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NUCLEON QCD SUM RULES IN THE INSTANTON MEDIUMM. G. Ryskin, E. G. Drukarev *, V. A. SadovnikovaNational Researh Center �Kurhatov Institute�,Konstantinov Petersburg Nulear Physis Institute188300, Gathina, Leningrad Region, RussiaReeived April 2, 2015We try to �nd grounds for the standard nuleon QCD sum rules, based on a more detailed desription of theQCD vauum. We alulate the polarization operator of the nuleon urrent in the instanton medium. Themedium (QCD vauum) is assumed to be a omposition of the small-size instantons and some long-wave gluon�utuations. We solve the orresponding QCD sum rule equations and demonstrate that there is a solution withthe value of the nuleon mass lose to the physial one if the fration of the small-size instantons ontributionis ws � 2=3.DOI: 10.7868/S00444510150900591. INTRODUCTIONThe idea of the QCD sum rule approah is to ex-press the harateristis of the observed hadrons interms of vauum expetation values of the QCD op-erators often referred to as ondensates. This idea wassuggested in [1℄ for the alulation of the harateristisof mesons. Later, it was used for nuleons [2℄. It su-eeded in desribing the nuleon mass, the anomalousmagneti moment, the axial oupling onstant, et. [3℄.The QCD sum rule approah is based on the dis-persion relation for the funtion desribing propaga-tion of the system that arries the quantum numbersof a hadron. This funtion is usually referred to asthe �polarization operator� �(q), with q being the four-momentum of the system. The dispersion relation (inwhih we do not take are of subtrations)�(q2) = 1� Z dk2 Im�(k2)k2 � q2 (1)is analyzed at large and negative values of q2. Dueto the asymptoti freedom of QCD, the polarizationoperator an be alulated in this domain. Opera-tor produt expansion (OPE) [4℄ enables to representthe polarization operator for a power series in q�2 asq2 ! �1. The oe�ients of the expansion are theQCD ondensates, suh as the salar quark ondensateh0j�q(0)q(0)j0i, the gluon ondensate h0jGa��Ga�� j0i,*E-mail: drukarev�thd.pnpi.spb.ru

et. The nonperturbative physis is ontained in theseondensates. A typial value of a ondensate with thedimension d = n is h0jOnj0i � (�250 MeV)n. Hene,we expet the series �(q) =Pnh0jOnj0i=(q2)n to on-verge at �q2 � 1 GeV2.The left-hand side of Eq. (1) is alulated as an OPEseries. The imaginary part in the right-hand side de-sribes physial states with the baryon quantum num-ber and harge equal to unity. These are the proton,desribed by the pole of Im�(k2), the uts orrespond-ing to systems ontaining a proton and pions, and soon. The right-hand side of Eq. (1) is usually approxi-mated by the �pole + ontinuum� model [1, 2℄, in whihthe lowest-lying pole is written exatly, while the higherstates are desribed by the ontinuum. The main aimis to obtain the value of the nuleon mass.The polarization operator an be written as�(q2) = i Z d4x ei(q�x)h0jT [j(x)�j(0)℄j0i; (2)where j(x) a loal operator with the proton quantumnumbers, often referred to as the �urrent�. It is aomposition of quark operators. Therefore, the in-tegrand in Eq. (2) ontains the nonloal expetationvalues h0j�q(0)q(x)j0i. The nonloal ondensates havebeen onsidered previously (see [5℄ and the referenestherein), mainly in the studies of pion wave funtions.We note that the produt �q(0)q(x) is not gauge in-variant. This expression makes sense if we de�ne q(x)as the expansion near the point x = 0, i. e.,470



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Nuleon QCD sum rules in the instanton mediumq(x) = �1 + x�D� + x�x�2 D�D� + : : :� q(0); (3)with D� standing for ovariant derivatives. TheFok�Shwinger (�xed-point) gauge x�A�(x) = 0,where A�(x) is the gluon �eld, is usually employed.This allows replaement the ovariant derivatives byordinary ones. Thus, the ondensate h0j�q(0)q(x)j0i anbe expressed as a Taylor series ontaining a set of newondensates, suh as h0j�q(0)�2q(0)j0i.In this approah, the QCD ondensates are onside-red as phenomenologial parameters. Extrating theirvalues from experimental data, supported by ertaintheoretial ideas, does not always lead to unique on-lusions.The Borel transform is usually applied, whih on-verts funtions of q2 into funtions of the Borel massM2. We also note that the Borel transform removesdivergent ontributions aused by the behavior of theintegrand on the right-hand side of Eq. (2) as x ! 0.An important assumption is that there is an interval ofthe values of M2 where the two sides of the sum ruleshave a good overlap, also approximating the true fun-tions. This interval is in the range of 1 GeV2. Thus,one atually tries to expand the OPE from the high-momentum region to the region of jq2j � 1 GeV2.To alulate the polarization operator de�ned byEq. (2), we must larify the form of the urrent j(x).It is not unique. We an writej(t; x) = j1(x) + tj2(x); (4)with j1(x) = (uTa (x)Cdb(x))5u(x)"ab;j2(x) = (uTa (x)C5db(x))u(x)"ab;while t is an arbitrary oe�ient. Following [6℄, we usethe urrent determined by Eq. (4) with t = �1, whihan be written (up to a fator of 1=2) asj(x) = (uTa (x)C�ub(x))5�d(x)"ab: (5)This urrent is often used in the QCD sum rules alu-lations. One of the strong points of the hoie is that itmakes the domination of the lowest pole over the higherstates on the right-hand side of the sum rules more pro-nouned. We use only this urrent in the present paper.Any model of the QCD vauum should explain theorigin and the values of QCD ondensates. A urrentlypopular standpoint (see, e. g., [7℄) is that the QCD va-uum is �lled with strong gluon �elds (instantons). Thevalues of the QCD ondensates are determined by the

