БРИЗЕРОПОДОБНЫЕ ДЕФЕКТЫ И ИХ ДИНАМИКА В ОДНОМЕРНОЙ РОЛЛОВОЙ СТРУКТУРЕ ЗАКРУЧЕННЫХ НЕМАТИКОВ

О. А. Скалдин, В. А. Делев^{*}, Е. С. Шиховцева, Ю. А. Лебедев, Э. С. Батыршин

Институт физики молекул и кристаллов Уфимского научного центра Российской академии наук 450075, Уфа, Россия

Поступила в редакцию 16 апреля 2015 г.

Экспериментально и теоретически изучена динамика несингулярных дефектов в периодических структурах роллов, возникающих при электроконвекции в закрученных на $\pi/2$ нематических жидких кристаллах. Для ролловых структур в закрученных нематиках характерным является наличие аксиальной компоненты скорости гидродинамического потока с противоположным направлением в соседних роллах. На основе нелинейного уравнения движения для смещения роллов получены количественные оценки критической частоты осцилляций структурных дефектов. Обнаружено, что в процессе осцилляций дефекта с несингулярным ядром происходит периодическое рождение и аннигиляция пары краевых дислокаций с топологическими зарядами +1 и -1. Показано, что осциллирующие дефекты с нулевыми топологическими зарядами соответствуют решению уравнения синус-Гордон в виде стоячих бризеров. Обнаружена асимметрия в колебательном процессе бризерного дефекта по полному циклу, которая связывается с твист-симметрией закрученного нематика, а в модели учитывается в виде эффективного анизотропного трения. Изучено поведение бризера на ловушке — классическом дефекте (дислокации). Показано, что движение дислокации является анизотропным по циклу колебательного процесса, т.е. в одном направлении имеет место ее регулярное движение, тогда как во второй его фазе переход в исходное состояние происходит через распад бризера на дипольную пару дислокаций противоположного знака с последующей аннигиляцией.

DOI: 10.7868/S0044451015120172

1. ВВЕДЕНИЕ

Образование пространственно-временного порядка при ориентационно-фазовых превращениях в жидких кристаллах (ЖК), как правило, сопровождается процессами генерации самых разнообразных структурных неоднородностей и дефектов: дислокаций и дисклинаций с различными характеристиками, доменных стенок и солитонов [1–7]. Роль этих дефектов в проявлении физических эффектов, наблюдаемых в ЖК, весьма значима. Они, например, существенным образом влияют на сценарии образования и турбулизации доменных структур при электроконвекции в нематических ЖК (НЖК) [8–10]. С одной стороны, с увеличением надкритичности идеальная ролловая структура (домены Вильямса–Капустина) теряет свою когерентность, что приводит к появлению дефектов и, как следствие, к возникновению режима слабой турбулентности (weak turbulence, или флуктуирующие домены Вильямса-Капустина). С другой стороны, дефекты являются важнейшим фактором при выборе системой характеристических пространственных мод (волновых векторов) при формировании доменных 1D- и 2D-структур. Поэтому для понимания механизмов образования и разрушения надмолекулярного порядка в неравновесных средах изучение природы генерации дефектов, их динамики и взаимодействия является особенно актуальной задачей.

Экспериментальное исследование данной проблемы в ЖК-слоях с гомогенной ориентацией молекул представлено в работах [11–14], где классифицированы структурные дефекты — элементарные дислокации с топологическим зарядом $S = \pm 1$, возникающие выше порога образования доменов Вильямса-Капустина, подробно изучены их динамика и статистические характеристики.

^{*}E-mail: delev@anrb.ru

Однако теоретическое рассмотрение механизмов образования, динамики и взаимодействия дефектов на базе исходных электрогидродинамических (ЭГД) уравнений является весьма сложной задачей ввиду ее трехмерности и нелинейности. Даже определение пороговых характеристик (критического напряжения и волнового вектора) доменов Вильямса-Капустина из линейного анализа устойчивости системы исходных ЭГД-уравнений требует численных расчетов [8, 9, 15]. Одним из подходов для анализа механизмов образования, динамики и взаимодействия дефектов при электроконвекции в планарных НЖК является использование полуэмпирического метода, когда из исходных ЭГД-уравнений вначале получают амплитудное уравнение Гинзбурга-Ландау [9,16-19], а затем экспериментально определяют его коэффициенты [14].

