ZKIT®, 2015, rom 148, Boim. 3 (9), crp. 584-596

© 2015

SURFACE STATES IN A 3D TOPOLOGICAL INSULATOR:
THE ROLE OF HEXAGONAL WARPING AND CURVATURE

E. V. Repin®, I. S. Burmistrov®"*

* Moscow Institute of Physics and Technology
141700, Moscow, Russia

bL. D. Landau Institute for Theoretical Physics Russian Academy of Sciences
119334, Moscow, Russia

Received June 3, 2015

We explore a combined effect of hexagonal warping and a finite effective mass on both the tunneling density of
electronic surface states and the structure of Landau levels of 3D topological insulators. We find the increasing
warping to transform the square-root van Hove singularity into a logarithmic one. For moderate warping, an
additional logarithmic singularity and a jump in the tunneling density of surface states appear. By combining the
perturbation theory and the WKB approximation, we calculate the Landau levels in the presence of hexagonal
warping. We predict that due to the degeneracy removal, the evolution of Landau levels in the magnetic field

is drastically modified.
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1. INTRODUCTION

Theoretical and experimental study of three dimen-
sional (3D) topological insulators is in the focus of mo-
dern research in condensed matter physics [1-3]. Apart
from fundamental interest in the novel quantum state
of matter — topological insulators — attract great at-
tention in view of their possible applications in spin-
tronics due to spin-current locking of surface states.
Many exciting features of electron states on the sur-
face of a 3D topological insulator were found within
the simplest two-dimensional (2D) Hamiltonian, linear
in momentum and spin operators, that is allowed by
the time-reversal and crystal symmetries [1-3].

Recently, it was realized that without symmetry
violation, this simplest Hamiltonian can be extended
to higher-order terms in momentum describing finite-
mass and hexagonal warping of surface states [4, 5].
Indeed, the hexagonal warping of their Fermi surface
has been found experimentally by angle-resolved pho-
toemission spectroscopy in topological insulators such
as Bi2T€3 [6, 7], Bi2Seg [8]7 and Pb(Bi,Sb)2T€4 [9] The-
oretically, the hexagonal warping of surface states can
induce spin-density wave instability [4], affects the dc
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and optical conductivities [10, 11], is responsible for lo-
calization of the Cherenkov sound in certain directions
[12], and can stabilize the v = 1/3 fractional quantum
Hall state [13]. In addition to the hexagonal warping,
spin and angle resolved photoemission spectroscopy re-
vealed the presence of finite curvature of the spectrum
of surface states in BiyTes, BiySes, Pb(Bi,Sh)2Tey, and
TIBiSe; [9].

An alternative experimental way to access the spec-
trum of surface states in 3D topological insulators is
the scanning tunneling microscopy. Recently, scan-
ning tunneling microscopy was employed for BisTes
[7,14-17], BixSes [14,18-22], and SbhoTes in a per-
pendicular magnetic field [21]. The spectrum of sur-
face states extracted from angle-resolved photoemis-
sion spectroscopy data is correlated with the tunnel-
ing conductance measured by scanning tunneling mi-
croscopy [7]. However, bulk states also contribute to
the tunneling conductance, thus hiding a part due to
the surface states. To unravel the surface contribution,
it is crucial to know the tunneling density of surface
states (TDOSS) in detail. Within the spectrum linear
in momentum, the TDOSS with and without the mag-
netic field was studied theoretically in Refs. [23-25]. In
spite of clear experimental relevance, we are not aware
of theoretical studies of the TDOSS in the presence of
nonzero curvature and hexagonal warping.
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In this paper, we calculate the tunneling density of
states on the surface of a 3D topological insulator in
the presence of hexagonal warping and a finite mass
m. We demonstrate that hexagonal warping leads to
a logarithmic van Hove singularity instead of the squa-
re-root one that exists in the case of a finite mass due
to the end point of the spectrum. For moderate values
of the hexagonal warping, we discover an additional lo-
garithmic singularity and a jump in the TDOSS. This
prediction is quantitatively supported by scanning tun-
neling microscopy measurements of the local density of
states in BisTez. In the presence of a perpendicular
magnetic field, we analyze the structure of Landau le-
vels within the perturbation theory and in the WKB
approximation. As is well known [26], in the absence of
hexagonal warping, there are crossings of Landau lev-
els at some magnetic fields due to a finite mass. We
find that the hexagonal warping removes these degene-
racies and strongly affects the slope of Landau levels
with respect to the magnetic field.