spae-time struture of the instantons. Hene, the in-stantons provide a more detailed desription of the va-uum than the QCD ondensates do.We try to write the QCD sum rules in terms of theinstanton vauum parameters. Our aim is not to re-plae the OPE approah but to study a possible role ofa more detailed struture of the QCD vauum.The instanton medium is haraterized by a distri-bution of the instantons over their sizes �, to be denotedby n(�), and by the distanes R between instantons,whih also have a ertain distribution. The distribu-tion n(�) is known to peak at � � 0:33 fm [7℄. Asummary of a number of lattie alulations of the dis-tribution is presented in [8℄. A detailed analysis of thedistribution over sizes is given in [9℄. As regards thedistane between the instantons, the onventional as-sumption is that the average separation is R � 1 fm[7℄. We use the simplest model that reprodues theessential physis of the proess. We assume that theQCD vauum onsists of �small-size� instantons with�s � 0:33 fm (we vary this value in what follows) andsome long-wave gluon �eld �utuations haraterizedby a sale �` � 1 GeV�1. Thus, the quarks omposingthe polarization operator move in a superposition ofthe �elds of small-size instantons and some long-wave�utuations.We treat the quarks in the �eld of small instantonsfollowing the approah developed in [10, 11℄. In thisapproah, the light quarks move in the self-onsistent�eld of interating small-size instantons. They are de-sribed by the propagator (in the Euledian metri)Sab(p) = p̂+ im(p)p2 +m2(p)Æab; (6)with the e�etive dynamial mass m(p) found in[10, 11℄. We note that the value R = 1 fm allows re-produing the value of the gluon ondensate in suhan instanton vauum model. This instanton�instantonseparation R = 1 fm is muh larger than the inverseBorel mass 1=M � 0:2 fm. Hene, the size of the systemdesribed by polarization operator (2) is muh smallerthan R and an aommodate only one (�nearest�) in-stanton. We reall that this is a part of a self-onsistentsystem of interating instantons. This leads to severalonsequenes. We an write the quark propagator inthe �nearest-instanton approximation� (NIA) asSab(p) = SZ + SNZ ; SZ(p) = im(p)p2 Æab;SNZ(p) = p̂p2 Æab; (7)471



M. G. Ryskin, E. G. Drukarev, V. A. Sadovnikova ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015where SZ is the zero-mode ontribution. The sum ofall nonzero-mode ontributions SNZ is approximatedby the free propagator of a massless quark. We notethat in the NIA, we inlude only the terms that areproportional to the instanton density.In this approah, one of the nonvanishing ontribu-tions omes from the on�gurations where all quarksare desribed by the propagators SNZ . Another ontri-bution omes from the on�guration where the u quarksare desribed by SNZ , i. e., do not feel the instantons,while the d quark is desribed by the propagator SZ .The other on�gurations do not ontribute to the po-larization operator beause two u quarks annot be in azero mode of the same instanton. The on�guration inwhih u and d quarks are in zero modes orrespond tothe SU(2) version of the instanton-indued 't Hooft in-teration [12℄. For urrent (5), this on�guration doesnot ontribute beause it ontains the trae of an oddnumber (three) of  matries, whih vanishes.Comparing the strutures of hirality-onservingand hirality-�ipping omponents of the polarizationoperator in the ondensate and small-size nearest in-stanton �languages�, we see that they di�er. In both�languages�, the hirality-onserving struture ontainsthe loop of three free quarks. But there is no suh thingas a four-quark ondensate in the �nearest instanton ap-proximation�1). In the nuleon QCD sum rules, M2 isof the order of 1 GeV2, and hene � = M2�2s � 1. Onthe other hand, the quark ondensate reated by thesmall-size instantons an be represented by the generalrelationh0j�q(0)q(0)j0is = i Z d4p(2�)4 TrS(p) == �4N Z d4p(2�)4 m(p)p2 (8)(the subsript s means the small-size instantons, andN is the number of olors), reating a bridge betweenthe instanton and ondensate languages. In the limit� � 1, the two languages provide the same result, andthe ontribution is proportional to the quark onden-sate h0j�q(0)q(0)j0i. In the instanton piture at � � 1,the ontribution an be viewed as oming from the non-loal salar ondensate h0j�q(0)q(x)j0is. The nonloalondensate is not a new subjet, it was used previously,for example, in the pion QCD sum rules in [5℄.1) Going beyond the terms that are linear in the instantondensity, we would obtain a on�guration with two u quarks inthe instanton �eld. In the limit M2�2s ! 1, the ontributionorresponds to the fatorized four-quark ondensate in the OPElanguage (see below).

The radiative orretions to the hirality-onservingstruture that ontain the terms �s lnM2 (the leadinglogarithmi approximation, LLA) are the same as inthe OPE ase. The same refers to LLA orretions tothe hirality-�ipping struture, beause they originatefrom the u quark loop and are determined by large mo-menta of the virtual gluons, whih strongly exeed themomentum arried by the urrent.We demonstrate that the QCD sum rules on-struted in suh a way do not have a physial solu-tion. Therefore, we must assume that the small instan-tons reate only part of the salar ondensate. At �rstglane, this ontradits the results in [10; 11℄, wherethe small instantons reprodued the onventional valueof h0j�q(0)q(0)j0i. But in these papers, the instantondensity, whih is proportional to 1=R4, is tied to thegluon ondensate, whih is known with large uner-tainties (up to a fator of 2) [13℄. This leaves someroom for other ontributions to the quark salar on-densate. Here we assume that the small-size instan-tons provide a fration ws of the total salar on-densate. Our model assumption is that the rest part(1 � ws)h0j�q(0)q(0)j0i is due to interations at a largeorrelation length �l � 1 GeV�1. It an be approxi-mated by a loal ondensate. Thus the hirality �ippingomponent of the polarization operator is determinedby terms that desribe interations of the d quark withthe nearest small-size instanton and by a loal onden-sate. We write the expetation value ash0j�q(0)q(x)j0i = h0j�q(0)q(x)j0is+h0j�q(0)q(0)j0i`;h0j�q(0)q(x)j0is;` = h0j�q(0)q(x)j0iws;`; (9)ws + w` = 1;where we do not aount for nonloalities of the se-ond term. This realizes the old idea [14; 15℄ that thelarge-size instanton ontributions are inluded in on-densates, while the small-size instantons provide non-perturbative ontributions written expliitly. As a spe-ial ase, the ondensate h0j�q(0)q(0)j0i` an be treatedas due to the long-size instantons with �`M � 1.The polarization operator now obtains a ontribu-tion from a on�guration in whih one of the u quarksmoves in the zero mode of a small-size instanton, whilethe seond quark is desribed by a loal salar on-densate. In the limit � � 1, the leading term of theexpansion in powers of 1=� is equal to that given bythe standard total ondensate of the OPE approah.For M2 of the order of 1 GeV2, we have �2sM2 � 1,and the onvergene of the OPE series is obsure. Forthe hirality-�ipping sum rule, the funtion of M2 onthe left-hand side an be viewed as oming from the472