Возможен и другой подход, связанный с описанием пространственно-распределенных дефектов и основанный на глубокой аналогии их свойств и поведения с моделью Френкеля – Конторовой [20]. Она позволяет достаточно просто и наглядно исследовать нелинейные эффекты в дискретной цепочке атомов в присутствии некоторого внешнего периодического потенциала. Так, стандартная модель Френкеля – Конторовой успешно применяется для описания структуры и динамики кристаллической решетки около ядра дислокации [21].

В континуальном приближении модель Френкеля – Конторовой сводится к точно интегрируемому уравнению синус-Гордон [20]. Данное уравнение было одним из первых обнаруженных уравнений с многосолитонным решением, а первое приложение уравнение синус-Гордон нашло в физике для построения упрощенных моделей дислокаций.

Несмотря на большое количество теоретических работ, прямые экспериментальные исследования приложений модели Френкеля-Конторовой для кристаллов все еще достаточно редки (см. ссылки в [21]). Однако имеются большие возможности для наблюдения динамического поведения дефектов в модельных системах. Например, модель Френкеля-Конторовой с успехом использовалась в сверхпроводниках для описания теории эффекта Джозефсона [22, 23], динамики доменных границ в ферроэлектриках [24] и ферромагнетиках [25, 26] или структуры адсорбированных слоев на поверхности кристаллов [27, 28].

Перспективным объектом, где топологические дефекты в одномерной системе могут быть легко созданы, а их свойства изучены, являются НЖК. Так, в работе [29] впервые сделана попытка приме-

Рис.1. Ролловая структура в закрученном нематике с характерными типами дефектов при $U \approx 6$ В

нения модели Френкеля – Конторовой для описания динамического поведения дефектов в закрученных на $\pi/2$ нематиках (твист-структурах).

Ролловые структуры в закрученных на $\pi/2$ НЖК характеризуются геликоидальными гидродинамическими потоками с противоположным направлением аксиальной компоненты скорости \mathbf{v}_a в соседних роллах [30]. Это существенным образом влияет на структурные особенности наблюдаемых типов дефектов в закрученных НЖК. А именно, выше порогового напряжения U_c в одномерной ролловой структуре наблюдаются два типа дефектов — сингулярные и несингулярные. При этом вблизи порога U_c эти дефекты, как следует из экспериментальных данных, являются статическими, а при $U > U_c$ — динамическими, или осциллирующими [29, 31–33].

Сингулярность дефектов определяется лишней (или недостающей) парой роллов при взятии контурного интеграла вокруг дефекта. Его величина отлична от нуля и соответствует топологическому заряду $S = \pm 1$. По сути, это есть не что иное, как определение вектора Бюргерса краевой дислокации в кристаллической решетке. При обходе несингулярного дефекта контурный интеграл равен нулю, так как количество роллов выше и ниже ядра одинаковое, что и соответствует топологическому заряду S = 0 (рис. 1) [29, 33].

Особый интерес здесь представляют несингулярные осциллирующие дефекты, которые не наблюдаются в НЖК с однородным распределением поля директора **n̂**. Несингулярный тип дефектов является следствием крупномасштабных пространственных флуктуаций ориентационной и гидродинамической мод системы (localized phase modulation) [34] и наблюдается в НЖК при определенных условиях. В работе [35] показано, что динамика данного типа дефектов может быть описана решением уравнения синус-Гордон в виде стоячих бризеров.

Целью данной работы является экспериментальное и теоретическое изучение динамики бризероподобных дефектов в электроконвективной периодической твист-структуре НЖК и выяснение особенностей происходящих в них структурных процессов.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве НЖК использовался 4-п-метоксибензилиден-*n*-бутиланилин (МББА), который помещался в ЖК-ячейку между двумя стеклянными подложками с проводящим покрытием из SnO₂. Поверхность подложек с электродами покрывалась слоем ориентанта — полиимида AL1254 (JSR Corp. Japan), который затем натирался в одном направлении для создания однородной планарной ориентации директора $\hat{\mathbf{n}}$. Толщина ЖК-ячейки размером 16×12 мм² задавалась майларовыми прокладками $h \approx 20$ мкм. При сборке ЖК-ячейки подложки укладывались таким образом, чтобы направление натирания ориентирующих поверхностей было антипараллельным (рис. 2). После ее заполнения НЖК и формирования однородной планарной ориентации методом фазовой задержки проводилась оценка преднаклона директора $\hat{\mathbf{n}}$ на границах, которая составила около 4° . Затем верхняя подложка медленно поворачивалась относительно нижней по часовой стрелке на угол $\pi/2$, так что во всем слое НЖК возникала однородно закрученная ориентация директора $\hat{\mathbf{n}}$ (рис. 2).