The paper is organized as follows. In Sec. 2, we in-
troduce the model Hamiltonian and calculate the tun-
neling density of states on the surface of a 3D topolog-
ical insulator in the presence of hexagonal warping and
finite mass. In Sec. 3, we analyze the effect of hexago-
nal warping on Landau levels within the perturbation
theory. In Sec. 4, we investigate the structure of Lan-
dau levels in the presence of hexagonal warping in the
WKB approximation. We conclude with a discussion
of how our theoretical results can be further tested ex-
perimentally (Sec. 5).

2. TUNNELING DENSITY OF SURFACE
STATES AT ZERO MAGNETIC FIELD

We start from the model Hamiltonian of electron
states on the surface of a 3D topological insulator in
zero magnetic field, given by the 2 x 2 matrix [4, 5]

Fethy  Ags g
. +§(k++k_)az. (1)

H = v(kzay—kycrz)+

Here, k = {k;,k,} denotes the in-plane quasiparticle
momentum, k4 = k, + ik,, and o, , . are the Pauli
matrices. We note that due to the spin-orbit coupling
in the bulk, the Pauli matrices o, 4, . do not necessar-
ily correspond to operators of the electron spin [27, 28].
The first term in the right-hand side of Eq. (1) describes
the conical (Dirac-type) spectrum with a velocity v.
The second term in Eq. (1) takes a finite curvature of
the surface state spectrum into account. The effective
mass m can be positive (e.g., for BizSes) or negative

(as in the case of BiyTes) [9]. In what follows, having
in mind the case of BiyTez, we consider the situation
where m < 0. The results for the opposite case, m > 0,
can be easily obtained by inversion of the energy and
momentum. The last term in Eq. (1) describes the ef-
fect of hexagonal warping, whose strength is character-
ized by the parameter A. In the absence of hexagonal
warping, A = 0, Hamiltonian (1) is just the Bychkov—
Rashba Hamiltonian for 2D electrons with spin—orbit
splitting [26]. To Hamiltonian (1), we can add a term
of the third order in the momentum describing the k?
contribution to the velocity v [4]. Moreover, in exten-
ding Hamiltonian (1) to the fifth order in k, Dressel-
haus spin—orbit terms were proposed to explain devia-
tion of the electron spin from the direction perpendic-
ular to the momentum [29]. However, recent results of
spin and angle resolved photoemission spectroscopy [9]
do not demonstrate significant deviation of the surface
state spectrum from the one corresponding to Eq. (1).
Therefore, we confine our considerations to Hamilto-
nian (1).

The spectrum of Hamiltonian (1) has the form [4, 5]

2
B (k,0) = Qk—m +V02k? + \2kB cos2 30, (2)

where 6 parameterizes the momentum, and
ky = kcos®, k, =ksin6.

The TDOSS can be written as

00 kedk 2m
(B) = _ [ a06(B - By (k,0). (3)
0= [ | o |

It is convenient to introduce the energy parameters

E() = \/US/A,

to characterize the hexagonal warping and curvature,
respectively. Then the dimensionless parameter

A = 2\m|v?

o= (A/Eo)*

measures the strength of hexagonal warping in compa-
rison with curvature. We remind that in the absence
of warping, o = A = 0, the density of states is given by

A
PeoB) =5
1, E <0,
X (1—4E/A)"Y2 0K E<A/4, (4)
0, A/4< E.
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It has a square-root van Hove singularity at E = A/4,
which is the end point of the spectrum. For nonzero
hexagonal warping, a > 0, the TDOSS is

A
g(E)_WF(E/Ava)a (5)
where
- 1
F(e,a) = —/dx|e+x|Re— X
) (e+a)?—x
1

x R

(6)

e )
Vazd +a — (e + x)?

The limits of integration over z in Eq. (6) are in fact
determined by the regions where the radicands are po-
sitive. Depending on the values of ¢ and «, the cubic
polynomial

y3(z) = ax® + x — (e + x)*

can have one (see curves A1, A2, A/, and A5in Fig. 1a)
or three (see curve A3 in Fig. la) real roots. The re-
gions of the corresponding behavior in the {e, a} plane
are shown in Fig. 1b. There is region A5 above the line
e = 1/2. Region A1 is situated below the curve

1

O{l(E) = m

Region A3 is clamped between the curves paramete-
rized as @ = a_(¢) and o = ay (¢), where

2(e+z1() — 1
324(e)

24(e) =1 —2e £ /(1 — 2¢)? — 3¢2.

