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SURFACE STATES IN A 3D TOPOLOGICAL INSULATOR:THE ROLE OF HEXAGONAL WARPING AND CURVATUREE. V. Repin a, I. S. Burmistrov a;b*aMos
ow Institute of Physi
s and Te
hnology141700, Mos
ow, RussiabL. D. Landau Institute for Theoreti
al Physi
s Russian A
ademy of S
ien
es119334, Mos
ow, RussiaRe
eived June 3, 2015We explore a 
ombined e�e
t of hexagonal warping and a �nite e�e
tive mass on both the tunneling density ofele
troni
 surfa
e states and the stru
ture of Landau levels of 3D topologi
al insulators. We �nd the in
reasingwarping to transform the square-root van Hove singularity into a logarithmi
 one. For moderate warping, anadditional logarithmi
 singularity and a jump in the tunneling density of surfa
e states appear. By 
ombining theperturbation theory and the WKB approximation, we 
al
ulate the Landau levels in the presen
e of hexagonalwarping. We predi
t that due to the degenera
y removal, the evolution of Landau levels in the magneti
 �eldis drasti
ally modi�ed.DOI: 10.7868/S00444510150901511. INTRODUCTIONTheoreti
al and experimental study of three dimen-sional (3D) topologi
al insulators is in the fo
us of mo-dern resear
h in 
ondensed matter physi
s [1�3℄. Apartfrom fundamental interest in the novel quantum stateof matter � topologi
al insulators � attra
t great at-tention in view of their possible appli
ations in spin-troni
s due to spin-
urrent lo
king of surfa
e states.Many ex
iting features of ele
tron states on the sur-fa
e of a 3D topologi
al insulator were found withinthe simplest two-dimensional (2D) Hamiltonian, linearin momentum and spin operators, that is allowed bythe time-reversal and 
rystal symmetries [1�3℄.Re
ently, it was realized that without symmetryviolation, this simplest Hamiltonian 
an be extendedto higher-order terms in momentum des
ribing �nite-mass and hexagonal warping of surfa
e states [4, 5℄.Indeed, the hexagonal warping of their Fermi surfa
ehas been found experimentally by angle-resolved pho-toemission spe
tros
opy in topologi
al insulators su
has Bi2Te3 [6, 7℄, Bi2Se3 [8℄, and Pb(Bi,Sb)2Te4 [9℄. The-oreti
ally, the hexagonal warping of surfa
e states 
anindu
e spin-density wave instability [4℄, a�e
ts the d
*E-mail: burmi�itp.a
.ru

and opti
al 
ondu
tivities [10, 11℄, is responsible for lo-
alization of the Cherenkov sound in 
ertain dire
tions[12℄, and 
an stabilize the � = 1=3 fra
tional quantumHall state [13℄. In addition to the hexagonal warping,spin and angle resolved photoemission spe
tros
opy re-vealed the presen
e of �nite 
urvature of the spe
trumof surfa
e states in Bi2Te3, Bi2Se3, Pb(Bi,Sb)2Te4, andTlBiSe2 [9℄.An alternative experimental way to a

ess the spe
-trum of surfa
e states in 3D topologi
al insulators isthe s
anning tunneling mi
ros
opy. Re
ently, s
an-ning tunneling mi
ros
opy was employed for Bi2Te3[7; 14�17℄, Bi2Se3 [14; 18�22℄, and Sb2Te3 in a per-pendi
ular magneti
 �eld [21℄. The spe
trum of sur-fa
e states extra
ted from angle-resolved photoemis-sion spe
tros
opy data is 
orrelated with the tunnel-ing 
ondu
tan
e measured by s
anning tunneling mi-
ros
opy [7℄. However, bulk states also 
ontribute tothe tunneling 
ondu
tan
e, thus hiding a part due tothe surfa
e states. To unravel the surfa
e 
ontribution,it is 
ru
ial to know the tunneling density of surfa
estates (TDOSS) in detail. Within the spe
trum linearin momentum, the TDOSS with and without the mag-neti
 �eld was studied theoreti
ally in Refs. [23�25℄. Inspite of 
lear experimental relevan
e, we are not awareof theoreti
al studies of the TDOSS in the presen
e ofnonzero 
urvature and hexagonal warping.584
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e states in a 3D topologi
al insulator : : :In this paper, we 
al
ulate the tunneling density ofstates on the surfa
e of a 3D topologi
al insulator inthe presen
e of hexagonal warping and a �nite massm. We demonstrate that hexagonal warping leads toa logarithmi
 van Hove singularity instead of the squa-re-root one that exists in the 
ase of a �nite mass dueto the end point of the spe
trum. For moderate valuesof the hexagonal warping, we dis
over an additional lo-garithmi
 singularity and a jump in the TDOSS. Thispredi
tion is quantitatively supported by s
anning tun-neling mi
ros
opy measurements of the lo
al density ofstates in Bi2Te3. In the presen
e of a perpendi
ularmagneti
 �eld, we analyze the stru
ture of Landau le-vels within the perturbation theory and in the WKBapproximation. As is well known [26℄, in the absen
e ofhexagonal warping, there are 
rossings of Landau lev-els at some magneti
 �elds due to a �nite mass. We�nd that the hexagonal warping removes these degene-ra
ies and strongly a�e
ts the slope of Landau levelswith respe
t to the magneti
 �eld.The paper is organized as follows. In Se
. 2, we in-trodu
e the model Hamiltonian and 
al
ulate the tun-neling density of states on the surfa
e of a 3D topolog-i
al insulator in the presen
e of hexagonal warping and�nite mass. In Se
. 3, we analyze the e�e
t of hexago-nal warping on Landau levels within the perturbationtheory. In Se
. 4, we investigate the stru
ture of Lan-dau levels in the presen
e of hexagonal warping in theWKB approximation. We 
on
lude with a dis
ussionof how our theoreti
al results 
an be further tested ex-perimentally (Se
. 5).2. TUNNELING DENSITY OF SURFACESTATES AT ZERO MAGNETIC FIELDWe start from the model Hamiltonian of ele
tronstates on the surfa
e of a 3D topologi
al insulator inzero magneti
 �eld, given by the 2� 2 matrix [4, 5℄H = v�kx�y�ky�x�+k2x+k2y2m +�2 �k3++k3���z : (1)Here, k = fkx; kyg denotes the in-plane quasiparti
lemomentum, k� = kx � iky, and �x;y;z are the Paulimatri
es. We note that due to the spin�orbit 
ouplingin the bulk, the Pauli matri
es �x;y;z do not ne
essar-ily 
orrespond to operators of the ele
tron spin [27, 28℄.The �rst term in the right-hand side of Eq. (1) des
ribesthe 
oni
al (Dira
-type) spe
trum with a velo
ity v.The se
ond term in Eq. (1) takes a �nite 
urvature ofthe surfa
e state spe
trum into a