На рис. 2 изображена конфигурация начального распределения поля директора, представляющая собой четверть пространственного геликоида, так что директор $\hat{\mathbf{n}}$ делает разворот на $\Delta = \pi/2$ от планарной ориентации \mathbf{n}_1 на границе верхней подложки до планарной ориентации \mathbf{n}_2 на нижней, т. е. $\mathbf{n}_1 \perp \mathbf{n}_2$. В данном конкретном случае мы имеем фрагмент левозакрученной спирали с волновым вектором \mathbf{q}_{tw} , направленным вдоль оси z.

К ЖК-слою прикладывалось переменное напряжение U с частотой $f_U = 30$ Гц. Пороговое напряжение возникновения ролловой структуры (доменов Вильямса – Капустина) составляет $U_c = 5.6$ В. При этом ось роллов перпендикулярна направлению директора $\hat{\mathbf{n}}$ в середине слоя НЖК и составляет углы -45° и 45° с ориентацией директора соответственно на верхней и нижней подложках [36]. Час-

Рис.2. Геометрия исходного распределения поля директора $\hat{\mathbf{n}}$ в закрученном на $\pi/2$ слое НЖК; \mathbf{q}_{tw} — волновой вектор твист-структуры, модуль которого равен $\pi/2h$. Направления натирания ориентанта на подложках показаны стрелками. Штриховая стрелка указывает направление натирания до поворота верхней подложки по часовой стрелке на угол $\pi/2$ относительно нижней

тота перехода в диэлектрический режим составляла $f_U^{cutoff}\approx 150~\Gamma$ ц.

Исследование структурных переходов в закрученном НЖК проводилось также в ЖК-ячейках с параллельным направлением натирания ориентирующих поверхностей подложек. При этом какого-либо различия ни в структурных переходах, ни в динамике дефектов не обнаружено.

Доменные структуры и их дефекты наблюдались в поляризационный микроскоп Axiolab (Zeiss, Germany), а их изображения регистрировались видеокамерой VX44 (PCO Inc., Germany) с разрешением 720×576 пикселей и оцифровывались внешней платой Pinnacle 700-USB (USA). Определение направлений гидродинамических потоков в роллах проводилось путем анализа движений пробных частиц диаметром 2–3 мкм, добавленных в НЖК.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Структурные превращения в осциллирующем несингулярном дефекте

Минимальный размер несингулярного дефекта равен размеру элементарной ячейки структуры роллов, $L_{min} \approx h \approx 2\lambda$, где λ — поперечный размер одного ролла, что связано с антипараллельностью аксиальных компонент скорости течения \mathbf{v}_a в соседних роллах. Такие дефекты могут образовываться по трем сценариям: 1) спонтанно; 2) в результате взаимодействия двух дислокаций с зарядами +1 и -1, движущихся вдоль оси роллов; 3) в результате их отщепления от дислокаций с «диссоциированным» ядром, когда его размер $L > L_{min}$. Вблизи порога $U \gtrsim U_c$ экспериментально наблюдаются стационарные несингулярные дефекты произвольного дискретного размера: L_{min} , $2L_{min}$, $3L_{min}$, $4L_{min}$ и т. д.

Стационарный несингулярный дефект представляет собой границу (или доменную стенку), сквозь которую нет гидродинамического потока. В этом случае непрерывность потока обеспечивается его замыканием по одну сторону доменной стенки, так что направление потока вблизи ее границы меняется на противоположное. Стационарный дефект по структуре потоков в роллах вблизи границы аналогичен состоянию, изображенному на рис. Зб. При этом роллы выше границы дефекта смещены относительно роллов ниже границы дефекта примерно на половину пространственного периода λ . С увеличением приложенного напряжения U аксиальная компонента скорости потока \mathbf{v}_a в роллах возрастает [30], и при некотором значении $U > U_c$ дефекты начинают осциллировать.

Рассмотрим временную динамику несингулярного дефекта с нулевым топологическим зарядом S = 0 и размером $L = 4L_{min}$ за один период T осцилляций (рис. 3).

Такие осцилляции представляют собой периодические замыкания (рис. 3a, b) и размыкания (рис. 3b, r) сонаправленных аксиальных компонент скорости \mathbf{v}_a гидродинамического потока в роллах по разные стороны дефекта.