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Nuleon QCD sum rules in the instanton mediumnonloality of the salar quark ondensate. The on-tribution of the four-quark ondensate presented in theinstanton piture then makes a muh smaller ontri-bution beause one instanton an produe only one �qqpair of a �xed �avor. On the other hand, some of theondensates that ontribute to the OPE sum rules arenot aounted for in our model, where all the nonzeromode ontribution is approximated by (inluded in) thefree quark propagator SNZ .We alulate the polarization operator �(q) in theinstanton vauum in the NIA and analyze the orre-sponding sum rules. We demonstrate that the sumrules have a solution with the value of the nuleon massnot far from the physial one for all ws < 0:6�0.7. Atws � 2=3, the value of the nuleon mass is mN �� 1 GeV. Comparing with the sum rules in terms ofondensates, we �nd that the onsisteny between theleft- and right-hand sides of the sum rules is improved.At the onventional values of the quark ondensateh0j�q(0)q(0)j0i � (�250 MeV)3, the value of the thresh-old does not hange muh, while that of the nuleonresidue beomes notieably smaller. At larger valuesof ws, the sum rules have only an unphysial solutionwith the ontribution of the ontinuum muh exeedingthat of the nuleon pole. In Se. 2, we reall the mainfeatures of the nuleon sum rules in terms of onden-sates. In Se. 3, we alulate the polarization operatorin the instanton vauum. In Se. 4, we solve the sumrule equations. We disuss the results in Se. 5.2. QCD SUM RULES IN TERMS OFCONDENSATESIn the ase of a nuleon (we onsider the proton),the polarization operator takes the form�(q) = q̂�q(q2) + I�I (q2); (10)where q is the four-momentum of the system, q̂ = q��,and I is the unit matrix. The �rst and the seond termson the right-hand side respetively orrespond to thehirality-onserving and the hirality-�ipping ontribu-tions. The dispersion relations are�i(q2) = 1� Z dk2 Im�i(k2)k2 � q2 ; i = q; I: (11)As noted above, we do not take are of the subtrations.We present the results of the alulation of the po-larization operator de�ned by Eq. (2) with the urrentdetermined by (5). The left-hand side of Eq. (11) anbe written as

�q OPE(q2) =Xn=0An(q2);�I OPE(q2) =Xn=3Bn(q2); (12)where the lower index n is the dimension of theorresponding QCD ondensate (A0 stands for thethree-quark loop). The most important terms for n � 8were obtained earlier [2, 3℄. For the hirality-onservingstruture, they areA0 = �Q4 lnQ264�4 ; A4 = �b lnQ2128�4 ;A6 = 124�4 a2Q2 ; A8 = � 16�4 m20a2Q4 ; (13)where Q2 = �q2 > 0, while a and b are the salarand gluon ondensates multiplied by ertain numerialfators a = �(2�)2h0j�qqj0i;b = (2�)2h0j�s� Ga��Ga�� j0i; (14)andm20 � h0j�q���G��qj0ih0j�qqj0i ; G�� = �s� Xh Gh���h2 : (15)We disuss the value of m20 in Se. 5. For the hirali-ty-�ipping struture, we �ndB3 = aQ2 lnQ216�4 ; B5 = 0: (16)The leading ontribution to the hirality-onservingstruture A0 is the loop ontaining three free quarks.The leading ontribution to the hirality-odd stru-ture B3 is proportional to the salar quark ondensate.Here, the free u quarks form a loop, while the d quarksare exhanged with the vauum ondensate, see Fig. 1.We note the last equality B5 = 0, however. Thereare indeed two ontributions of dimension d = 5,and we an therefore write B5 = Ba5 + Bb5. Theterm Ba5 omes from the Taylor expansion of the pro-dut �d(0)d(x) and is proportional to the ondensateh0j �d(0)D2d(0)j0i. In this ase, the u quarks are de-sribed by free propagators that are diagonal in olorvariables. But the produt of the operators da� �db�Gh��make a ontribution to the d quark propagator, pro-portional to the produth0j�qG�����qj0i����hab=2:The ontribution to the polarization operatorBb5 is thusproportional to the ondensate h0j�qG�����qj0i, and the473
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Fig. 1. The set of diagrams for the lowest OPE terms ofthe nuleon sum rules. Wavy lines are for the nuleonurrent, solid lines stand for the quarks, and dashedlines denote the gluons. The irles stand for the quarkand gluon ondensatespropagator of one of the u quarks of the polarizationoperator should inlude interation with this gluon �eld(and annot be treated as a free one). Due to the equa-tion of motion�D2 � 12���G��� q = m2qq;where mq is the urrent mass of the quark, we �nd thath0j �d(0)D2d(0)j0i = 12 h0j�q���G��qj0i (17)for the massless quark. Thus, the ontributions Ba5 andBb5 an be expressed in terms of the same ondensate.Diret alulation [16℄ demonstrates that Ba5 +Bb5 = 0.We note that this anelation ours only for urrent(5). If we use urrent (4) with t 6= �1, then B5 6= 0.Usually, sum rules for the operatorsP i(M2) = 32�4B�i OPE(q2);where B is the Borel transform operator, are atuallyonsidered. The fator 32�4 is introdued in order todeal with the values of the order of unity (in GeV units).After the Borel transform, we write (12) asPq(M2) =Xn=0A0n(M2);P i(M2) =Xn=3B0n(M2);A0n(M2) = 32�4BAn(q2);B0n(M2) = 32�4BBn(q2): (18)