The curves a = ax(€) merge and end at the points

at(e) =

(7)

=1/ (2+V3) 2027, ac=(3+2V3) /9~ 0.7L.

Region A2 is below region A5 but above the curve pa-
rameterized as

a = max{a_(€),a;(e)}.

Region A/ is clamped between the curves a = a4 (¢)
and a = ay (¢).

We let ¢1, co, c3 denote the roots of the cubic poly-
nomial y3(z) in increasing order if there exist three real
roots, and let ¢;, where i = 1 or 3, be the root of y3(x)
in the case of a single real root only. We note that z_
(z4) coincides with ¢; and ¢y (c2 and ¢3) at the point
where they merge. The roots of the quadratic polyno-
mial

yo(2) = (e +2)* — 2
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Table 1.
different regions of the {e, o} plane

Expressions for the function F'(e, ) in

e<1/4 e>1/4
Al F=F +F; F =F; + F,
A2 F=F
A3 F=F +F+ F; F=F+F,
A4 F=F +F; F=F;+F,
A5 F=F

are given as
1o = (1—-2eFV1—4e) /2.

It is convenient to introduce the following functions:

F = /dx]:(x,e,a),

T2

F :/daz]—"(gc,qa)7

C1
00

F3; = /dx]-'(ac,e,a),

c3

Fy = /dac]-'(x,e,oz),

Cc1
00

F; :/dx]-'(ac,e,a),
T2
where
1 le + 2|
T Viere)?2—zy/ard3+r—(e+z)?

Then for each region in Fig. 1b, the function F(e, )
can be represented as a linear combination of the func-
tions Fj, ¢ = 1,...,5, with coefficients equal to 0 or 1
(see Table 1).

The TDOSS exhibits singular behavior on the line
e = 1/4 and on the curves a = arx (€). The logarithmic
divergence at € = 1/4 for any a > 0 supersedes the
square-root singularity at the same energy existing in
the case @ = 0. Formally, it is due to the confluence of
two real roots @1 o of the quadratic polynomial y»(z).
The asymptotic form of F(e, ) near this logarithmic
singularity is

Flx, e, a) (9)

1 1
ma
There is an other logarithmic divergence of the den-
sity of states on the curve @ = ay(e). Within the
logarithmic accuracy, the asymptotic behavior of the
function F' near a = ay (€) can be found as

1

fa—aus ()]

1

F = _ —1/4 1. 1
(c,0) o < o)

F(e,a) ~ %ln . Ja—ag(e)] <1, (11)
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Fig.1. The five different types of possible behavior of a cubic polynomial y3(x) (a). The five corresponding regions in the
{e,a} plane (b)

_ le + 2+ ()|
= . (12)
[(+2+ ()24 (O P[1-3(1-26)as (] /1

At the border between regions A2 and A3, there is a
jump of the density of states due to the appearance of
an infinitely small range of integration between the first
two roots ¢; and ¢y of the cubic polynomial y3(x). For
the jump of the function F(e, o) at « = a_(e), we find

C2

dz

F(e,a_ —0) — F(e,a_ +0) = lim
c1—c T/
1 2 g \/_

c

X

e + z|[(e + z)? — x]~/?
[(e3 —x)(x —c1)(c2 — x)]1/2

Here, A_ is given by Eq. (12) after the substitution of
z_ and a_ for z; and a., respectively.

Therefore, for a > 0, the square-root divergence of
the density of states at E = A/4 is split into a loga-
rithmic divergence and a jump. The latter exists for
a < a. only. The second logarithmic divergence ap-
pears from € = —oo as « increases from the zero value.
Such a nontrivial behavior of the TDOSS (the function
F(e,)) is illustrated in Fig. 2.

Ag usual, the van Hove singularities in the density
of states discussed above can be explained by a compli-
cated, not linearly connected shape of a Fermi surface

=A_.