Как видно из рис. За, при замыкании потоков нематической жидкости сквозь границу образуются роллы с наклоном вправо — состояние «зиг». При этом рождаются две краевые дислокации с топологическими зарядами +1 и -1, их сумма дает нуль (t = 0). Через t = T/4 потоки в роллах через границу прерываются, образуя промежуточное состояние (рис. 3δ). При t = T/2 потоки по разные стороны границы вновь замыкаются и образуются роллы с наклоном влево — состояние «заг», что приводит к аннигиляции краевых дислокаций (рис. 3в). Через t = 3T/4 поток через границу снова прерывается и вновь образуется промежуточное состояние (рис. 3г). По истечении полного периода осцилляций, t = T, происходит замыкание потоков с образованием краевых дислокаций (рис. 3*д*).

Таким образом, «зиг-заг»-осцилляции в области дефекта представляют собой периодический процесс замыкания и размыкания потоков в роллах по раз-

Рис. 3. Динамика дефекта с нулевым топологическим зарядом за полный период колебаний T = 1.28 с при $U = 1.6U_c$. Интервал между кадрами $\Delta t = 0.32$ с. Стрелками показаны направления аксиальной компоненты скорости гидродинамических потоков в роллах. Здесь параллельный оси x вектор q_0 — волновой вектор ролловой структуры

ные стороны дефекта и сопровождаются периодическим рождением и аннигиляцией двух краевых дислокаций.

На рис. 4 представлена зависимость частоты f осцилляций несингулярного дефекта с S = 0 от приложенного напряжения U. Она достаточно хорошо

Рис. 4. Зависимость частоты f колебаний несингулярного дефекта с нулевым топологическим зарядом от приложенного напряжения U

описывается линейной функцией, что коррелирует с линейной зависимостью аксиальной компоненты скорости течения НЖК в ролле от величины приложенного напряжения U [30].

В закрученном на $\pi/2$ НЖК периодичность аккумулированной потенциальной энергии, связанной с конвективным движением нематической жидкости в роллах, определяется размером элементарной ячейки $L_{min} = 2\lambda$:

$$V_r = \sum_n V_0 \left[1 - \cos\left(\frac{2\pi u_n}{h}\right) \right], \qquad (1)$$

где u_n — координата *n*-го двойного ролла вдоль горизонтального направления *x* на рис. 3, $V_0 = \rho v^2 h \lambda l$ [37], ρ — плотность НЖК, *v* — скорость конвективного течения (порядка 10^{-5} м/с [30]), *l* — длина двойного ролла.

Тогда энергия, приходящаяся на единицу длины сдвоенного ролла, равна

$$V'_r = \frac{V_r}{l}, \quad V'_0 = \frac{V_0}{l} = \rho v^2 h \lambda.$$
 (2)

Для описания движения дефекта в решетке доменов необходимо учесть его механические свойства. Перемещение дефекта не является мгновенным, и его инерционность можно охарактеризовать, приписав ему некоторую массу, приходящуюся на единицу длины *l* ролла. Действительно, для ускорения дефекта от одной скорости до другой требуются конечное время и затраты энергии. Эта энергия точно равна той энергии, которая необходима для переориентации молекул, и энергии процессов диссипации, возникающих при этом.

Необходимо уточнить, что выражение (2) есть энергия электроконвективного движения нематической жидкости, связанная с механизмом диссипации части энергии переменного электрического поля, связанной с проводимостью, в системе электроконвекции [8]. Локальная деформация в теле дефекта и периодические процессы перекоммутации роллов обусловлены неустойчивостью встречных геликоидальных потоков нематика. Таким образом, внутренняя динамика дефекта, как, впрочем, и процессы переориентации молекул, энергетически подпитываются гидродинамической подсистемой НЖК. Что же касается величины диссипации энергии при процессах переориентации молекул, она пренебрежимо мала, так как малы ориентационные вязкости *α_i* по сравнению с обычной вязкостью нематика.

Таким образом, аккумулированная энергия V_r конвективных потоков, связанная с диссипацией части энергии электрического поля за счет анизотропии $\Delta \sigma$ проводимости, является определяющей как в появлении системы роллов, так и в динамике наблюдаемого процесса. Кроме того, учет диссипативного слагаемого в нашем случае принципиально не меняет подхода к описанию явления [38]. Поэтому в дальнейшем, при выводе соответствующего уравнения движения, диссипацией, связанной с процессами переориентации молекул в динамике дефекта, пренебрегается. Для изучения более тонких эффектов эволюции двухсолитонного решения в диссипативной среде могут быть использованы результаты работы [38], в которой представлен полный набор сценариев развития двухсолитонных решений в зависимости от соотношения диссипативного и других параметров в уравнении синус-Гордон [39].

