, =0,

Ne = e €XP (0i¢) s (4)

n, = p; [1+ Bo+ Bo*] exp (—9), (5)

where p; and p. are the initial equilibrium density of
ions and electrons, f = 4a/(1 + 3a), « is a parameter
determining the number of fast nonthermal ions, and
o; = T;/T., where T, is the temperature of electrons
and T; is the temperature of ions.

3. LINEAR ANALYSIS

To derive a dynamical equation for the dispersion
relation of DA waves from the basic equations (1)—(5),
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we use the normal mode method. With this method,
the dependent variables ng4, ug, and ¢ are expanded
in terms of their equilibrium and perturbed parts as
ng =14+ ng, ug = 0+ ug4, and ¢ = 0+¢~5. The per-
turbed quantities are proportional to exp[i(kz — wt)],
and then the basic equations (1)—(5) are linearized and
their corresponding first-order approximation yields

o qk? -

ng = w (w + Z’I?dk2) ¢7 (63“)
gk -

Y ingk? 2 (6b)

From Poisson’s equation (3), the linear dispersion
relation follows

(K2 + i (1= ) + peoi] w? +
+ inak® [K* 4+ pi (1 = B) + peoi] w — ¢*k* = 0. (7)
We set consider

W = Wy + 1wy, (8)

where w, and w; are the real and imaginary parts of
the plasma frequency w. Inserting Eq. (8) into Eq. (7),
we obtain

2 (K* + pi (1 = B) + peos) wyw; +

+nak® (K* + pi (1 = B) + peoi) wy =0, (9a)
(K + i (1= B) + peos) i —
— (K i (1= B) + preos) wy +
+nak® (k* + p; (L= B) + peos) wi + ¢*k* = 0. (9b)
Solving Eqs. (9), we obtain w, = 0 and
Wi = _k;nd +
VACK R (R 4y () tieoi) g

2R + 1 (L - B) + oo
which depends mainly on the plasma parameters k, nq4,
0i, and a. The behavior of the damping rate w; with
such parameters is illustrated in Figs. 1 and 2. From
these figures, we can see that the instability damping
rate w; increases as the plasma parameters (the carrier
wave number k, the dust kinematic viscosity coefficient
N4, and the ion-to-electron temperature ratio o;) in-
crease, and decreases as the nonthermal parameter «
increases.

4. NONLINEAR ANALYSIS

To derive a dynamical equation for the nonlinear
propagation of electrostatic waves in our plasma sys-
tem, we use the reductive perturbation method. The
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reductive perturbation method should be applied to
small-amplitude nonlinear waves [30]. This method
rescales both space and time in the governing equations
of the system so as to introduce space and time vari-
ables that are appropriate for the description of long-
wavelength phenomena. According to this method, the
independent variables are stretched as

E=c(x - ),

T =e2t, na=e"?n, (1)
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where ¢ is a small dimensionless expansion parameter
measuring the strength of the nonlinearity and A is the
wave speed. All physical quantities appearing in the
basic equations (1)—(5) are expanded in power series in
¢ about their equilibrium values as

ng=1+eng +eng +nas + ..., (12a)
Ug = EUgt + €2 Ugz + EUgz + . . ., (12Db)
d=ct1 +e2ps+3pg + ... (12¢)

We substitute Eqs. (11) and (12) in the basic equa-
tions (1)—(5) and equate the corresponding coefficients
of like powers of €. From the lowest-order equations in
¢, we then have

nai = 1561, (13)
war = o1, (14)

and Poisson’s equation gives the compatibility condi-
tion
2

2 _ q
A= feoi — pi (B — 1) (15)

Proceeding to the order 2, we obtain

onai Ongs  Ougz 0 (naruqr)
_ = 1
ar Vo T ae ¢ 0 (162)
8ud1 8ud2 8Ud1
or Mo TUunTpe T
¢ O uaq o
+qa—£ - 778—62 =0, (16b)
Por | g ¢ Ips N
IR TR ChT:
15}
+ (i pert)on gt =0 (160)