(13)

[=2]
T
1

—0.25 0

Fig.2. The normalized TDOSS versus dimensionless
energy e = E/A for a = 0.4 (solid curve) and o = 22
(dashed curve)

for the spectrum, Eq. (2). The Fermi surface is illus-
trated graphically in Fig. 3. Depending on the values
of a, there are three different cases of possible evolu-
tion of the Fermi surface with an increase in the chem-
ical potential (energy). In the case @ > a., there is
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Fig.3. The constant energy cuts of energy spectrum (2) for (a) @ = 1 and € = 0.238,0.25,0.254 from the bottom to
the top, (b) o = 0.4 and ¢ = 0.143,0.185,0.253,0.6, and (¢) a = 0.68 and € = 0.2,0.25,0.255,0.5. Color online see
arXiv:1408.6960

one logarithmic divergence of the density of states at
E = A/4. Tt occurs because the central snowflake-like
part enclosing the T' point touches the six outermost
disconnected parts (see Fig. 3a, panel ¢ = 0.250). For
a < ag, where

ap = a4 (1/4) =16/27 ~ 0.59,

two logarithmic singularities exist in the density of
states. The first one at F = e, A (e; is determined
as the solution of the equation o = a4 (e4)) is related
to the six outermost disconnected parts touching each
other (see Fig. 3b, panel ¢ = 0.185). The second sin-
gularity situated at F = A/4 is due to the touching
of the central snowflake-like part and the part formed
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after consolidation of six initially disconnected pieces
(see Fig. 3b, panel ¢ = 0.250). The jump in the density
of states at F = e_A (e is determined as the solution
of the equation @ = a_(e_)) is related to disappear-
ance of six empty spots (see Fig. 3b, panel ¢ = 0.255).
In the intermediate range ap < a < a., there are two
logarithmic singularities of the density of states. The
first one at £ = A/4 is due to the central snowflake-
like part touching the six outermost disconnected parts
(see Fig. 3¢, panel e = 0.250). The second singularity
at E = e A is related to the appearance of six empty
spots (see Fig. 3¢, panel ¢ = 0.255). The jump in the
density of state is due to the collapse of these empty
spots (see Fig. 3¢, panel € = 0.2645).

3. LANDAU LEVELS WITHIN THE
PERTURBATION THEORY

We now consider the effect of the magnetic field H
perpendicular to the surface of a 3D topological insu-
lator on the spectrum of surface states. In general,
one needs to start from a Hamiltonian describing bulk
states in the presence of the magnetic field and to de-
rive the effective 2D Hamiltonian for the surface states
from it. Tt was shown [30] that such an approach leads
to the results that are similar to the results that can be
obtained from the zero-field Hamiltonian for the sur-
face states after the Peierls substitution. Therefore, to
describe the surface states in a perpendicular magnetic
field, we substitute the momentum k in Hamiltonian
(1) with k — eA. Here, A denotes the vector potential
for the perpendicular magnetic field H=V x A, and e
stands for the electron charge. In addition, the Zeeman
term grupHo./2 (g1, and pp are the g-factor and Bohr
magneton) has to be added to Hamiltonian (1). Here,
we assume for simplicity the (111) surface such that
o /2 coincides with the electron spin operator [27, 28§].
Thus, we consider the following Hamiltonian

(k —eA)?
H = - +u[(k—eA), o], +
A 5 1
+3 ;(ks —eA)’ o, + SonpHo-, (14)
where

Ap = A, +iA,.

In the case A = 0, Hamiltonian (1) describes 2D elect-
rons with a Rashba-type spin-orbit splitting in the pre-
sence of a magnetic field. [26]. Then the spectrum (Lan-
dau levels) are known to be as follows [26]:
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o2
E} = —nw.+sy | E3+ 721}, n=12,..., s=4=,
H
W I BH
o J “2 (15)
Here,
Iy = 1 _ le| H
VlelH Im|

are the magnetic length and the cyclotron frequency.
The corresponding wave functions in the Landau gauge,

A= (_Hya 07 0)7
reads
eikmm

apsln —1)
VL n,—s|n) ,
where L, denotes the size of the surface in the x direc-

tion and |n) stands for standard states of the Landau
level problem. The coefficients o, s can be written as

Vs = (16)

1 —1sD,,, ssgn Ey > 0,
Ops = —F——= (17)
V1+ D2 |1, ssgn By < 0,
where
2nwv/l
. V2no /by (18)

| Bo| + VEZ + 20013,

To treat the hexagonal warping in Hamiltonian (14)
as a perturbation, we need to evaluate matrix elements
of the operator

A V2
V_——E s — As3az_———A3+”f3 o.. (1
23 (ks — eAy) B (a a ) (19)

Here, the boson operators é and &' are defined as

4 lm

4= — = =

V2 V2

The state |n) is an eigenstate of the operator afa,

ataln) = n|n). Using the well-known matrix elements

of the operators @ and af, we obtain the following re-
sults for the matrix elements:

(k_ — eA_) ,

(kr —eAy).  (20)

’
s,8

,n+3 =

V2)\
A
H

X (an7san+37s’ Cn+2 — Op,—sQAn43,—5 Cn+3)7

v

(21)

where s, s’ = +, the bar denotes complex conjugation,
and
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Co=+vnn—1)(n—-2) for n>0.