We here present the most important terms:A00(M2) =M6; A04(M2) = bM24 ;A06 = 43a2; B03(M2) = 2aM4: (19)The Borel-transformed sum rules (11) an now be writ-ten as P i(M2) = F ip(M2) + F i(M2); (20)where the two terms on the right-hand side are theontributions to the right-hand side of the Borel-trans-formed Eq. (11) made by the nuleon pole with themass mN and by the ontinuum:F ip(M2) = �i�2 exp��m2NM2� ;F i(M2) = 1ZW 2 dk2 exp�� k2M2��[B�1(k2)℄: (21)Here, �2 is the residue at the nuleon pole (multipliedby 32�4), W 2 is the ontinuum threshold, and �q = 1,�I = mN .The onventional form of the sum rules isLq(M2;W 2) = Rq(M2); (22)and LI(M2;W 2) = RI(M2); (23)where Li and Ri are the respetive Borel transforms ofthe left- and right-hand sides of Eqs. (11):Rq(M2) = �2 exp��m2NM2� ;RI(M2) = mN�2 exp��m2NM2� ; (24)with �2 = 32�4�2N . The ontribution of the ontinuumis moved to the left-hand sides of Eqs. (22) and (23),whih an be written asLq =Xn=0 ~An(M2;W 2);LI =Xn=3 ~Bn(M2;W 2); (25)(see Eq. (18)). Here,~A0 = M6E2()L(M2) ; ~A4 = bM2E0()4L(M2) ;~A6 = 43a2L; ~B3 = 2aM4E1();  = W 2M2 ; (26)474



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Nuleon QCD sum rules in the instanton mediumwithE0() = 1� e� ; E1() = 1� (1 + )e� ;E2() = 1� (1 +  + 2=2)e�: (27)The fator L(M2) = � lnM2=�2ln�2=�2 �4=9 (28)inludes the most important radiative orretions ofthe order �s lnQ2 (LLA). These ontributions weresummed to all orders of (�s lnQ2)n. In Eq. (28), � == �QCD is the QCD sale, while � is the normalizationpoint, its standard hoie being � = 0:5 GeV.The position of the nuleon pole mN , its residue �2,and the ontinuum threshold W 2 are the unknownsof sum rule equations (22) and (23). The nuleonsum rule equations (22) and (23) are usually solvedat M2 � 1 GeV2, namely,0:8 GeV2 �M2 � 1:4 GeV2: (29)The range of M2 where the sum rules hold is usuallyreferred to as the �duality interval�.After the inlusion of several ondensates of higherdimensions and of the lowest-order radiative orretionsbeyond the leading logarithmi approximation [17℄, thesum rules yield the solution (for �QCD = 230 MeV)mN = 928 MeV, �2 = 2:36 GeV6, W 2 = 2:13 GeV2.3. QCD SUM RULES IN THE INSTANTONVACUUM3.1. Instanton representation and the OPEapproximationWe reall that a typial value of the ondensate ofdimension d = n is h0jOnj0i � n with  = 250 MeV.Beause we have 2M2 � 1 at M � 1 GeV, we ouldexpet the onvergene of the OPE. In the instantonlanguage, we have �2sM2 � 1 and annot expet theonvergene of the series in powers of 1=M2.Therefore, the struture of the left-hand sides ofthe sum rules di�ers from that in the ondensate rep-resentation. The leading ontribution A0 to the hira-lity-onserving operator �q remains unhanged. Howe-ver, as long as we onsider only the nearest small-sizeinstanton, there is no ontribution of two zero-mode uquarks (this ontribution plays the role of a four-quarkondensate in the �ondensate language�), beause onlyone u quark an be plaed in the zero mode of the �eldof an instanton.

In the hirality-�ipping struture �I , we desribethe d quark by the propagator SZ given by Eq. (7). TheBorel-transformed ontribution B�I(M2) depends onthe parameter �2sM2 � 1 and annot be represented asa 1=M2 series. In the ondensate language, this meansthat it inludes a nonloal salar quark ondensate.We note that our form for the propagator SNZmeans that we did not inlude some of ontributionsthat were present in the ondensate piture. In theterms A4 and Bb5, the propagator of one of the u quarksshould inlude the in�uene of the gluon �eld. There-fore, its propagator is not diagonal in olor indies,while both SZ and SNZ are.We now assume that in the NIA, the small-size in-stantons reate only a part ws < 1 of the salar on-densate. The ontribution of the remaining part of theondensate (1�ws)a to the hirality-�ipping strutureis expressed by the term B03 given by Eq. (19) witha replaed by a`. In the hirality-�ipping struture,one of the u quarks is in the zero mode of the nearestsmall-size instanton, while the other is desribed by aloal ondensate. The latter provides the fator a` inthe ontribution to the polarization operator, and theformer provides a fator ontaining a nonloal salarondensate. We note that we do not use the fatoriza-tion hypothesis here.Considering only the small-size instantons, we donot have an analogue of the OPE four-quark onden-sates beause two u quarks annot be in the zero-modeof the same instanton. We �nd suh an analogue ingoing beyond the NIA.3.2. Calulation of the polarization operatorInstead of the ondensate h0j�q(0)q(0)j0i, we use theparameter a de�ned by Eq. (14). We also introdueas = aws and a` = aw` = a(1 � ws). With thesevariables, Eq. (8) with N = 3 takes the formas = 6 1Z0 dp pm(p); as = �(2�)2h0j�qqj0is: (30)As we have noted, the leading ontribution A0 tothe Q̂ struture remains unhanged. The ontributionto the hirality-�ipping struture is now�I1(q2) = 2a(1� ws)Q2 lnQ2 + Ys; (31)where the two terms are the respetive ontributions oflarge-size and small-size instantons. The last one anbe written as Ys = 32�4Xs, withXs = 12 Z d4p(2�)4 �m(p)p2 �T��(Q� p); (32)475