ount. The e�e
tivemass m 
an be positive (e. g., for Bi2Se3) or negative

(as in the 
ase of Bi2Te3) [9℄. In what follows, havingin mind the 
ase of Bi2Te3, we 
onsider the situationwhere m < 0. The results for the opposite 
ase, m > 0,
an be easily obtained by inversion of the energy andmomentum. The last term in Eq. (1) des
ribes the ef-fe
t of hexagonal warping, whose strength is 
hara
ter-ized by the parameter �. In the absen
e of hexagonalwarping, � = 0, Hamiltonian (1) is just the By
hkov�Rashba Hamiltonian for 2D ele
trons with spin�orbitsplitting [26℄. To Hamiltonian (1), we 
an add a termof the third order in the momentum des
ribing the k2
ontribution to the velo
ity v [4℄. Moreover, in exten-ding Hamiltonian (1) to the �fth order in k, Dressel-haus spin�orbit terms were proposed to explain devia-tion of the ele
tron spin from the dire
tion perpendi
-ular to the momentum [29℄. However, re
ent results ofspin and angle resolved photoemission spe
tros
opy [9℄do not demonstrate signi�
ant deviation of the surfa
estate spe
trum from the one 
orresponding to Eq. (1).Therefore, we 
on�ne our 
onsiderations to Hamilto-nian (1).The spe
trum of Hamiltonian (1) has the form [4, 5℄E�(k; �) = k22m �pv2k2 + �2k6 
os2 3�; (2)where � parameterizes the momentum, andkx = k 
os �; ky = k sin �:The TDOSS 
an be written asg(E) = Xs=� 1Z0 kdk(2�)2 2�Z0 d� Æ�E �Es(k; �)�: (3)It is 
onvenient to introdu
e the energy parametersE0 =pv3=�; � = 2jmjv2to 
hara
terize the hexagonal warping and 
urvature,respe
tively. Then the dimensionless parameter� = (�=E0)4measures the strength of hexagonal warping in 
ompa-rison with 
urvature. We remind that in the absen
eof warping, � = � = 0, the density of states is given byg�=0(E) = �2�v2 ��8><>:1; E < 0;(1� 4E=�)�1=2; 0 6 E < �=4;0; �=4 < E: (4)585
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h is the end point of the spe
trum. For nonzerohexagonal warping, � > 0, the TDOSS isg(E) = �2�v2F (E=�; �); (5)whereF (�; �) = 1� 1Z0 dx j�+ xjRe 1p(�+ x)2 � x ��Re 1p�x3 + x� (�+ x)2 : (6)The limits of integration over x in Eq. (6) are in fa
tdetermined by the regions where the radi
ands are po-sitive. Depending on the values of � and �, the 
ubi
polynomial y3(x) = �x3 + x� (�+ x)2
an have one (see 
urves A1, A2, A4, and A5 in Fig. 1a)or three (see 
urve A3 in Fig. 1a) real roots. The re-gions of the 
orresponding behavior in the f�; �g planeare shown in Fig. 1b. There is region A5 above the line� = 1=2. Region A1 is situated below the 
urve�1(�) = 13(1� 2�) :Region A3 is 
lamped between the 
urves paramete-rized as � = ��(�) and � = �+(�), where��(�) = 2(�+ z�(�))� 13z2�(�) ;z�(�) = 1� 2��p(1� 2�)2 � 3�2: (7)The 
urves � = ��(�) merge and end at the points�
 = 1=�2+p3� � 0:27; �
 = �3+2p3� =9 � 0:71:Region A2 is below region A5 but above the 
urve pa-rameterized as � = maxf��(�); �1(�)g:Region A4 is 
lamped between the 
urves � = �+(�)and � = �1(�).We let 
1, 
2, 
3 denote the roots of the 
ubi
 poly-nomial y3(x) in in
reasing order if there exist three realroots, and let 
i, where i = 1 or 3, be the root of y3(x)in the 
ase of a single real root only. We note that z�(z+) 
oin
ides with 
1 and 
2 (
2 and 
3) at the pointwhere they merge. The roots of the quadrati
 polyno-mial y2(x) = (�+ x)2 � x