The other nonzero matrix elements can be obtained by
complex conjugation. Hence, the second-order correc-
tion to eigenenergies (15) due to the hexagonal warping

is given as
Vol
SES?) = pn o (22
i 2 oo R

s'ss g2
|Vn+3,n|
sl
En+3 - Ersz,

For small values of n (for low-lying Landau levels), the
perturbation theory is applicable if

MN13 < max{w.,v/ly}.

The second-order correction 6Ef;(2) increases with an
increase in n. Therefore, the perturbation theory
breaks down at large n if A is not sufficiently small.
Setting

X =\vl3, YV =2m|lgo,

we find that perturbative result (22) is valid if the fol-
lowing inequalities hold:

In addition the perturbation theory in (22) does not
work near crossings of the unperturbed levels E;" and
E! 5 that occur with varying the magnetic field. To
improve the perturbation theory near these degenera-
cy points, we apply a unitary transformation of the
Hamiltonian that diagonalizes the 2 x 2 matrix

+ ++
A= ( n anﬂ‘) . (24)
Vn,n+3 En+3
As usual, the eigenvalues of the matrix A,
Ay = Ef s+ E} N
2
1 + +12 ++ |2

5Bl — BD? +4IVEER, (25)

describe the avoided crossing of levels E; and E;,,
due to the matrix element VJ . 5. For a given n, we
start from rewriting Hamiltonian (1) in the basis of the

unperturbed states 1y, s:

Yvn, Yvn <1, H = (AT B) : (26)
1> Xnq1, 1< Yyn < n, (23) Bt C
Y/vn, n <L Yyn. Here, we introduce the infinite-block matrices
\
Vinrs Vans Vs 0 0 0
B = ' ' ' ,
0 0 0 Vn++73,n Vni+3,n+6 Vnig,n+6
Ep s 0 0 Vitem Vaibnrs Varanio
0 Ef . 0 Vs, 0 0
0 0 Eps Viign 0 0 (27)
C=| Vinszs Vans Vans B 0 0
Vntr_ﬁ,n+3 0 0 0 E;_-H’:i 0
Voi6mts 0 0 0 0 E, s
The unitary transformation diagonalizing the matrix A is as follows:
1 1
0 /1472 V1+92
v={(" "), u= " , (28)
0 1 T+ V-
\1+93 1442
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E;+3_E; + \/(E$_Eg+3)2+4|VJ7+3|2

n
++
2Vn7n+3

Y+ = (29)

Now taking into account the matrix elements (given
by u!B) connecting levels A+ with the other levels
within the second-order perturbation theory, we find
the following results for energies corresponding to the

unperturbed energies E,f and E;/ ;:
+- 2 2
1 |Vn7n+3| | n7n—3|

1+4% (Ai —E, ., Ar—El,

|V+— 2
> . (30)

n,n—3
This result is free from the fictitious divergence at the
point E} = E. ; produced within the standard per-

V++

Ey =As+ +

|’7iVn_~:&-_37n|2
Ay — By

+ +

Ay — E;—3

|7iV7j::37n+6|2
Ae =B,

|7iVnT§,n+6 |2

Ay - Eanr+6

0.26
0.25
0.24 =
0.25 0.30 0.35
h

Fig.4. The dependence of dimensionless unperturbed
energies E; /A and Ef /A on dimensionless magnetic
field h = 47v?/(lgA)* (dashed curves) near their
crossing point. The thin solid curves illustrate the re-
sults of the standard perturbation theory (see Eq. (22)).
The dot-dashed curves are the eigenvalues A+. The
thick solid black curves are the result of the modified
perturbation theory (see Eq. (30)). The points rep-
resent the results of numerical diagonalization of the
truncated Hamiltonian with 2000 levels. The dimen-
sionless parameter of hexagonal warping is o« = 0.1
and g =0
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turbation theory, Eq. (22). Away from the crossing
point, the result in (30) transforms into result (22). We
illustrate the result (30) of the modified perturbation
theory, which is essentially the correct choice of wave
functions for the zeroth-order approximation, in Fig. 4
for the crossing of the unperturbed levels E; and EF.
As we can see from Fig. 4, expressions (30) smoothly in-
terpolate the results of the standard second-order per-
turbation theory, Eq. (22), before and after the degen-
eracy point. Even in the close vicinity of the crossing
point, the energies EL are different from the eigenva-
lues A4 of the matrix A, i.e., transitions to other levels
are important. The energy levels found from Eq. (30)
are in good agreement with numerical diagonalization
of Hamiltonian (14).