M. G. Ryskin, E. G. Drukarev, V. A. Sadovnikova ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015whereT��(Q� p) = Z d4xe�i(Q�p;x) Tr[t��(x)℄; (33)with t��(x) = �G0(x)�G0(x): (34)Here, G0(x) = � 12�2 x̂x4 (35)is the Fourier transform of the propagator SNZ deter-mined by Eq. (30). We note that the quark in thezero mode now arries a nonzero momentum p. In theondensate language, it arries the momentum p = 0.Negleting the momentum p in the fator T��(Q � p)on the right-hand side of Eq. (32), we would obtainXs = 3Q2 lnQ28�4 1Z0 dp pm(p) = B3(Q2); (36)with B3(Q2) de�ned by Eq. (16) and with a replaedby as. Thus, in the limit Q2 !1, we obtain the lowestOPE term. We an view the alulation of the ontri-bution given by Eq. (32) as the inlusion of nonloalityin the salar quark ondensate.The four-quark ontribution an emerge only if oneof the �uu pairs omes from small-size instantons, whilethe other originates from large-size �utuation. Follo-wing the previous disussion, we an write the ontri-bution to the polarization operator asA6 = 4aws(1�ws)�2 Z d4p(2�)4 m(p)p2 Q̂�p̂(Q�p)2 : (37)The lower index 6 here shows that negleting p in thelast fator on the right-hand side, we would obtain thefatorized OPE term ~A6 determined by Eq. (19) times2ws(1� ws). The set of diagrams inluded in the sumrules is shown in Fig. 2.It is instrutive to trae how the ontributions tothe spin-onserving part of the polarization operatorhange if we go beyond the NIA. In the loop orre-sponding to A0 the quark propagators then have theirmasses squared in denominators, and the ontributionof A0 diminishes. Two u quarks an now be desribedby the hirality-�ipping parts of their propagators. Theorresponding ontribution of the small-size instantonsis A06 = 12 � 8 Z d4p(2�)4 m(p)p2 �� Z d4p0(2�)4 m(p0)p02 Q̂� p̂� p̂0(Q� p� p0)2 : (38)

 d
a buud uududu uduFig. 2. The set of diagrams for the quarks in the �eld ofinstantons. Dark and dashed blobs on the quark linesstand for small-size and large-size instantonsIn the limit Q2 ! 1, we neglet p and p0 in the lastfator in the integrand, oming to the fatorized formof the OPE ontribution.To obtain results in analyti form, we parameteri-ze the dynamial quark mass aused by the small-sizeinstantons as m(p) = A(p2 + �2)3 ; (39)with A and � being the �tting parameters. The powerin the denominator insures the proper behaviorm(p) �� p�6 as p!1 [10℄. Now Eq. (30) an be written asas = 3A2�4 : (40)Calulating the tensor T�� , we writeXs = 3�2 Z d4p(2�)4 �� Ap2(p2 + �2)3 (Q� p)2 ln (Q� p)2: (41)Further details of the alulation are presented inthe Appendix. We �nd the Borel transformed ontri-bution B0(M2) = 2a`M4 + 2asM4F (�);F (�) = 13 �2(1�e��)� +e��(1��)+�2E(�)� ;� = �2=M2; (42)where E(�) = 1Z� dte�tt : (43)In the literature, our funtion E is usually denoted byE1. We avoid this notation beause in the QCD sum476
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Fig. 3. a) The funtion F (�) de�ned by Eq. (42). b ) Dependene of the funtions F (�2=M2) for �2 = 1:26 GeV2,orresponding to the size �s = 0:33 fmrule publiations, the notation E1 has another meaning(see Eq. (27)).Combining Eq. (40) with the relation m(0) = A=�6oming from Eq. (39), we �nd that �2 = 2as=3m(0).It was demonstrated in [10, 11℄ that as � R�2��1,while m(0) � R�2�. Thus, �2 depends only on �, and�2 = 1:26 GeV2 at � = 0:33 fm. In duality interval (29),0:9 � � � 1:6. The funtion F (�) is plotted in Fig. 3a.The dependene of F on M2 for �2 = 1:26 GeV2 isshown in Fig. 3b. As expeted, we �nd B = B03 in thelimit M2 !1 (see Eq. (19)).A similar alulation yieldsA06 = 83a2ws(1� ws)1� e��� : (44)3.3. Parameterization of the nonloal salarondensateIt is reasonable to try to establish a onnetion withthe OPE approah. We write Eq. (42) asB03(M2) = 2M4a(M2); (45)where a(M2) = a�1� ws + wsF � �2M2�� ; (46)

with F de�ned by Eq. (42). We have a(M2) ! a forM2 !1. We now de�neK(M2) = a(M2)a ; (47)and try to parameterize the funtion K(M2) in the du-ality interval by a power series in 1=M2:K(M2) = 1 + NXn=1 CnM2n : (48)If the seond term on the right-hand side an be ap-proximated by one or two terms, suh a representationan be related to the parameterization of the expeta-tion value h0j�q(0)q(x)j0i by a polynomial in x2. We anwrite the polarization operator �I as�I(q2) = 2�4 Z d4xx6 f(x2)eiqx; (49)with f(x2) = h0j�q(0)q(x)j0i. Assuming that f(x) anbe parameterized asf(x) = f(0)(1 + 1x2 + 2x4) (50)(we reall that we are in a Eulidean metri), we �ndB03(M2) = 2M4f(0)�1� 81M2 + 322M4 � ; (51)477
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Fig. 4. Approximation of the funtion K(M2) de�nedby Eq. (47) (solid line) by the series on the right-handside of Eq. (48) with parameters determined by Eq. (52)(dotted line)and hene C1 = 81; C2 = 322 (52)in (48). We note that the right-hand side of Eq. (50)annot be treated as the lowest terms of the Taylorexpansion. The terms x2n with n � 3 yield integralsthat are divergent on the upper limit and annot beeliminated by the Borel transformation.For the medium onsisting solely of small-size in-stantons, i. e., for ws = 1, keeping the �rst three termsin (48), we �nd that C1 = �1:23 GeV2 and C2 == 0:54 GeV4, and hene 1 = �0:15 GeV2 and 2 == 0:017 GeV4 in the duality interval 0:8 GeV2 �M2 �� 1:4 GeV2 determined by Eq. (29). The auray ofthe parameterization is illustrated by Fig. 4. In the in-terval 0:8 GeV2 � M2 � 2:0 GeV2, we �nd a slightlydi�erent set of values: C1 = �1:38 GeV2 and C2 == 0:68 GeV4, orresponding to 1 = �0:17 GeV2 and2 = 0:021 GeV4. Thus we an assume that paramete-rization (50) with 1 � �0:2 GeV2 and 2 � 0:02 GeV4an be used for the Borel masses in the GeV region.This point was disussed in more detail in [18℄.