Table 1. Expressions for the fun
tion F (�; �) indi�erent regions of the f�; �g plane� < 1=4 � > 1=4A1 F = F1 + F5 F = F3 + F4A2 F = F3A3 F = F1 + F2 + F3 F = F3 + F4A4 F = F1 + F5 F = F3 + F4A5 F = F3are given as x1;2 = �1� 2��p1� 4� � =2:It is 
onvenient to introdu
e the following fun
tions:F1 = x1Z
1 dxF(x; �; �); F2 = 
2Zx2 dxF(x; �; �);F3 = 1Z
3 dxF(x; �; �); F4 = 
2Z
1 dxF(x; �; �);F5 = 1Zx2 dxF(x; �; �); (8)
whereF(x; �; �) = 1� j�+ xjp(�+x)2�xp�x3+x�(�+x)2 : (9)Then for ea
h region in Fig. 1b, the fun
tion F (�; �)
an be represented as a linear 
ombination of the fun
-tions Fi, i = 1; : : : ; 5, with 
oe�
ients equal to 0 or 1(see Table 1).The TDOSS exhibits singular behavior on the line� = 1=4 and on the 
urves � = ��(�). The logarithmi
divergen
e at � = 1=4 for any � > 0 supersedes thesquare-root singularity at the same energy existing inthe 
ase � = 0. Formally, it is due to the 
on�uen
e oftwo real roots x1;2 of the quadrati
 polynomial y2(x).The asymptoti
 form of F (�; �) near this logarithmi
singularity isF (�; �) � 4�p� ln 1j�� 1=4j ; j�� 1=4j � 1: (10)There is an other logarithmi
 divergen
e of the den-sity of states on the 
urve � = �+(�). Within thelogarithmi
 a

ura
y, the asymptoti
 behavior of thefun
tion F near � = �+(�) 
an be found asF (�; �) � �+� ln 1j���+(�)j ; j���+(�)j � 1; (11)586



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Surfa
e states in a 3D topologi
al insulator : : :à

0 1 2 3 4
0
1 b

A1
x 0 0:25 0:50 0:75 1:00�

0:25
0:50y3 �

A2
A4A3

A1 A5 A3 A2A4 A5

Fig. 1. The �ve di�erent types of possible behavior of a 
ubi
 polynomial y3(x) (a). The �ve 
orresponding regions in thef�; �g plane (b )where�+ == j�+ z+(�)j[(�+z+(�))2�z+(�)℄1=2[1�3(1�2�)�+(�)℄1=4 : (12)At the border between regions A2 and A3, there is ajump of the density of states due to the appearan
e ofan in�nitely small range of integration between the �rsttwo roots 
1 and 
2 of the 
ubi
 polynomial y3(x). Forthe jump of the fun
tion F (�; �) at � = ��(�), we �ndF (�; �� � 0)� F (�; �� + 0) = lim
1!
2 
2Z
1 dx�p� �� j�+ xj[(�+ x)2 � x℄�1=2[(
3 � x)(x � 
1)(
2 � x)℄1=2 = ��: (13)Here, �� is given by Eq. (12) after the substitution ofz� and �� for z+ and �+, respe
tively.Therefore, for � > 0, the square-root divergen
e ofthe density of states at E = �=4 is split into a loga-rithmi
 divergen
e and a jump. The latter exists for� < �
 only. The se
ond logarithmi
 divergen
e ap-pears from � = �1 as � in
reases from the zero value.Su
h a nontrivial behavior of the TDOSS (the fun
tionF (�; �)) is illustrated in Fig. 2.As usual, the van Hove singularities in the densityof states dis
ussed above 
an be explained by a 
ompli-
ated, not linearly 
onne
ted shape of a Fermi surfa
e

0 0:25 0:50�0:2502
46
F�

�Fig. 2. The normalized TDOSS versus dimensionlessenergy � = E=� for � = 0:4 (solid 
urve) and � = 22(dashed 
urve)for the spe
trum, Eq. (2). The Fermi surfa
e is illus-trated graphi
ally in Fig. 3. Depending on the valuesof �, there are three di�erent 
ases of possible evolu-tion of the Fermi surfa
e with an in
rease in the 
hem-i
al potential (energy). In the 
ase � > �
, there is587
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Fig. 3. The 
onstant energy 
uts of energy spe
trum (2) for (a) � = 1 and � = 0:238; 0:25; 0:254 from the bottom tothe top, (b ) � = 0:4 and � = 0:143; 0:185; 0:253; 0:6, and (
) � = 0:68 and � = 0:2; 0:25; 0:255; 0:5. Color online seearXiv:1408.6960one logarithmi
 divergen
e of the density of states atE = �=4. It o

urs be
ause the 
entral snow�ake-likepart en
losing the �� point tou
hes the six outermostdis
onne
ted parts (see Fig. 3a, panel � = 0:250). For� < �0, where�0 = �+(1=4) = 16=27 � 0:59;
two logarithmi
 singularities exist in the density ofstates. The �rst one at E = �+� (�+ is determinedas the solution of the equation � = �+(�+)) is relatedto the six outermost dis
onne
ted parts tou
hing ea
hother (see Fig. 3b, panel � = 0:185). The se
ond sin-gularity situated at E = �=4 is due to the tou
hingof the 
entral snow�ake-like part and the part formed588
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al insulator : : :after 
onsolidation of six initially dis
onne
ted pie
es(see Fig. 3b, panel � = 0:250). The jump in the densityof states at E = ��� (�� is determined as the solutionof the equation � = ��(��)) is related to disappear-an
e of six empty spots (see Fig. 3b, panel � = 0:255).In the intermediate range �0 < � 6 �
, there are twologarithmi
 singularities of the density of states. The�rst one at E = �=4 is due to the 
entral snow�ake-like part tou
hing the six outermost dis
onne
ted parts(see Fig. 3
, panel � = 0:250). The se
ond singularityat E = �+� is related to the appearan
e of six emptyspots (see Fig. 3
, panel � = 0:255). The jump in thedensity of state is due to the 
ollapse of these emptyspots (see Fig. 3
, panel � = 0:2645).3. LANDAU LEVELS WITHIN THEPERTURBATION THEORYWe now 
onsider the e�e
t of the magneti
 �eld Hperpendi
ular to the surfa
e of a 3D topologi
al insu-lator on the spe
trum of surfa
e states. In general,one needs to start from a Hamiltonian des
ribing bulkstates in the presen
e of the magneti
 �eld and to de-rive the e�e
tive 2D Hamiltonian for the surfa
e statesfrom it. It was shown [30℄ that su
h an approa
h leadsto the results that are similar to the results that 
an beobtained from the zero-�eld Hamiltonian for the sur-fa
e states after the Peierls substitution. Therefore, todes
ribe the surfa
e states in a perpendi
ular magneti
�eld, we substitute the momentum k in Hamiltonian(1) with k� eA. Here, A denotes the ve
tor potentialfor the perpendi
ular magneti
 �eld H = r�A, and estands for the ele
tron 
harge. In addition, the Zeemanterm gL�BH�z=2 (gL and �B are the g-fa
tor and Bohrmagneton) has to be added to Hamiltonian (1). Here,we assume for simpli
ity the (111) surfa
e su
h that�=2 
oin
ides with the ele
tron spin operator [27, 28℄.Thus, we 
onsider the following HamiltonianH = (k� eA)22m + v�(k � eA);��z ++ �2 Xs=�(ks � eAs)3�z + 12gL�BH�z; (14)where A� = Ax � iAy:In the 
ase � = 0, Hamiltonian (1) des
ribes 2D ele
t-rons with a Rashba-type spin-orbit splitting in the pre-sen
e of a magneti
 �eld. [26℄. Then the spe
trum (Lan-dau levels) are known to be as follows [26℄:

Esn = �n!
+ssE20+2nv2l2H ; n = 1; 2; : : : ; s = �;E0 = �!
2 � gL�BH2 : (15)Here, lH = 1pjejH ; !
 = jejHjmjare the magneti
 length and the 
y
lotron frequen
y.The 
orresponding wave fun
tions in the Landau gauge,A = (�Hy; 0; 0);reads  n;s = eikxxpLx  �n;sjn� 1i�n;�sjni ! ; (16)where Lx denotes the size of the surfa
e in the x dire
-tion and jni stands for standard states of the Landaulevel problem. The 
oe�
ients �n;s 
an be written as�n;s = 1p1 +D2n (�isDn; s sgnE0 > 0;1; s sgnE0 < 0; (17)where Dn = p2nv=lHjE0j+pE20 + 2nv2=l2H : (18)To treat the hexagonal warping in Hamiltonian (14)as a perturbation, we need to evaluate matrix elementsof the operatorV = �2 Xs=�(ks � eAs)3�z � p2�l3H �â3 + ây3��z : (19)Here, the boson operators â and ây are de�ned asâ = lHp2�k� � eA��; ây = lHp2�k+ � eA+�: (20)The state jni is an eigenstate of the operator âyâ,âyâjni = njni. Using the well-known matrix elementsof the operators â and ây, we obtain the following re-sults for the matrix elements:V s;s0n;n+3 = p2�l3H �� ��n;s�n+3;s0�n+2 � �n;�s�n+3;�s0�n+3�; (21)where s; s0 = �, the bar denotes 
omplex 
onjugation,and589



E. V. Repin, I. S. Burmistrov ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015�n =pn(n� 1)(n� 2) for n > 0:The other nonzero matrix elements 
an be obtained by
omplex 
onjugation. Hen
e, the se
ond-order 
orre
-tion to eigenenergies (15) due to the hexagonal warpingis given asÆEs;(2)n = � Xs0=� jV s0;sn+3;nj2Es0n+3 �Esn + jV s0;sn�3;nj2Es0n�3 �Esn! : (22)For small values of n (for low-lying Landau levels), theperturbation theory is appli
able if�=l3H � maxf!
; v=lHg:The se
ond-order 
orre
tion ÆEs;(2)n in
reases with anin
rease in n. Therefore, the perturbation theorybreaks down at large n if � is not su�
iently small.Setting X = �=vl2H ; Y = 2jmjlHv;we �nd that perturbative result (22) is valid if the fol-lowing inequalities hold:1� Xn8><>:Ypn; Ypn� 1;1; 1� Ypn� n;Y=pn; n� Ypn: (23)

In addition the perturbation theory in (22) does notwork near 
rossings of the unperturbed levels E+n andE+n+3 that o

ur with varying the magneti
 �eld. Toimprove the perturbation theory near these degenera-
y points, we apply a unitary transformation of theHamiltonian that diagonalizes the 2� 2 matrixA =  E+n V ++n;n+3V ++n;n+3 E+n+3 ! : (24)As usual, the eigenvalues of the matrix A,�� = E+n+3 +E+n2 �� 12q(E+n+3 �E+n )2 + 4jV ++n;n+3j2; (25)des
ribe the avoided 
rossing of levels E+n and E+n+3due to the matrix element V ++n;n+3. For a given n, westart from rewriting Hamiltonian (1) in the basis of theunperturbed states  n;s:H =  A BBy C! : (26)Here, we introdu
e the in�nite-blo
k matri
esB = 0�V +�n;n+3 V ++n;n�3 V +�n;n�3 0 0 0 : : :0 0 0 V +�n+3;n V ++n+3;n+6 V +�n+3;n+6 : : :1A ;
C =

0BBBBBBBBBBBBBBBBB�
E�n+3 0 0 V ��n+3;n V �+n+3;n+6 V ��n+3;n+6 : : :0 E+n�3 0 V +�n�3;n 0 0 : : :0 0 E�n�3 V ��n�3;n 0 0 : : :V ��n;n+3 V �+n;n�3 V ��n;n�3 E�n 0 0 : : :V +�n+6;n+3 0 0 0 E+n+6 0 : : :V ��n+6;n+3 0 0 0 0 E�n+6 : : :: : : : : : : : : : : : : : : : : : : : :