Энергия взаимодействия V_{int} соседних двойных роллов вдоль направления x определяется относительными отклонениями положений соседних двойных роллов от равновесного расстояния u_0 ,

$$V_{int} = \frac{k}{2} \sum_{n} (u_{n+1} - u_n - u_0)^2, \qquad (3)$$

где $k = Kq_0^2 l$ — константа взаимодействия [8], K — средний модуль упругости НЖК ($K \approx 5 \cdot 10^{-12}$ H), q_0 — волновой вектор доменной структуры ($q_0 = 2\pi/\lambda \sim 10^5$ м⁻¹). Относительную величину энергии взаимодействия запишем как $V'_{int} = V_{int}/l$, т.е. $k' = k/l = Kq_0^2$. Тогда полная потенциальная энергия системы, приходящаяся на единицу длины сдвоенного ролла, будет равна $V' = V'_r + V'_{int}$. Кинетическая энергия запишется в виде

$$K' = \frac{m'}{2} \sum_{n} \left(\frac{du_n}{dt}\right)^2,\tag{4}$$

где $m' = m/l, m = 2\rho lh\lambda$ — масса двойного ролла, h — толщина ЖК-слоя.

Из гамильтониана

$$H' = V'_r + V'_{int} + K'$$
 (5)

следует уравнение движения для \tilde{u}_n :

$$\frac{d^2 \tilde{u}_n}{d\tau^2} + \sin \tilde{u}_n - \tilde{k}(\tilde{u}_{n+1} - \tilde{u}_{n-1} - 2\tilde{u}_n) = 0, \quad (6)$$

где

$$\tilde{u}_n = \frac{\pi}{\lambda} u_n, \quad \tau = \frac{\pi}{\lambda} \sqrt{\frac{V_0'}{m'}} t, \quad \tilde{k} = \left(\frac{\lambda}{\pi}\right)^2 \frac{k'}{V_0'}.$$

Введем функцию смещения *n*-го двойного домена относительно его равновесного положения u_{n0} (см. рис. 36, c) в цепочке,

$$\eta_n = \tilde{u}_n - \tilde{u}_{n0}, \quad \tilde{u}_{n0} = u_{n0} \frac{\pi}{\lambda}.$$

Под смещением будем понимать процесс замыкания потоков в роллах через границу с наклоном вправо — состояние «зиг» (см. рис. 3a), либо влево состояние «заг» (см. рис. 3e).

После перехода к континуальному приближению получаем уравнение движения

$$\frac{\partial^2 \eta}{\partial \tau^2} - \frac{\partial^2 \eta}{\partial \xi^2} + \sin \eta = 0, \tag{7}$$

где $\eta = \pi u / \lambda, \ \xi = x / 2\lambda \sqrt{\tilde{k}}.$

Дефекты с нулевым топологическим зарядом описываются двухсолитонными решениями. При этом из полного набора двухсолитонных решений (солитон-солитонные столкновения, антисолитон-антисолитонные столкновения, солитон-антисолитонные столкновения и бризеры) нулевым топологическим зарядом обладают только два последних типа решений. Уравнение синус-Гордон позволяет найти решения вида солитон-антисолитонного столкновения в общем случае для различных скоростей солитона и антисолитона, но в данном эксперименте столкновение происходит с одинаковыми скоростями. Таких решений два вида [40-42]. Это столкновение не связанных солитона и антисолитона,

$$\eta_D(\xi,\tau) = \pm 4 \operatorname{arctg} \frac{1}{v} \frac{\sin[n(\tau-\tau_0)\gamma]}{\operatorname{ch}[\gamma(\xi-\xi_0)]}$$
(8)

(здесь $\gamma = 1/\sqrt{1-v^2}$, v — абсолютная величина скорости сталкивающихся солитона и антисолитона), и связанное решение (бризер)

$$\eta_B(\xi,\tau) = 4 \operatorname{arctg}\left(\frac{\sqrt{1-\omega^2}}{\omega}\right) \times \\ \times \frac{\sin[\omega(\tau-\tau_0)]}{\operatorname{ch}[(\xi-\xi_0)\sqrt{1-\omega^2}]}, \quad (9)$$

где ω — внутренняя частота колебаний бризера. Решение (8) со знаком «+» соответствует столкновению отрицательных солитона ($\eta[\xi \to -\infty] = -2\pi$, $\eta[\xi \to +\infty] = 0$) и антисолитона ($\eta[\xi \to -\infty] =$ $= 0, \eta[\xi \to +\infty] = -2\pi$), которые после столкновения превращаются в положительные солитон ($\eta[\xi \to -\infty] = 0, \eta[\xi \to +\infty] = 2\pi$) и антисолитон ($\eta[\xi \to -\infty] = 2\pi, \eta[\xi \to +\infty] = 0$). Соответственно, решение (8) со знаком «-» отвечает столкновению положительных солитона и антисолитона, превращающихся после столкновения в отрицательные.