Eliminating the second-order perturbed quantities
Ng2, Ugz, and ¢o and solving this system with the aid
of Eqgs. (13)—(15), we finally obtain the KdV-Burgers
equation

%+A¢1%+B§—g; +Oa;g;1=0, (17)
where
= ;’—fl\ + ;;2 (i — 11e0y), (18a)
- ;_;, - —g. (18b)
9 JKIT®, srm. 4 (10)

4.1. Bifurcation analysis and solutions of the
KdV—-Burgers equation

We introduce the variable vy = ¢ — Ur, where y
is the transformed coordinate relative to a frame that
moves with the velocity U. Integrating Eq. (17) with
respect to y leads to

Por | Cdoy
dx? B dy

A, U
+ @% - §¢1 =0. (19)

Owing to the presence of the Burgers term

Cdoy
B dy’

Eq. (19) describes homogeneous and dissipative dusty
plasmas. Hence, the phase paths of such equation are,
in general, no longer level curves of the energy

doy
H — ).
<¢17 ax )
In the dissipative case, it is therefore reasonable to deal

with dH/dx rather than H. The KdV-Burgers equa-
tion (19) can be written in the general form

d>¢ doy \ doy
e ”(@W) N

where h and G are two functions that can be deter-
mined by comparing Eqs. (19) and (20).

In the conservative case (h = 0), the total energy
associated with Eq. (20) is

-l (%)wan, (21)

+G(1) =0, (20)

2

where V(¢1) is the potential function; then

dH _ d¢: d2¢1+d_v
dy dxy \dx?  déy )’

With G(¢1) = dV /d¢y in Eq. (20), the total deriva-
tive of H is given by

(22)

dH d dor \°
L A e )
dx dx dx
which is a decreasing function of x if A > 0. This equa-
tion is very important for studying the stability of the
system. In our case, dH/dx corresponds to the KdV-
Burgers equation:
e 2
dH _C (dn)* -
dx B \ dy
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Fig.3. The variation of V versus ¢, at different values
of oj for pe =3, i =2, «a =02, up =04, ¢ =1

which shows that the energy of the plasma system is
not conserved and hence it is not easy to find an exact
analytic solution of the KdV-Burgers equation.

In terms of the viscosity coefficient 1, Eq. (24) can
be written as

= - _ 2
dy A3\ dy (25)

dH _ ¢°n <d¢1>2
which is always a decreasing function because ¢, 7,
and A\ are always positive quantities.
In particular, if the Burgers coefficient C' = 0, the
system of equations becomes conservative (dH /dy = 0)
and the total energy is

1 fde\? U, A,
H=3 () gt apet 0
where the potential function is
U, A3
= 3. 2
V(or) = 5202 + <=0} (21)

Equations (26) and (27) are necessary to furnish the
bifurcation and the phase portrait associated with this
type of the KdV-Burgers equation. The profile of the
potential function and the phase portrait are investi-
gated under the conditions A > 0, B > 0, and U > 0;
they are shown graphically in Figs. 3 and 4. The poten-
tial function is shown as a function of ¢, for different
values of ¢; in Fig. 3. It is clear that the potential well
has one hump and a pit and the potential well becomes
deeper as o; increases. The hump corresponds to a
saddle point at (0,0) and the pit corresponds to the
central point at (2U/A, 0) in the phase portrait. From
the topology of the phase portrait diagram in Fig. 4,

de1/dx
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1

Fig.4. The variation of d¢1/dy versus ¢; at different
values of H for pe = 3, i =2, « = 0.2, 0; = 0.3,
u =04, q¢g=1

we can see a family of periodic orbits at (2U/A, 0),
which predict a family of periodic wave solutions, and
one homoclinic orbit at (0,0), that relates to one soli-
tary wave solution. Moreover, Fig. 4 shows a series
of bounded open orbits that correspond to a series of
breaking wave solutions.