4. LANDAU LEVELS IN THE WKB
APPROXIMATION

To study the structure of Landau levels at higher
energies, we use the WKB approach [31]. We employ
the Bohr—Sommerfeld quantization condition

S(E) =27y’ (n + §(E)), (31)

where S(E) denotes the area bounded by a curve of the
constant energy F in the momentum space in the ab-
sence of the magnetic field, n is an integer number, and
0(E) contains information on the number of turning
points of a semiclassical electron orbit and the Berry
phase [32]. Typically, the function 6(F) is of the or-
der of unity. Since we are interested in Landau levels
with n > 1, we omit §(E) below. We also neglect
the Zeeman splitting, assuming that the g-factor is not
strongly enhanced in comparison with its band value.

The area S(E) can be expressed through the den-
sity of states without a magnetic field. As follows from
the results in Sec. 2, for some values of € and « there are
several disconnected regions enclosed by constant-ener-
gy curves. In this case, semiclassical quantization con-
dition (31) has to be applied to each disconnected area
separately. For energies in the interval

0 < € < min{e; (), 1/4}

(see regions A1 and A4 in Fig. 1b), there is one snow-
flake-like region including the T' point and six outer-
most regions of infinite area (see Fig. 3). The area of
the central region can be written as

T

|-2 +12 [ dz G -|
Tey rG(x,e,a)
o et

c1

2

Sle—

202 (32)
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where we introduce the function

_ 2_
G(z,e,a) = 5 Arceos %—%. (33)
It can be shown that
051 N
5 =47 Agi(e), gi(e) = 55 Fi(e,a).  (34)

The function g (¢) provides the contribution to the den-
sity of states g(e) from the states in this snowflake-like
central region. The area of each among the six outer-
most regions is

N
Sy = U—Z/dx Gz, e, ). (35)

Again, this area can be related to the corresponding
contribution to the density of states:
655 _ 27T2A
de 3

gs(€), gs(e) = W&(e,a). (36)
Since the integral in Eq. (35) diverges at the upper

limit, it is convenient to rewrite Eq. (35) as

€

/de'F;,(e',a).

0

A2

302 (37)
Here, S(0) is the total area enclosed by the cons-
tant-energy curve ¢ = 0. We note that in the frame-
work of Hamiltonian (1), the area S(0) is infinite. It
becomes finite, for example, if we take correction to the
mass m of the next order in k% into account. Within
the semiclassical approximation, the Bohr—Sommerfeld
quantization condition (31) for Sj(€) results in sixfold
degenerate levels. The quantum tunneling (magnetic
breakdown) removes this degeneracy [31].
In the case

max{0, ey (o)} <e<1/4

(see region A3 in Fig. 1b), there are two disconnected
parts of the area (see Fig. 3). The area of the inner-
most part is given by Eq. (34), whereas the area of the
outermost part is

o0

/dxg(x,e,a)-l-/dxg(x,e,a) +
263

A
+ ﬁ@ﬂ-% —27es).

S

S23

7_,02

2

(38)
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Again, we find

as
% = 47T2A92,3(€)7 92,3(6) =
A
= 02 (FZ (67 Oé) + F3 (67 a)) (39)

It is convenient to rewrite Sy 3 as

€

/ de’ [F2(e', a)+Fy (e, a)] . (40)

0

2rA?
2

Sa.3 = S5(0)+

v

In the other case 1/4 < e (see Fig. 3), there is always
one connected region whose area can be written as

S(e) = S(0) + 47%A / de'g(€"). (41)
0

For € < 0, the area can be found using the relation

oS

Oe

The structure of Landau levels undergoes changes
near such singularities of the zero-field density of states,
which are related to the change of the number of con-
nected parts of the area enclosed by a constant-energy
curve.