Дефект, представленный выше на рис. 3, описывается бризерным решением (9). Действительно, динамика экспериментально наблюдаемого дефекта (см. рис. 3) и динамика бризерного решения (рис. 5) полностью идентичны.

Смещения вправо центров сдвоенных роллов на рис. 3a, когда потоки замкнуты через границу, соответствуют состоянию бризера на рис. 5a, далее, соответственно, рис. 3b — рис. 5b, (образование границы и поток разомкнут), рис. 3e — рис. 5e (смещения влево — поток замкнут), рис. 3e — рис. 5e (поток разомкнут) и рис. 3e — рис. 5e (поток через границу вновь замкнут). Затем цикл повторяется.

Однако здесь необходимо заметить, что наблюдаемый в данном случае дефект является более сложным объектом, и эта нетривиальность связана с внутренними структурными превращениями, происходящими в нем. Это, в первую очередь, относится к процессу периодического рождения и аннигиляции пары классических дислокаций с топологическими зарядами ± 1 и некоторой неравномерности их временной динамики по осциллирующему циклу. Учесть подобные особенности поведения представляется возможным, по-видимому, в более сложной модели, например, в рамках возмущенного уравнения (7).

Тем не менее предложенный подход для описания наблюдаемой динамики дефекта уже позволяет увязать некоторые экспериментальные параметры, его характеризующие, с модельными представлениями. В частности, ширина бризера (количество ячеек — двойных роллов, охваченных дефектом на

Рис. 5. Эволюция бризерного решения (9)

рис. 3) определяется энергией бризера, а энергия бризера, в свою очередь, зависит от его частоты как

$$E_B = 2E_{sol}\sqrt{1-\omega^2},$$

где E_{sol} — энергия односолитонного решения. Наблюдаемому объекту (см. рис. 3) присущи все особенности поведения бризера. Так, при $\omega \to 0$ бризер превращается в двухсолитонное решение (8). В другом предельном случае, $\omega \to 1$, бризер полностью теряет свою энергию и исчезает (рис. 6). С учетом нормировки ω в данной задаче переход от состояния, изображенного на рис. 6*a*, к состоянию на рис. 6*г* происходит при частотах $\omega_0 \sim (\pi/\lambda) \sqrt{V'_0/m'} \sim 1$ Гц, что по порядку величины соответствует верхней границе частот на рис. 4.

Рис. 6. Исчезновение дефекта при достижении критической частоты f=1.1 Гц, $U=1.78U_c$

Ранее [29, 33] была экспериментально исследована структура дислокаций с диссоциированным ядром и топологическим зарядом ± 1 . В частности, было показано, что на краях ядра образуются две частичные дислокации с векторами Бюргерса $\pm 1/2$, которые не существуют в свободном виде [43]. В отличие от таких сингулярных дефектов на краях «дышащей» области (бризера) периодически появляются структурные дислокации с топологическими зарядами ± 1 и -1, и их сумма дает нуль. Эти дислокации могут также наблюдаться в свободном виде, что может реализоваться при определенных условиях через распад бризера, которому соответствует решение (8).

3.2. Пространственно-временная динамика несингулярного дефекта

Рассмотрим более детально процесс «зиг-заг»-осцилляций бризероподобного дефекта (см. рис. 3). На рис. 3*a* и 3*e* представлен вид двух, соответственно «зиг» и «заг», состояний несингулярного дефекта, когда происходят периодические замыкания геликоидальных течений в роллах при их локальной коммутации с наклоном вправо и влево. В состоянии «зиг» происходит расщепление несингулярного дефекта на дипольную пару дислокаций с S = -1 и S = +1 (см. рис. 3*a*), тогда как в состоянии «заг» наблюдается их аннигиляция (см. рис. 3*e*).

Таким образом, имеет место пространственная анизотропия колебательного процесса, т. е. неэквивалентность право- и левонаклонных состояний в «точках разворота» по циклу. Кроме того, также имеет место асимметрия временной динамики: время T_1 перехода (переключения) из состояния на рис. 3a в состояние на рис. 3e меньше времени T_2 перехода из состояния на рис. 3e в состояние на рис. 3d, т. е. разница «полупериодов» не равна нулю: $\Delta T = T_2 - T_1 \neq 0$ ($T = T_1 + T_2$ — время полного цикла).