The trajectories shown in Fig. 4 point to the exis-
tence of a stable solitonic solution that should satisfy
the condition

|:d2_V:| <0
ngﬁ ¢1=0 7

which explains that there must exist a nonzero crossing
point ¢ = ¢ such that V(¢1 = ¢o) = 0. In addition,
there must exist a ¢; between ¢; = 0 and ¢; = ¢ such
that V(¢1) < 0. Obviously, it follows from Eq. (27)
that the condition of the existence of a stable solitonic
solution is satisfied because

d2V] U
o -2 <o, 28
{dﬁ oo B (28)

where the parameters U and B are positive. The cor-
responding stable solitonic solution is given by

b1 = do sech? (%) , (29)

where ¢9 = 3U/A is the soliton wave amplitude and
W = /4B/U is the width of the soliton wave in the
absence of the Burgers term. The behavior of the ob-
tained solution and its amplitude and width are pre-
sented in Figs. 5-9. Figures 5 and 6 show the variation
in ¢; with y at different values of « (the nonthermal
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Fig.7. The variation of ¢ versus ¢ at different va-
lues of 7 for pe = 1.4, p; = 0.4, o = 0.2, 0; = 0.2,
w =04, ¢g=1
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Fig.6. The variation of ¢1 versus y at different va- Fig.8. The variation of ¢o versus a and o; for pe =
lues of o; for pe = 1.4, p; = 0.4, « = 0.4, uo = 0.4, =14, p; =04, up =04, ¢=1
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parameter) and o; (the ratio of the ion temperature to
the electron temperature). The amplitude of the soli-
ton wave decreases (increases) with increasing of a (),
while the width increases (decreases) with increasing «
(0i). The single-pulse soliton solution ¢; is plotted
versus &, and its propagation is shown at different time
scales 7 in Fig. 7. Both the amplitude and the width
of the soliton waves are plotted against a and o; in
Figs. 8 and 9, and the same behavior as in Figs. 5 and
6 is observed.

. . . . 0.30 0.5
The soliton energy FE,, is obtained as the integral
* 5 Fig.9. The variation of W versus a and o; for p. =
B, = / W2, (x) d. (30) T 14, i = 04, wp = 04, g = 1
—0o0
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It is clear that the soliton energy depends mainly
on the plasma parameters via the coefficients A and B.
The behavior of the soliton energy as a function of «
and o; is shown graphically in Fig. 10. We see from this
figure that the soliton energy E,, increases (decreases)
with increasing the value of o; («).

The associated electric field is obtained as

(31)

E=-V¢, (32)
which gives
_3U\U/B o (1 JU
E = — 1 sech <§ BX X
1 /U
h{=v/=x]-
X tan (2 BX> (33)

The behavior of the electric field E is presented
graphically in Figs. 11-13. Figures 11 and 12 show the
variation of the electric field E as a function of o and ;.
Obviously, the amplitude of the electric field decreases

772

Fig.12. The variation of F versus y at different va-
lues of o; for pe = 1.4, p; = 0.4, a = 0.4, uo = 0.4,
g=1

(increases) with increasing the value of a (0;), while the
width of the electric field increases (decreases) with in-
creasing the value of o (0;). Figure 13 represents the
evolution of the electric field E versus £ at different
time scales 7.

In the presence of the Burgers term, the system of
equations is dissipative and the total energy H is not
conservative. Therefore, the exact solution of Eq. (19)
can be constructed by means of different mathematical
methods [29,40-42]. Among these, the tanh method
has proved to be a powerful mathematical technique
for solving nonlinear differential equations.