For a < ap, the sixfold degenerate levels trans-
form into nondegenerate levels at € = ey (a). Using
Eq. (11), we can estimate the change in the level spac-
ing at € = €4 (). We find

= 471'2A(g5(e) -0 (e)) (42)

e h
dn B 4A+1H(1/|€—€+|)

{

h = 47v? /(I A)?

stands for the dimensionless magnetic field. Thus, the
sixfold degenerate levels (corresponding to six discon-
nected pieces) are six times sparser than the levels af-
ter the disconnected pieces merged together. Also, the
slope of the sixfold degenerate levels with respect to the
magnetic field is six times larger than the slope of lev-
els after consolidation of the disconnected pieces. The
levels corresponding to the area S; are continuous at
€ = ey (a). But at € = 1/4, the area S; merges with
the area S 3. Using Eq. (10), we can estimate the level
spacing before and after the consolidation:

de h/a
dn ~ 161n(1/]e — 1/4])

6,
L,

€L —eK 1,

(43)
€e—eyp K1,

where

2, 1/d-e<1,
1, e-1/4<1.

(44)
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0.20

Fig.5. The structure of Landau levels in the WKB approximation (each 10th level is shown) for « = 0.4 (a) and 2 (). Solid

curves denote the levels due to the central snowflake-like area S;. Dashed curves are sixfold degenerate levels. Dot-dashed

curves correspond to levels due to the area obtained after the consolidation of six disconnected outermost pieces. Thin solid

curves are the levels corresponding to unified area but with six empty spots. Dotted curves denote the levels in the case
where the empty spots disappear. The total area at € = 0 is chosen to be equal to S(0) = A?/2¢v?

Each of the Landau levels corresponding to the areas
S; and Sy 3 is twice sparser than the levels after con-
solidation. Also, the slope of these levels at e = 1/4
becomes two times smaller.

For a > ap, Landau levels undergo reconstruction
at e = 1/4 only. At 1/4 — e < 1, there are two sets of
levels: the sixfold degenerate (e2,3) and nondegenerate
(e1) ones with the level spacings

dey hy/a

dn ~ 8In[1/(1/4—¢€)]’
d€2,3 o Sh\/E

dn — 4In[1/(1/4—¢€)]

(45)

The sixfold degenerate levels are six times sparser and
steeper than the levels after the disconnected pieces
merged together. At e > 1/4, there is only a single set
of Landau levels with the spacing

de hy/a
dn ~ 161n[1/(e — 1/4)]° (46)

These levels are two times sparser and smoother than
€1 levels.

We illustrate the transformations of Landau levels
discussed above in Fig. 5 for two values of the dimen-
sionless parameter of hexagonal warping, @ = 0.4 and

11 ZK3T®, Bem. 3(9)

a = 2. There are several interesting features due to
the hexagonal warping in the structure of the Landau
levels. At first, hexagonal warping leads to the exis-
tence of sixfold degenerate levels (red curves in Fig. 5)
within the WKB approximation for € < min{e;,1/4}.
The account of quantum tunneling (magnetic break-
down) should remove this degeneracy. Next, due to
the hexagonal warping, there exist levels (green curves
in Fig. 5) with energies well above A/4, which is not
possible in the case @ = 0. However, it is not clear
in the WKB approximation how the Landau levels at
a = 0 transform to produce levels with energies above
A/4 in the case a > 0. Therefore, we compare the
results of the WKB approximation with the Landau
levels obtained by numerical diagonalization of Hamil-
tonian (14) truncated to 2000 levels. As we can see
from Fig. 6, the numerical results are in qualitative
agreement with the semiclassical treatment.

5. DISCUSSIONS AND CONCLUSIONS

Using recent results of spin and angle resolved pho-
toemission spectroscopy [9], we estimate the parame-
ters relevant for the model considered above for two
topological insulators, BiyTes and BisSez. We note
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Fig.6. The structure of Landau levels from numerical diagonalization of the truncated Hamiltonian with 2000 levels for
a=0.4 (a) and 2 (b)

Table 2. Estimates for parameters of the model
extracted from Ref. [9]
A, eV |Ey, eV | a |ky, A=V |h/H, T}
BisTes | 1.1 0.51 |22 0.14 |22-1073
BisSes | 0.34 0.43 0.4 0.08 7.0-1073

that they differ by the sign of the effective mass m. It is
negative for BioTeg and positive for BisSes. Estimates
for parameters of the model extracted from Ref. [9] are
summarized in Table 2. We emphasize that although
the energy scales A and Ej are of the same order for
both topological insulators, the dimensionless parame-
ter a characterizing the strength of the hexagonal warp-
ing differs by more than 50 times.