Для выяснения причин такого поведения рассмотрим распределение поля директора $\hat{\mathbf{n}}(\mathbf{r})$ вдоль оси z (см. рис. 2). При периодических возмущениях (переключениях) роллов вправо и влево происходит твист-деформация (Т-деформация) кручения, связанная с упругим модулем K_{22} нематика, которую формально можно описать уже распределенным волновым вектором твист-структуры, $\mathbf{q}_{tw}(z,t) = \mathbf{q}_{tw} + \operatorname{rot} \hat{\mathbf{n}}(\mathbf{r},t)$. Тогда для разницы по энергии Λ_0 между возбужденным и основным состояниями имеем

$$\Lambda_0 \propto 2K_{22} \left[\mathbf{q}_{tw} \operatorname{rot} \hat{\mathbf{n}}(\mathbf{r}, t) + \frac{1}{2} \operatorname{rot}^2 \hat{\mathbf{n}}(\mathbf{r}, t) \right]_{t=T_{1,2}}.$$
 (10)

Это следует из того, что вклад энергии Т-деформации в гамильтониан равен [8]

$$V_{tw} \sim K_{22} \left[\mathbf{q}_{tw} + \operatorname{rot} \hat{\mathbf{n}}(\mathbf{r}) \right]^2$$

Таким образом, мы имеем бистабильную ячейку со снятым вырождением по энергии устойчивых состояний. Здесь надо отметить, что в одном из возбужденных состояний средняя деформация кручения Δ может превысить $\pi/2$ и достигнуть величины $\pi/2 + \delta$, а это, в свою очередь, делает такое локальное состояние неустойчивым по отношению к релаксации поля директора в менее напряженное состояние, но со сменой знака кручения с правого на левое, и $\Delta = \pi/2 - \delta$. Последнее может происходить, когда эффективный поворот роллов совпадает с направлением кручения твист-слоя НЖК, и на этот процесс требуется некоторое время τ_r для реализации реориентационной твист-волны. Это связано с фундаментальным свойством нематика, когда навязанное кручение Т-деформации без хиральных добавок не может превышать 90° [44]. В свою очередь, этот процесс ведет к образованию дополнительных ориентационных стенок, которые и определяют появление пары дефектов с векторами Бюргерса ±1.

Теперь перейдем к рассмотрению теоретической модели описания временной асимметрии полупериодов, $T_1 \neq T_2$, по пространственному циклу. Выше было сказано, что в электроконвективной твист-структуре нематика необходимо учесть расщепление по энергии устойчивых состояний в потенциальной энергии (1), связанное с наличием вклада в гамильтониан члена, пропорционального Λ_0 (10).

Применительно к нашему случаю, для потенциальной энергии (1) с учетом возмущения этот вклад в интегральном виде может быть учтен следующим способом:

$$V_r = V_0 \left(1 - \cos \frac{2\pi u_n}{h} \right) + \Lambda_0 \left(1 - \cos \frac{\pi u_n}{h} \right). \quad (11)$$

Для получения модельного уравнения будем иметь в виду обозначения для членов, входящих в гамильтониан (5) с учетом диссипации в динамике дефекта, вводя соответствующие члены феноменологически [45, 46].

В результате из гамильтониана (5) в континуальном пределе с учетом потерь энергии по аналогии с (7) получаем уравнение движения для нормированного смещения η *n*-го двойного ролла:

$$\frac{\partial^2 \eta}{\partial \tau^2} = -\sin \eta + \frac{\partial^2 \eta}{\partial \xi^2} + \Delta E \sin \frac{\eta}{2} - \sigma_1 \left| \frac{\partial \eta}{\partial \tau} \right| - \sigma_2 \frac{\partial \eta}{\partial \tau}, \quad (12)$$

где $\Delta E = -2\Lambda_0/V_0$, τ и ξ — перенормированные время и координата вдоль ядра дефекта (вдоль оси x на рис. 3). В данном случае $\Delta E < 0$, а это означает, что основными являются состояния $\varphi = 0$, π с энергией $E_1 = 0$ и возбужденные состояния $\varphi = \pi/2$, $3\pi/2$ с энергией $E_2 = \Lambda_0$ ($\Lambda_0 > 0$) (см. выражение (10)).

Отдельно нужно пояснить диссипативные члены с σ_1 и σ_2 . Наиболее простым для интерпретации является член с σ_2 , который описывает потери энергии движения дефекта за счет динамической вязкости НЖК, включающей обычное вязкое трение и анизотропную часть, характерную для ЖК [8].