Following the procedure of the tanh method [43],
we consider the solution in the series form as

N
= Z an tanh™ (), (34)
n=0
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Fig.13. The variation of E versus ¢ at different va-
lues of 7 for pe = 1.4, p; = 0.4, o = 0.2, 0; = 0.2,
up =04,q=1

where the coefficients a, and N are to be deter-
mined. Balancing the nonlinear and dispersion terms
in Eq. (19), we obtain N = 2. Substituting Eq. (34) in
Eq. (19) and equating the different coefficients of dif-
ferent powers of tanh(y) functions to zero, we obtain
the set of algebraic equations

A c
+_

2a9 — %ao + ﬁag Ba1 =0, (35a)
2a1 + B~ %aoal — %ag =0, (35Dh)
8a2+§a2—%a%—§aoa2+§a1 =0, (35¢)
2a1 + B a2 ~ %ag =0, (35d)
6ay + %a% =0. (35€)

Solving these algebraic equations, we obtain
ap = % % %, (36a)
a1:152—f, a2:¥, (36Dh)
C =-10B, U=24B. (36¢)

Hence, we can write the explicit solution of
KdV-Burgers equation (19) as

1 c? 120
== B4+ — + = h(v) —
o1 A(U+8 +25B+ 3 tanh(x)
— 12B tanh2(x)> . (37)
or
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Fig.14. The evolution of ¢ versus ¢ and 7 for pe. = 6,
pni=5a=020=02n=04 u=04,¢q=1

Fig.15. The variation of ¢ versus ¢ at different values
of 7 for pe =6, u; =5, a =0.2, 0; = 0.2, n = 0.4,

u =04, ¢g=1
1 C? 12C
0= — (U—4B+25—B+Ttanh(x) +

+ 12B sechZ(X)> . (38)

This class of solutions represents a particular com-
bination of a solitary wave (the sech?(y) term in the
right-hand side of Eq. (38)) with a Burgers shock wave
(the tanh(y) term). The behavior of this solution in
terms of the coordinates £ and 7 is shown graphically
in Figs. 14 and 15. We can see from these figures that
both soliton and shock structures are obtained due to
the presence of dispersive and dissipative coefficients.

Another type of solution can be obtained when the
dissipative term is dominant over the dispersive term.
In this case, Eq. (19) reduces to the nonlinear first-or-
der differential equation
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dér U A, ficient n on the existence of monotonic shocks. Figu-
e 5¢1 ~ 5090 (39)  res 16 and 17 indicate that the monotonic shock wave
strength decreases (increases) with increasing the value
which admits the solution of @ (0;). However, in Fig. 18, the monotonic shock
2 exp (Ux/C) wave width increases with increasing the value of 7.
01 = 1+ Aexp (Uy/ cy’ (40) The propagation of a monotonic shock wave at differ-
PLUX ent time scales is shown in Fig. 19.
or On the other hand, another type of solution of spe-
U cial interest can be obtained if we consider the asymp-
o1 =— {1 + tanh <2—X>] (41)  totic boundary condition
2
This type of solution actually describes a monotonic X — +oo = ij ‘1521 - % =0,
shock wave, whose behavior is shown in Figs. 16-19. X X
These figures investigate the effect of plasma parame- which yields the asymptotic solution of the nonlinear
ters like a, oy, and the dust kinematic viscosity coef- KdV-Burgers differential equation as
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lues of a for e = 1.8, i = 0.8, o5 = 0.2, n = 0.3,
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2U

.= —. 42
be="7 (42)
Using that ¢, = ¢. + @ for |p.| > |P|, Eq. (19)
can be linearized to the second-order linear differential

equation
’® Cdd U

+=3=0.

Tt 43
dX2+BdX B (43)

The solution of linear differential equation (43) can

be expressed in the exponential form ® = exp(My),
where
C 4UB
M=—|-1£4/1 - —— 44
2B C? (44)

For C? « 4U B, the oscillatory shock wave solution
is given by

b1 = ¢+ Qexp (—%x) cos (\/%X) . (45)

where (@ is an arbitrary constant. The behavior of the
obtained solution with the parameters a, o;, and 7 is
shown graphically in Figs. 20-22. These figures show
that the amplitude of the oscillatory shock wave de-
creases with increasing the value of a and increases
with increasing the values of both o; and 7.

Obviously, in addition to an oscillatory shock
wave, the KdV-Burgers equation exhibits solitonic and
monotonic shock waves due to the Burgers term arising
from the fluid viscosity.