1CCCCCCCCCCCCCCCCCA : (27)
The unitary transformation diagonalizing the matrix A is as follows:U =  u 00 1! ; u = 0BBBB� 1q1 + 
2+ 1q1 + 
2�
+q1 + 
2+ 
�q1 + 
2� 1CCCCA ; (28)

590
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� = E+n+3�E+n �q(E+n �E+n+3)2+4jV +�n;n+3j22V ++n;n+3 : (29)Now taking into a

ount the matrix elements (givenby uyB) 
onne
ting levels �� with the other levelswithin the se
ond-order perturbation theory, we �ndthe following results for energies 
orresponding to theunperturbed energies E+n and E+n+3:E� = ��+ 11+
2� jV +�n;n+3j2�� �E�n+3+ jV ++n;n�3j2�� �E+n�3 ++ jV +�n;n�3j2�� �E�n�3 + j
�V +�n+3;nj2�� �E�n ++ j
�V ++n+3;n+6j2�� �E+n+6 + j
�V +�n+3;n+6j2�� �E�n+6 !: (30)This result is free from the �
titious divergen
e at thepoint E+n = E+n+3 produ
ed within the standard per-

0.25 0.30 0.35

h

0.24

0.25

0.26

ǫ

Fig. 4. The dependen
e of dimensionless unperturbedenergies E+4 =� and E+7 =� on dimensionless magneti
�eld h = 4�v2=(lH�)2 (dashed 
urves) near their
rossing point. The thin solid 
urves illustrate the re-sults of the standard perturbation theory (see Eq. (22)).The dot-dashed 
urves are the eigenvalues ��. Thethi
k solid bla
k 
urves are the result of the modi�edperturbation theory (see Eq. (30)). The points rep-resent the results of numeri
al diagonalization of thetrun
ated Hamiltonian with 2000 levels. The dimen-sionless parameter of hexagonal warping is � = 0:1and gL = 0

turbation theory, Eq. (22). Away from the 
rossingpoint, the result in (30) transforms into result (22). Weillustrate the result (30) of the modi�ed perturbationtheory, whi
h is essentially the 
orre
t 
hoi
e of wavefun
tions for the zeroth-order approximation, in Fig. 4for the 
rossing of the unperturbed levels E+4 and E+7 .As we 
an see from Fig. 4, expressions (30) smoothly in-terpolate the results of the standard se
ond-order per-turbation theory, Eq. (22), before and after the degen-era
y point. Even in the 
lose vi
inity of the 
rossingpoint, the energies E� are di�erent from the eigenva-lues �� of the matrix A, i. e., transitions to other levelsare important. The energy levels found from Eq. (30)are in good agreement with numeri
al diagonalizationof Hamiltonian (14).4. LANDAU LEVELS IN THE WKBAPPROXIMATIONTo study the stru
ture of Landau levels at higherenergies, we use the WKB approa
h [31℄. We employthe Bohr�Sommerfeld quantization 
onditionS(E) = 2�l�2H �n+ Æ(E)�; (31)where S(E) denotes the area bounded by a 
urve of the
onstant energy E in the momentum spa
e in the ab-sen
e of the magneti
 �eld, n is an integer number, andÆ(E) 
ontains information on the number of turningpoints of a semi
lassi
al ele
tron orbit and the Berryphase [32℄. Typi
ally, the fun
tion Æ(E) is of the or-der of unity. Sin
e we are interested in Landau levelswith n � 1, we omit Æ(E) below. We also negle
tthe Zeeman splitting, assuming that the g-fa
tor is notstrongly enhan
ed in 
omparison with its band value.The area S(E) 
an be expressed through the den-sity of states without a magneti
 �eld. As follows fromthe results in Se
. 2, for some values of � and � there areseveral dis
onne
ted regions en
losed by 
onstant-ener-gy 
urves. In this 
ase, semi
lassi
al quantization 
on-dition (31) has to be applied to ea
h dis
onne
ted areaseparately. For energies in the interval0 < � < minf�+(�); 1=4g(see regions A1 and A4 in Fig. 1b ), there is one snow-�ake-like region in
luding the �� point and six outer-most regions of in�nite area (see Fig. 3). The area ofthe 
entral region 
an be written asS1 = �22v2 242�
1 + 12 x1Z
1 dxG(x; �; �)35 ; (32)591
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e the fun
tionG(x; �; �) = 13 ar

os �p(x+�)2�xp�x3 ��6 : (33)It 
an be shown that�S1�� = 4�2�g1(�); g1(�) = �2�v2F1(�; �): (34)The fun
tion g1(�) provides the 
ontribution to the den-sity of states g(�) from the states in this snow�ake-like
entral region. The area of ea
h among the six outer-most regions isS5 = �2v2 1Zx2 dxG(x; �; �): (35)Again, this area 
an be related to the 
orresponding
ontribution to the density of states:�S5�� = 2�2�3 g5(�); g5(�) = �2�v2F5(�; �): (36)Sin
e the integral in Eq. (35) diverges at the upperlimit, it is 
onvenient to rewrite Eq. (35) asS5(�) = 16S(0) + ��23v2 �Z0 d�0F5(�0; �): (37)Here, S(0) is the total area en
losed by the 
ons-tant-energy 
urve � = 0. We note that in the frame-work of Hamiltonian (1), the area S(0) is in�nite. Itbe
omes �nite, for example, if we take 
orre
tion to themass m of the next order in k2 into a

ount. Withinthe semi
lassi
al approximation, the Bohr�Sommerfeldquantization 
ondition (31) for S5(�) results in sixfolddegenerate levels. The quantum tunneling (magneti
breakdown) removes this degenera
y [31℄.In the 
asemaxf0; �+(�)g < � < 1=4(see region A3 in Fig. 1b ), there are two dis
onne
tedparts of the area (see Fig. 3). The area of the inner-most part is given by Eq. (34), whereas the area of theoutermost part isS2;3 = 6�2v2 0� 
2Zx2 dxG(x; �; �) + 1Z
3 dxG(x; �; �)1A ++ �22v2 (2�
3 � 2�
2): (38)