4. SOLUTION OF THE SUM RULEEQUATIONSWe return to the Minkowski metri and analyzeEqs. (22) and (23) withLq = ~A0(M2;W 2) + ~A6(M2);LI = ~B(M2;W 2); (53)where ~A0(M2;W 2) is given by Eq. (26), ~A6 = A06 ispresented in Eq. (44), and~B(M2;W 2) = 2a`M4E2() ++ 2asM4�(M2;W 2); (54)�(M2;W 2) = 13 � 2� (1� e��) + e��(1� �) �� e�(1� � + ) + �2(E(�) � E())� :The funtions Ei(i = 0; 1; 2) are determined byEq. (27).4.1. The absene of a solution at ws = 1We an immediately guess that there is no solutionfor ws = 1. Indeed, if the values mN , �2, and W 2ompose a solution, we should obtain�(M2) � LI (M2;W 2)Lq(M2;W 2) � onst = mN : (55)Beause the ontribution of the ontinuum should notbe too large, we should expetLI (M2)Lq(M2) � onst � mN ; (56)where we set Li(M2) = Li(M2;W 2 !1). For ws = 1,Eq. (56) takes the form�(M2) = 2aF (�2=M2)M2 : (57)Using the dependene of the funtion F on M2 for�2 = 1:26 GeV2 presented in Fig. 3b, we an seethat the values of � range between 2a � 0:36=GeV2 and2a � 0:27=GeV2 in the interval (29) of variation of M2.For the distane R = 1 fm between small-size instan-tons, a = 0:59 GeV3 [10, 11℄. Hene, mN � 0:35 GeV.The unrealisti value of the nuleon mass obtainedin suh a way is not the main problem, however. Wetry to �nd the value of �2 using Eq. (21). We ob-tain M6 exp(m2N=M2) = �2. But the left-hand side of478
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Fig. 5. Dependene of the solution of the sum rule equations on the value of ws at �s = 0:33 fm for the nuleon mass m(a), �2 (b ), and W 2 (). The solid, dashed, dotted, and dashed-dotted lines are for the respetive salar ondensate valuesa = 0:58, 0:67, 0:80, and 0:96 GeV3this equality hanges by a fator of 6 in duality inter-val (29). Therefore, the equality an be satis�ed only ifthe ontribution of the ontinuum, whih was moved tothe left-hand side, as disussed around Eqs. (22)�(25),hanges the left-hand side strongly. Hene, we ome toan unphysial solution of the sum rules [19℄. As we seebelow, a more detailed analysis on�rms this onlu-sion.We note that at ws = 1, the right-hand sides of thesum rules for both hirality-�ipping and hirality-on-serving strutures su�ered large hanges omparing tothe standard OPE sum rules. The most importanthange in the former ase is the inlusion of the nonlo-ality of the salar ondensate. In the latter ase, thereis no four-quark ondensate, whih played an importantrole in the OPE ase.4.2. Dependene of solutions on the fration ofsmall-size instantonsThe funtions Lq and LI depend expliitly on thesalar ondensate a, on its fration aused by the in-stantons of the small size as = aws, and on the para-meter �2. On the other hand, the medium of small in-stantons is determined by their average size �s and thedistane between the instantons R(ws). It was foundin [10, 11℄ thath0j�q(0)q(0)j0is = CR2(ws)� s; (58)where C = 25:0 and R is the distane between small-si-ze instantons. Hene, we an study the dependene ofthe solution of the sum rule equations on the fration of

small-size instantons ws for several values of the salarondensate a = �(2�)2h0j�q(0)q(0)j0iand for di�erent sizes of small instantons �s.We note that at �s = 0:33 fm and R(1) = 1 fm, thesalar ondensate a = 0:58 GeV3 (at the onventionalnormalization point � = 0:5 GeV) [10, 11℄. This en-ables us to �nd the dependene on ws at any values ofa and �s.The results for �s = 0:33 fm are presented in Tab-le 1 and in Fig. 5. We an see that at several reasonablevalues of the quark ondensate, the sum rules have aphysial solution for ws not exeeding a ertain valuew0. At ws = w0 � 0:67, the solutions jump to unphy-sial ones with a smaller value of the nuleon mass andthe dominant ontribution of the ontinuum [19℄. Atws about 0:6, the nuleon mass is lose to the physialvalue.In Table 1 and in Fig. 5, we present the results forfour values of the salar ondensate a orresponding to�s = 0:33 fm and the distanes between the small in-stantons R = 1:3, 1.2, 1.1, and 1.0 fm at ws = 0:6. Thedistanes R = 1:3 fm and R = 1:2 fm orrespond to thevalues a = 0:58 GeV3 and a = 0:67 GeV3, i. e., to thevalues of the salar ondensate h0j�q(0)q(0)j0i equal to(�244 MeV)3 and (�257 MeV)3, lose to the onven-tional values. The distanes R = 1:1 fm and R = 1:0 fmorrespond to a = 0:80 GeV3 and a = 0:96 GeV3,i. e., to somewhat larger values of h0j�q(0)q(0)j0i equalto (�273 MeV)3 and a less realisti (�290 MeV)3. Theonsisteny of the left- and right-hand sides of the sumrules is illustrated in Fig. 6.479