é1 . .
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0 '
—500] 1
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Fig.21. The variation of ¢; versus  at different va-
lues of o; for pue = 1.8, i = 0.8, a = 0.2, n = 0.3,
u =04, q¢g=1
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Fig.22. The variation of ¢; versus  at different va-
lues of n for pe = 2.2, p; = 1.2, a« = 0.2, o = 0.2,
u =04, q¢g=1

5. CONCLUSION

The present investigation describes the formation
and basic properties of linear and nonlinear DA waves
in a homogeneous system of an unmagnetized, colli-
sionless and dissipative dusty space plasma whose con-
stituents are negatively charged dust grains, nonther-
mal ions, and electrons obeying the Boltzmann thermal
distribution. In the linear analysis, the normal mode
method is used to reduce the basic set of fluid equa-
tions to a linear dispersion relation. An expression
for the damping rate w; is obtained and its behavior
with the plasma parameters is plotted in Figs. 1 and
2. These plots show that the damping rate increases as
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the carrier wave number k, the kinematic dust viscosity
coefficient 74, and the ratio of the ion temperature to
the electron temperature o; increase, while it decreases
as the nonthermal parameter « increases. In the nonli-
near analysis, the reductive perturbation technique has
been used to derive the KdV-Burgers equation, which
is not an integrable Hamiltonian system. This means
that the energy of the plasma system is not conserved
due to the Burgers dissipation term.

In the absence of the Burgers term (C' = 0), the bi-
furcation and the phase portrait associated with this
type of the KdV-Burgers equation are investigated
graphically in Figs. 3 and 4, under the conditions A >
>0, B > 0, and U > 0. The topology of the phase
portrait and potential diagram refer to wide classes of
traveling wave solutions. One of these solutions is re-
lated to soliton solution (29), which is obtained when
the dissipation effect is negligible in comparison with
that of the nonlinearity and dispersion. The behavior of
such a solution is shown graphically in Figs. 5-9, which
indicate that the amplitude of the soliton wave de-
creases (increases) with increasing a(o;), but the width
increases (decreases) with increasing « (o). Also, the
energy of the soliton wave is calculated and plotted in
Fig. 10. It is observed that the soliton energy FE, in-
creases (decreases) with increasing the value of o; ().
The electric field associated with the potential func-
tion ¢1, Eq. (29), is also plotted with the wave variable
X, Figs. 11-13. Clearly, the amplitude of the electric
field decreases (increases) with increasing the value of
a (0;), while its width increases (decreases) with in-
creasing the value of a (o).

In the presence of the Burgers term, C' # 0, the
KdV-Burgers equation admits three classes of analytic
solutions of physical interest. But these solutions are
related to a combination of shock and soliton waves,
monotonic and oscillatory shocks. A combination of
shock and soliton waves is obtained explicitly by using
the tanh method, and its behavior is shown in Figs. 14
and 15. The monotonic shock wave can also exist when
the dissipation term is dominant over the dispersive
term and its behavior is shown in Figs. 16-19. These
figures indicate that the monotonic shock wave strength
decreases (increases) with increasing the value of a (o),
while its width increases with increasing the value of 1.
The oscillatory shock wave can exist when the disper-
sive term is dominant over the dissipative term. Fi-
gures 20-22 show that the amplitude of such a wave
decreases with increasing the value of a and increases
with increasing the values of both ¢; and n. Finally, we
conclude that the Burgers term due to fluid viscosity
plays an essential role in formation of soliton, mono-
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tonic, and oscillatory shock waves in plasmas. The
present study has contributed to a better understan-
ding of the propagation characteristics of the DA waves,
which are of vital importance in laboratory plasma and
as in space plasma.

The nonideality effects such as viscosity, turbu-
lence, particle reflection, Landau damping and charge
fluctuations cause dissipation and then the shock
waves structure may be generated. The effect of other
interactions can be investigated in our future work
taking the nonuniform distribution of the dust density
into account.

The authors thank the referee for their efforts and
valuable remarks.
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