Again, we �nd�S2;3�� = 4�2�g2;3(�); g2;3(�) == �2�v2 �F2(�; �) + F3(�; �)�: (39)It is 
onvenient to rewrite S2;3 asS2;3 = S(0)+2��2v2 �Z0 d�0hF2(�0; �)+F3(�0; �)i: (40)In the other 
ase 1=4 < � (see Fig. 3), there is alwaysone 
onne
ted region whose area 
an be written asS(�) = S(0) + 4�2� �Z0 d�0g(�0): (41)For � < 0, the area 
an be found using the relation�S�� = 4�2��g5(�)� g1(�)�: (42)The stru
ture of Landau levels undergoes 
hangesnear su
h singularities of the zero-�eld density of states,whi
h are related to the 
hange of the number of 
on-ne
ted parts of the area en
losed by a 
onstant-energy
urve.For � < �0, the sixfold degenerate levels trans-form into nondegenerate levels at � = �+(�). UsingEq. (11), we 
an estimate the 
hange in the level spa
-ing at � = �+(�). We �ndd�dn = h4�+ ln(1=j�� �+j) ��(6; �+ � �� 1;1; �� �+ � 1; (43)where h = 4�v2=(lH�)2stands for the dimensionless magneti
 �eld. Thus, thesixfold degenerate levels (
orresponding to six dis
on-ne
ted pie
es) are six times sparser than the levels af-ter the dis
onne
ted pie
es merged together. Also, theslope of the sixfold degenerate levels with respe
t to themagneti
 �eld is six times larger than the slope of lev-els after 
onsolidation of the dis
onne
ted pie
es. Thelevels 
orresponding to the area S1 are 
ontinuous at� = �+(�). But at � = 1=4, the area S1 merges withthe area S2;3. Using Eq. (10), we 
an estimate the levelspa
ing before and after the 
onsolidation:d�dn = hp�16 ln(1=j�� 1=4j) (2; 1=4� �� 1;1; �� 1=4� 1: (44)592
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0.10Fig. 5. The stru
ture of Landau levels in the WKB approximation (ea
h 10th level is shown) for � = 0:4 (a) and 2 (b ). Solid
urves denote the levels due to the 
entral snow�ake-like area S1. Dashed 
urves are sixfold degenerate levels. Dot-dashed
urves 
orrespond to levels due to the area obtained after the 
onsolidation of six dis
onne
ted outermost pie
es. Thin solid
urves are the levels 
orresponding to uni�ed area but with six empty spots. Dotted 
urves denote the levels in the 
asewhere the empty spots disappear. The total area at � = 0 is 
hosen to be equal to S(0) = �2=2v2Ea
h of the Landau levels 
orresponding to the areasS1 and S2;3 is twi
e sparser than the levels after 
on-solidation. Also, the slope of these levels at � = 1=4be
omes two times smaller.For � > �0, Landau levels undergo re
onstru
tionat � = 1=4 only. At 1=4� � � 1, there are two sets oflevels: the sixfold degenerate (�2;3) and nondegenerate(�1) ones with the level spa
ingsd�1dn = hp�8 ln[1=(1=4� �)℄ ;d�2;3dn = 3hp�4 ln[1=(1=4� �)℄ : (45)The sixfold degenerate levels are six times sparser andsteeper than the levels after the dis
onne
ted pie
esmerged together. At � > 1=4, there is only a single setof Landau levels with the spa
ingd�dn = hp�16 ln[1=(�� 1=4)℄ : (46)These levels are two times sparser and smoother than�1 levels.We illustrate the transformations of Landau levelsdis
ussed above in Fig. 5 for two values of the dimen-sionless parameter of hexagonal warping, � = 0:4 and

� = 2. There are several interesting features due tothe hexagonal warping in the stru
ture of the Landaulevels. At �rst, hexagonal warping leads to the exis-ten
e of sixfold degenerate levels (red 
urves in Fig. 5)within the WKB approximation for � < minf�+; 1=4g.The a

ount of quantum tunneling (magneti
 break-down) should remove this degenera
y. Next, due tothe hexagonal warping, there exist levels (green 
urvesin Fig. 5) with energies well above �=4, whi
h is notpossible in the 
ase � = 0. However, it is not 
learin the WKB approximation how the Landau levels at� = 0 transform to produ
e levels with energies above�=4 in the 
ase � > 0. Therefore, we 
ompare theresults of the WKB approximation with the Landaulevels obtained by numeri
al diagonalization of Hamil-tonian (14) trun
ated to 2000 levels. As we 
an seefrom Fig. 6, the numeri
al results are in qualitativeagreement with the semi
lassi
al treatment.5. DISCUSSIONS AND CONCLUSIONSUsing re
ent results of spin and angle resolved pho-toemission spe
tros
opy [9℄, we estimate the parame-ters relevant for the model 
onsidered above for twotopologi
al insulators, Bi2Te3 and Bi2Se3. We note11 ÆÝÒÔ, âûï. 3 (9) 593
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Fig. 6. The stru
ture of Landau levels from numeri
al diagonalization of the trun
ated Hamiltonian with 2000 levels for� = 0:4 (a) and 2 (b )Table 2. Estimates for parameters of the modelextra
ted from Ref. [9℄�, eV E0, eV � k0, Å�1 h=H , T�1Bi2Te3 1.1 0.51 22 0.14 2.2 � 10�3Bi2Se3 0.34 0.43 0.4 0.08 7.0 � 10�3that they di�er by the sign of the e�e
tive massm. It isnegative for Bi2Te3 and positive for Bi2Se3. Estimatesfor parameters of the model extra
ted from Ref. [9℄ aresummarized in Table 2. We emphasize that althoughthe energy s
ales � and E0 are of the same order forboth topologi
al insulators, the dimensionless parame-ter � 
hara
terizing the strength of the hexagonal warp-ing di�ers by more than 50 times.The most interesting theoreti
al observation is thelogarithmi
 singularity in the TDOSS at E = �=4,whi
h 
orresponds to 
onsolidation of the snow�ake-li-ke 
entral region and the six outermost dis
onne
tedregions. It o