M. G. Ryskin, E. G. Drukarev, V. A. Sadovnikova ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015Table 1. Solutions of the sum rule equations for � = 0:33 fma, GeV3 ws mN , GeV �2, GeV6 W 2, GeV2 �2N0.96 0.30 1.45 8.7 6.6 3.7(�2)0.60 1.15 2.8 2.9 4.0(�2)0.66 1.05 1.9 2.3 3.9(�2)0.67 0.82 0.86 1.4 2.1(�2)0.80 0.30 1.40 6.2 4.9 1.7(�2)0.60 1.10 2.0 2.6 2.3(�2)0.67 0.99 1.2 2.0 2.2(�2)0.68 0.80 0.60 1.3 1.2(�2)0.67 0.30 1.33 4.3 4.0 8.3(�3)0.60 1.05 1.4 2.2 1.4(�2)0.67 0.95 0.83 1.7 1.3(�2)0.68 0.77 0.41 1.1 5.9(�3)0.57 0.30 1.27 3.0 3.4 4.2(�2)0.60 1.00 0.95 1.9 8.9(�3)0.67 0.90 0.57 1.5 8.3(�3)0.68 0.75 0.30 1.0 3.0(�3)As noted above, the pole-to-ontinuum ratiori(M2) = Fpi (M2)=Fi (M2); i = q; I; (59)of the two ontributions to the right-hand side ofEq. (20) haraterizes the validity of the �pole + ontin-uum� model for the spetrum of the polarization opera-tor in Eqs. (20) and (21). For larger values of ri(M2),the model is justi�ed better. The values of the ratio arepresented in Table 2 for �s = 0:33 fm and ws = 0:60.We take two ases for illustration. For a = 0:58 GeV3,the solution ismN = 1:01 GeV; �2 = 1:2 GeV6;W 2 = 2:0 GeV2: (60)The pole-to-ontinuum ratio dereases with the valueof M2 (see Table 2). Although the sum rule equa-tions an be solved with good auray in the broadinterval of values of the Borel mass (see Table 3), thepole-to-ontinuum ratio beomes unaeptably smallfor M2 > 1:4 GeV2. In this ase, we therefore stay inthe traditional duality interval determined by Eq. (29).For the ondensate a = 0:96 GeV3, orrespondingto R(0:6) = 1 fm, the solution ismN = 1:15 GeV; �2 = 2:8 GeV6;W 2 = 2:9 GeV2: (61)

Here, the sum rule equations an also be solved withgood auray in a large interval of values of the Borelmass (see Table 3). We an see that both rq and rIderease as M2 inreases. In this ase, the pole-to-ontinuum ratio is muh larger than it was for smallervalues of the ondensate. Hene, the interval of the val-ues of M2 where the sum rule equations an be solvedbeomes larger.We also �x the value R = 1:3 fm and trae thedependene of the solutions on �s. In Table 4, wepresent the results for � = 0:25 fm (a = 0:76 GeV3and h0j�q(0)q(0)j0i = (�268 MeV)3) and �s = 0:40 fm(a = 0:48 GeV3 and h0j�q(0)q(0)j0i = (�230 MeV)3).They are shown in Fig. 7. The situation is similar tothe preeding ase when we hanged R. However, at�s = 0:40 fm, the jump to the unphysial solution o-urs at a larger value ws � 0:75.For ws = 0:65, the funtion K(M2) determined byEq. (47) is approximated by the series on the right-handside of Eq. (48) with the parametersC1 = �0:80 GeV2; C2 = 0:35 GeV4; (62)whene 1 = �0:10 GeV2 and 2 = 0:011 GeV4.480
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Fig. 6. Consisteny of the left- and right-hand sides(LHS, RHS) of the sum rules for a = 0:58 GeV3,ws = 0:60. The solid and dashed lines respetivelyshow the ratios of the right- to the left-hand sides forthe sum rules for hirality-onserving and hirality-�ip-ping equationsTable 2. Pole-to-ontinuum ratio r(M2) for solutionsof the sum rules at � = 0:33 fm for a = 0:58 GeV3and a = 0:96 GeV3; ws = 0:60a, GeV3 M2, GeV2 rq(M2) rI(M2)0.58 0.8 1.25 1.841.0 0.69 1.081.2 0.43 0.721.4 0.29 0.520.96 0.8 4.69 5.851.0 2.30 2.991.2 1.34 1.821.4 0.86 1.235. SUMMARYWe alulated the polarization operator of the nu-leon urrent in the instanton medium that we assumedto be a omposition of the small-size instantons andsome large-size gluon �eld �utuations with the orre-lation length �` � 1 GeV�1. The instantons of large