The most interesting theoretical observation is the
logarithmic singularity in the TDOSS at E = A/4,
which corresponds to consolidation of the snowflake-li-
ke central region and the six outermost disconnected
regions. It occurs in certain directions of the momen-
tum space, e.g., at the angle # = 7/6. The condition

Ey(ko,7/6) = AJ4

is solved by the momentum

A
=5
According to the estimates in Table 2, it is much
smaller than the size of the surface Brillouin zone,

ko

which is of the order of 1A~1. We note that for such
a momentum, the ratio of the hexagonal warping term
to the term linear in momentum is of the order of

AE2 v = Va/A.

This indicates that for a/16 < 1, the singularity oc-
curs in the regime where the hexagonal warping is a
small correction to the dispersion linear in k. These
estimates are in favor of the use of Hamiltonian (1),
which was derived near the T point, for describing the
singularity in TDOSS at E = A/4.

The spin and angle resolved photoemission spectro-
scopy for BisTes and BixSes indicates that the energy
spectrum of surface states is a monotonic function of
momentum above the Dirac point. Therefore, for these
materials, the singularities of TDOSS predicted in our
work are situated at energies in the bulk conduction
band, and are therefore unobservable. Nevertheless,
our results provide a theoretical explanation for the
typical scanning tunneling microscopy experiments in
such materials [15]. If we choose a very large value of
the parameter a, then in the energy interval 0 < E <
< A/4, the function F'(e,a) has a step-like feature.
We present the dependence of F(e,a) on € in Fig. 7
for @ = 2000 (this is the minimal value for which the
dependence is still step-like). This plot looks much like
the experimental one in Ref. [15]. We note that such
an enormous increase in the parameter o in compari-
son with the estimate for Bi»Tes (see Table 2) can be
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Fig.7. The dependence of F(e, o) on € for « = 2000

achieved, e. g., by increasing the effective mass by three
times.

Finally, we stress the smallness of dimensionless
magnetic field h for both BixTes and BiySes (see Tab-
le 2). It implies the smallness of the parameter

welm /v =+/h/T.

The validity of the perturbation theory for Landau le-
vels with a small level index is controlled by the pa-
rameter y/ah/4m. Therefore, for moderate values of «,
low-lying Landau levels are not significantly affected
by the presence of the finite curvature and hexagonal
warping and, hence, scale as v/H. Such scaling for Lan-
dau levels near the Dirac point was recently observed
from oscillations in the tunneling conductance of BiySes
[18], of ShyTes [21], from microwave spectroscopy in
BiyTes [34], and from magneto-infrared spectroscopy
in Big.91Sbg.o9 [35]. The effect of hexagonal warping
is most pronounced near the degeneracy points of the
unperturbed Landau levels. For a given h < 1, the
degeneracy point corresponds to Landau levels with
ny ~ 7/(2h) > 1 and energies of the order of A/4.
The hexagonal warping leads to avoiding the crossing
of Landau levels E;} and Erfh 43 with the typical dis-
tance between them of the order of

a/2Ah
8

An additional signature of hexagonal warping is the

~

On
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existence of oscillations in the tunneling conductance
in the magnetic field at energies above A/4. In the
case of BisTes for the magnetic field H = 10 T, we
can estimate n, ~ 70 and §, ~ 3 meV. We expect that
future tunneling experiments on topological insulators
with warped electronic spectra will indeed reveal the
predicted complex structure of Landau levels and their
unusual evolution in the magnetic field.

To summarize, we computed the tunneling density
of surface states g(E) in a 3D topological insulator
in the presence of hexagonal warping and finite cur-
vature. We found that hexagonal warping transforms
the square-root van Hove singularity of ¢g(E) into a
logarithmic one. With an increase in the hexagonal
warping, the singularity becomes weaker. For the
hexagonal warping values A < 0.18/m>v, the tunneling
density of states has an additional logarithmic singu-
larity and a jump. Their positions and amplitudes
depend on A. In the presence of a perpendicular
magnetic field, we analyzed structure of the Landau
levels within the perturbation theory in the hexagonal
warping and in the WKB approximation. We obtained
that hexagonal warping removes degeneracies of the
Landau levels and drastically changes their behavior
with the magnetic field.

We are grateful to V. Stolyarov, C. Brun, and
D. Roditchev for sharing their experimental data [17]
prior to publication, which motivated us for the present
work. The results in Sec. 2 were obtained within the
grant Ne14.587.21.0006 (RFMEFI58714X0006) of the
Ministry of Education and Science of the Russian Fed-
eration. The results presented in Secs. 3—4 were ob-
tained with financial support from the Russian Science
Foundation under the grant Ne 14-12-00898.
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