urs in 
ertain dire
tions of the momen-tum spa
e, e. g., at the angle � = �=6. The 
onditionE+(k0; �=6) = �=4is solved by the momentumk0 = �2v :A

ording to the estimates in Table 2, it is mu
hsmaller than the size of the surfa
e Brillouin zone,

whi
h is of the order of 1Å�1. We note that for su
ha momentum, the ratio of the hexagonal warping termto the term linear in momentum is of the order of�k20=v = p�=4:This indi
ates that for �=16 � 1, the singularity o
-
urs in the regime where the hexagonal warping is asmall 
orre
tion to the dispersion linear in k. Theseestimates are in favor of the use of Hamiltonian (1),whi
h was derived near the �� point, for des
ribing thesingularity in TDOSS at E = �=4.The spin and angle resolved photoemission spe
tro-s
opy for Bi2Te3 and Bi2Se3 indi
ates that the energyspe
trum of surfa
e states is a monotoni
 fun
tion ofmomentum above the Dira
 point. Therefore, for thesematerials, the singularities of TDOSS predi
ted in ourwork are situated at energies in the bulk 
ondu
tionband, and are therefore unobservable. Nevertheless,our results provide a theoreti
al explanation for thetypi
al s
anning tunneling mi
ros
opy experiments insu
h materials [15℄. If we 
hoose a very large value ofthe parameter �, then in the energy interval 0 < E << �=4, the fun
tion F (�; �) has a step-like feature.We present the dependen
e of F (�; �) on � in Fig. 7for � = 2000 (this is the minimal value for whi
h thedependen
e is still step-like). This plot looks mu
h likethe experimental one in Ref. [15℄. We note that su
han enormous in
rease in the parameter � in 
ompari-son with the estimate for Bi2Te3 (see Table 2) 
an be594
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ǫ

0.1

0.2

F

Fig. 7. The dependen
e of F (�; �) on � for � = 2000a
hieved, e. g., by in
reasing the e�e
tive mass by threetimes.Finally, we stress the smallness of dimensionlessmagneti
 �eld h for both Bi2Te3 and Bi2Se3 (see Tab-le 2). It implies the smallness of the parameter!
lH=v =ph=�:The validity of the perturbation theory for Landau le-vels with a small level index is 
ontrolled by the pa-rameter p�h=4�. Therefore, for moderate values of �,low-lying Landau levels are not signi�
antly a�e
tedby the presen
e of the �nite 
urvature and hexagonalwarping and, hen
e, s
ale as pH. Su
h s
aling for Lan-dau levels near the Dira
 point was re
ently observedfrom os
illations in the tunneling 
ondu
tan
e of Bi2Se3[18℄, of Sb2Te3 [21℄, from mi
rowave spe
tros
opy inBi2Te3 [34℄, and from magneto-infrared spe
tros
opyin Bi0:91Sb0:09 [35℄. The e�e
t of hexagonal warpingis most pronoun
ed near the degenera
y points of theunperturbed Landau levels. For a given h � 1, thedegenera
y point 
orresponds to Landau levels withnh � �=(2h) � 1 and energies of the order of �=4.The hexagonal warping leads to avoiding the 
rossingof Landau levels E+nh and E+nh+3 with the typi
al dis-tan
e between them of the order ofÆh � p�=2�h8� :An additional signature of hexagonal warping is the

existen
e of os
illations in the tunneling 
ondu
tan
ein the magneti
 �eld at energies above �=4. In the
ase of Bi2Te3 for the magneti
 �eld H = 10 T, we
an estimate nh � 70 and Æh � 3 meV. We expe
t thatfuture tunneling experiments on topologi
al insulatorswith warped ele
troni
 spe
tra will indeed reveal thepredi
ted 
omplex stru
ture of Landau levels and theirunusual evolution in the magneti
 �eld.To summarize, we 
omputed the tunneling densityof surfa
e states g(E) in a 3D topologi
al insulatorin the presen
e of hexagonal warping and �nite 
ur-vature. We found that hexagonal warping transformsthe square-root van Hove singularity of g(E) into alogarithmi
 one. With an in
rease in the hexagonalwarping, the singularity be
omes weaker. For thehexagonal warping values � . 0:18=m2v, the tunnelingdensity of states has an additional logarithmi
 singu-larity and a jump. Their positions and amplitudesdepend on �. In the presen
e of a perpendi
ularmagneti
 �eld, we analyzed stru
ture of the Landaulevels within the perturbation theory in the hexagonalwarping and in the WKB approximation. We obtainedthat hexagonal warping removes degenera
ies of theLandau levels and drasti
ally 
hanges their behaviorwith the magneti
 �eld.We are grateful to V. Stolyarov, C. Brun, andD. Rodit
hev for sharing their experimental data [17℄prior to publi
ation, whi
h motivated us for the presentwork. The results in Se
. 2 were obtained within thegrant � 14.587.21.0006 (RFMEFI58714X0006) of theMinistry of Edu
ation and S
ien
e of the Russian Fed-eration. The results presented in Se
s. 3�4 were ob-tained with �nan
ial support from the Russian S
ien
eFoundation under the grant � 14-12-00898.REFERENCES1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82,3045 (2010).2. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057(2011).3. Y. Ando, J. Phys. So
. J. 82, 102001 (2013).4. L. Fu, Phys. Rev. Lett. 103, 266801 (2009).5. C.-X. Liu, X.-L. Qi, H. J. Zhang, X. Dai, Z. Fang, andS.-C. Zhang, Phys. Rev. B 82, 045122 (2010).6. Y. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu,S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai,Z. Fang, S.-C. Zhang, I. R. Fisher, Z. Hussain, andZ.-X. Shen, S
ien
e 325, 178 (2009).595 11*