size � � (1 GeV)�1 manifest themselves in terms ofthe loal salar quark ondensate. The quark propa-gator in the �eld of small-size instantons ontains thezero mode hirality-�ipping part proportional to the ef-fetive quark mass m(p) and a nonzero-mode part ap-proximated by the propagator of a free massless quark[10, 11℄. The zero-mode part an be expressed in termsof the nonloal salar ondensate.We solved the sum rule equations and traed thedependene of the solution on the fration of small-sizeinstantons ws. We demonstrated that at ws � 0:6�0.7,the sum rules have a solution with a reasonable valueof the nuleon mass. At ws � 2=3, the value of thenuleon mass is very lose to the physial one. The nu-merial values vary slightly with variation of the atualvalues of the size of small instantons and of the distanebetween them. Finally at the values of the salar on-densate lose to the onventional value (�250 MeV)3,mN � 1 GeV; �2 � 1 GeV6; W 2 � 2 GeV2: (63)At larger values of ws, the sum rules have only an un-physial solution with a strong domination of the on-tinuum ontribution over that of the nuleon pole andwith a small value of the nuleon mass.Solution (63) was found for �s = 0:33 fm, with R == 1:2�1.3 fm. It is also valid for R � 1:3 fm with�s � 0:25�0.40 fm. We note that in [10; 11℄, the valueof R is tied to that of the gluon ondensate, whih isknown with a large unertainty [13℄, and R = 1:2 fmis not unrealisti. Also (see [9℄), we an tie the gluonondensate to the total instanton density. For the on-ventional valueh0j�s� Ga��Ga�� j0i 132�2 = (200 MeV)4and the distane between small-size instantonsR = 1:2 fm, the densities of small-size and large-sizeinstantons are approximately the same.At larger values of the quark ondensate, the valuesof the nuleon residue and of the ontinuum thresholdinrease, reahing the values �2 � 3 GeV6 and W 2 �� 3 GeV2 at h0j�q(0)q(0)j0i = (�290 MeV)3.Compared to the sum rules in the ondensate repre-sentation, we inluded the nonloality of the salar on-densate. Also, the instanton representation strongly di-minished the role of the ontribution orresponding tothe four-quark ondensate in the ondensate language.The onsisteny between the left- and right-handsides of the sum rules appeared to be muh better thanin the sum rules in terms of loal ondensates, wherethe value of ��2 per point� was of the order 10�1 [17℄assuming 10% error bars. The mean relative di�erene4 ÆÝÒÔ, âûï. 3 (9) 481
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Fig. 7. Dependene of the solution of the sum rule equations on the value of ws at R � 1:3 fm for the nuleon mass m (a),�2 (b ), and W 2 (). The solid, dashed, and dotted urves are for the respetive values of the salar ondensate a = 0:58,0:48, and 0:77 GeV3Table 3. Solutions of the sum rule equations in various intervals of the values of the Borel mass. The parameter valuesare the same as in Table 2a; GeV3 M2; GeV2 mN ; GeV �2; GeV6 W 2; GeV2 �2N0.58 0.8�1.4 1.01 0.98 1.96 9.3(�3)0.8�1.6 1.02 1.01 1.99 1.2(�2)0.8�1.8 1.03 1.04 2.01 1.5(�2)0.96 0.8�1.4 1.15 2.83 2.93 4.0(�2)0.8�1.6 1.17 3.03 3.02 5.1(�2)0.8�1.8 1.19 3.20 3.08 6.0(�2)between the left- and right-hand sides is about 3%. Atlarger values of the salar ondensate, the dominationof the ontribution of the pole over that of the on-tinuum beomes more pronouned. Also, the dualityinterval beomes larger than that de�ned by Eq. (29)due to the shift of the upper limit.We demonstrated that the ontribution of the non-loality of the salar ondensate an be approximatedby two additional terms of the 1=M2 series. This or-responds to approximating the dependene of the non-loal quark ondensate f(x2) = h0j�q(x)q(0)j0i on x2 bya polynomial of the seond order. At x2 = 1 GeV�2(with the Eulidean metri), we found f(x2) � f(0) == tf(0) with t = �0:14 for ws = 1 and t = �0:09for ws = 0:65. More ompliated alulations in theframework of the instanton liquid model [20℄ yieldedt � �0:1 for x2 = 1 GeV�2. The parameter m20 de-�ned by Eq. (15) determines the lowest-order term ofthe Taylor series of the ondensate f(x2). Its valuewas estimated in the nuleon QCD sum rule analysis

as providing the best �t of the two sides of the sumrules. The result in [16℄ is m20 � 0:8 GeV2, leadingto t � 0:2, while the value m20 � 0:2 GeV2 yieldingt � �0:05 was obtained in [21℄.We note that these are to large extent the prelimi-nary results. Representing the ontinuous distributionof instanton sizes as a superposition of small-size in-stantons and of some large-size gluon �eld �utuations,we negleted their possible interations. Another pointis the interpretation of the ondensate (1�ws)h0j�qqj0iaused by the interations at the large sale. A moregeneral analysis should be arried out. The last butnot the least, we plan to inlude interations betweenthe quarks omposing the polarization operator, i. e.,to take the radiative orretions into aount. Theyare the same as in the ondensate representation forthe struture �q. However, additional work is requiredto �nd these orretions for the hirality-�ipping stru-ture �I . Hene, a more general analysis is required;the orresponding results will be published elsewhere.482



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Nuleon QCD sum rules in the instanton mediumTable 4. Solutions of the sum rule equations for R � 1:3 fma; GeV3 ws mN , GeV �2; GeV6 W 2; GeV2 �2N0.77 0.60 1.09 1.52 2.31 3.8(�3)0.70 0.88 0.55 1.38 1.5(�3)0.48 0.50 1.06 1.20 2.21 7.8(�3)0.60 0.98 0.82 1.87 1.1(�2)We thank A. E. Dorokhov, N. I. Kohelev, and es-peially V. Yu. Petrov for the stimulating disussions.APPENDIXTo alulate the integral on the right-hand side ofEq. (41), we writeln (Q� p)2 = � 1Z0 dy(Q� p)2 + y : (A.1)Here and below, we omit polynomials in Q2 beausethey are eliminated by the Borel transformation. Nowwe an writeXs = � 3i�2 Z d4p(2�)4 Ap2(p2 + �2)3 �� 1Z0 dy y(Q� p)2 + y : (A.2)We an verify that1p2(p2 + �2)3 = 3 1Z0 dx x2(p2 + �2x)4 ; (A.3)whene Xs = �3 1Z0 dx x2	(�2x); (A.4)where 	(�2) = 3A�2 1Z0 dy y�(�2; y);�(�2; y) = Z d4p(2�)4 1(p2 + �2)4 1(Q� p)2 + y : (A.5)

Integrating over the angular variables, we �nd�(�2; y) = 148�2 1Z0 dt(1�t)3(ty+�2(1�t)+t(1�t)Q2)3 == 1Z0 dt(1� t)3t3(y + �)3 ; � = Q2(1� t) + �2(1� t)t3 : (A.6)Integrating over y, we obtain	(�2) = A32�4 1Z1 du�1� 1u�2 uQ2 + �2u: (A.7)The divergene at the upper limit is not important,beause this ontribution is eliminated by the Boreltransformation. Returning to Eq. (A.4), we an writeit asXs = 3A32�4 1Z0 dx x2 1Z1 du���1� 1u�2 uQ2 + �2ux: (A.8)We an now integrate easily, with the resultXs = 3A32�4 �Q4�6 ln Q2 + �2Q2 ++ �3Q2�4 + 3�2 + 1Q2� ln Q2 + �2�2 � : (A.9)After the Borel transformation, we arrive at Eq. (42).We note that the Borel transform of the right-hand sideof Eq. (A.8) is given by ompat expressionBXs = 3A32�4 1Z0 dx x2 1Z1 duu�1� 1u�2 �� exp���2xuM2 � : (A.10)483 4*
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