E. V. Repin, I. S. Burmistrov ÆÝÒÔ, òîì 148, âûï. 3 (9), 20157. Zh. Alpi
hshev, J. G. Analytis, J.-H. Chu, I. R. Fisher,and A. Kapitulnik, Phys. Rev. B 84, 041104 (2011).8. K. Kuroda, M. Arita, K. Miyamoto, M. Ye, J. Jiang,A. Kimura, E. E. Krasovskii, E. V. Chulkov, H. Iwa-sawa, T. Okuda, K. Shimada, Y. Ueda, H. Namatame,and M. Tanigu
hi, Phys. Rev. Lett. 105, 076802(2010).9. M. Nomura, S. Souma, A. Takayama, T. Sato, T. Taka-hashi, K. Eto, K. Segawa, and Y. Ando, Phys. Rev. B89, 045134 (2014).10. C. M. Wang and F. J. Yu, Phys. Rev. B 84, 155440(2011).11. X. Xiao and W. Wen, Phys. Rev. B 88, 045442 (2013).12. S. Smirnov, Phys. Rev. B 88, 205301 (2013).13. Z.-G. Fu, F. Zheng, Z. Wang, and P. Zhang, Prog.Theor. Exp. Phys. 103I01 (2013).14. S. Urazhdin, D. Bil
, S. D. Mahanti, S. H. Tessmer,Th. Kyratsi, and M. G. Kanazidis, Phys. Rev. B 69,085313 (2004).15. Zh. Alpi
hshev, J. G. Analytis, J.-H. Chu, I. R. Fisher,Y. L. Chen, Z. X. Shen, A. Fang, and A. Kapitulnik,Phys. Rev. Lett. 104, 016401 (2010).16. P. Sessi, M. M. Otrokov, T. Bathon, M. G. Vergniory,S. S. Tsirkin, K. A. Kokh, O. E. Teresh
henko,E. V. Chulkov, and M. Bode, Phys. Rev. B 88,161407(R) (2013).17. V. S. Stolyarov, T. Cren, C. Brun, S. I. Bozhko,L. V. Yashina, and D. Rodit
hev in preparation.18. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi,and T. Sasagawa, Phys. Rev. B 82, 081305(R) (2010).19. T. Zhang, N. Levy, J. Ha, Y. Kuk, and J. A. Stros
io,Phys. Rev. B 87, 115410 (2013).20. Y.-S. Fu, M. Kawamura, K. Igarashi, H. Takagi, T. Ha-naguri, and T. Sasagawa, arxiv:1408.0873 (unpub-lished).21. Y. Jiang, Y. Wang, M. Chen, Z. Li, C. Song, K. He,L. Wang, X. Chen, X. Ma, and Q.-K. Xue1, Phys. Rev.Lett. 108, 016401 (2012).

22. A. Yu. Dmitriev, N. I. Fedotov, V. F. Nasretdino-va, and S. V. Zaitsev-Zotov, arxiv:1408.4991 (unpub-lished).23. K. Saha, S. Das, K. Sengupta, and D. Sen, Phys. Rev.B 84, 165439 (2011).24. P. S
hwab and M. Dzierzawa, Phys. Rev. B 85, 155403(2012).25. M. M. Vazifeh and M. Franz, Phys. Rev. B 86, 045451(2012).26. Yu. A. By
hkov and E. I. Rashba, JETP Lett. 39, 78(1984); J. Phys. C: Sol. State Phys. 17, 6039 (1984).27. P. G. Silvestrov, P. W. Brouwer, and E. G. Mish
henko,Phys. Rev. B 86, 075302 (2012).28. F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. B 86,081303(R) (2012).29. S. Basak, H. Lin, L. A. Wray, S.-Y. Xu, L. Fu,M. Z. Hasan, and A. Bansil, Phys. Rev. B 84,121401(R) (2011).30. Z. Yang and J. H. Han, Phys. Rev. B 83, 045415(2011).31. for a review, see e. g. I. M. Lifshitz, M. Y. Azbel, andM. I. Kaganov, Ele
troni
 Theory of Metals, Nauka,Mos
ow (1971).32. L. A. Falkovsky, JETP 49, 609 (1965); A. Yu. Ozerinand L. A. Falkovsky, Phys. Rev. B 85, 205143 (2012).33. M. R. S
holz, J. Sán
hez-Barriga, J. Braun, D. Mar-
henko, A. Varykhalov, M. Lindroos, Y. J. Wang,H. Lin, A. Bansil, J. Minár, H. Ebert, A. Volykhov,L. V. Yashina, and O. Rader, Phys. Rev. Lett. 110,216801 (2013).34. A. Wolos, S. Szyszko, A. Drabinska, M. Kaminska,S. G. Strzele
ka, A. Hruban, A. Materna, and M. Pier-sa, Phys. Rev. Lett. 109, 247604 (2012).35. A. A. S
hafgans, K. W. Post, A. A. Taskin, Y. Ando,X.-Liang Qi, B. C. Chapler, and D. N. Basov, Phys.Rev. B 85, 195440 (2012).
596