Несколько сложнее дело обстоит с σ_1 . Потери энергии, зависящие от направления движения дефекта, описываются слагаемым $-\sigma_1 |\partial \eta / \partial t|$. В общем случае σ_1 может быть функцией η . Возможная зависимость $\sigma_1(\eta)$ может быть представлена в виде

$$\sigma_1(\eta) = \sigma_{10} \sin \frac{\eta}{2}, \quad \sigma_{10} > 0.$$

Рис.7. Функции распределения по времени «полупериодов» T_1 и T_2 колебаний бризерного дефекта при аннигиляции двух дислокаций с зарядами +1 и -1, т.е. при столкновении солитона и антисолитона, T_1 (см. также рис. 3*6*), и при их разбегании, T_2 (см. также рис. 3*д*), $U = 1.6U_c$

Выбор знака и величины σ_{10} зависит от определенной физической системы. Больший интерес представляют системы с $\sigma_1 < 0$ и $\Delta E < 0$. Сочетание $\sigma_1 < 0$ и $\Delta E < 0$ дает дополнительное значение равновесной скорости солитона (антисолитона), и в результате появляется принципиально новый эффект противоположных режимов переключения [46].

При обсуждении пространственно-временной асимметрии в динамике изучаемого дефекта говорилось о возможности протекания локальных релаксационных процессов со сменой направления закрутки твиста в одном из направлений движения с правой на левую и обратно, с переходом к исходной симметрии, время которого определяется толщиной слоя НЖК и его вязкоупругими характеристиками [8]:

$$\tau_r \approx \gamma_1 h^2 / \pi^2 K_{22}, \tag{13}$$

где $\gamma_1 = 0.015 \ \Pi$, $K_{22} \approx 4 \cdot 10^{-12} \ H$ [44]. Численные оценки дают $\tau_r \approx 0.1-0.2 \ c$, что, собственно говоря, хорошо согласуется с величиной разницы «полупериодов» $\Delta T = T_2 - T_1$, показанной на рис. 7, а сам коэффициент σ_1 является функцией $\sigma_1(\tau_r)$. Фактически это означает, что в реальном колебательном процессе имеется временная задержка, зависящая от направления смещения.

Таким образом, в данной модели мы учитываем одномерное анизотропное трение, которое определяет неэквивалентность взаимно противоположных

ЖЭТФ, том **148**, вып. 6 (12), 2015

движений или колебаний дефекта. Далее, солитон-антисолитонные столкновения описываются медленно меняющимся во времени двухсолитонным решением невозмущенного уравнения синус-Гордон [47]:

$$\eta = -4 \operatorname{arctg}\left(\frac{\operatorname{sh} R}{v \operatorname{ch} \Psi}\right),\tag{14}$$

где

$$R = \frac{1}{\sqrt{1 - v^2}} \int_0^\tau v(\tau) \, d\tau + \xi_0(\tau), \quad \Psi = \frac{\xi}{\sqrt{1 - v^2}},$$

 $R(\tau)$ — расстояние между центрами солитона и антисолитона. В данном представлении R < 0 до столкновения, R > 0 после столкновения, и столкновение происходит при R = 0. Здесь следует подчеркнуть, что бризер вблизи точки $R \approx 0$ является частным случаем решения (14), когда величина v^2 становится отрицательной. Таким образом, прохождение солитонной пары через точку R = 0 в ее малой окрестности фактически эквивалентно поведению бризера за «полпериода». В связи с этим проанализируем более подробно решение (14) в окрестности $R \approx 0$.

До столкновения решение (14) уравнения (12) представляет собой солитон $\eta_{\xi\to-\infty} = 0$, $\eta_{\xi\to+\infty} = 2\pi$, движущийся слева направо со скоростью v, и антисолитон $\eta_{\xi\to-\infty} = 2\pi$, $\eta_{\xi\to+\infty} = 0$, движущийся справа налево со скоростью -v. Если при столкновении не происходит аннигиляции, что соответствует нашему случаю, то после столкновения образуются солитон $\eta_{\xi\to-\infty} = -2\pi$, $\eta_{\xi\to+\infty} = 0$, движущийся слева направо со скоростью v, и антисолитон $\eta_{\xi\to-\infty} = -2\pi$, $\eta_{\xi\to+\infty} = 0$, движущийся слева направо со скоростью v, и антисолитон $\eta_{\xi\to-\infty} = 0$, $\eta_{\xi\to+\infty} = -2\pi$, движущийся справа налево со скоростью -v.

Согласно теории возмущений [47], для уравнения синус-Гордон функции $v(\tau)$ и $R(\tau)$ определяются из решения системы уравнений

$$\frac{dv}{d\tau} = \frac{\operatorname{ch} R(1-v^2)v^2 F L}{\operatorname{sh}^2(R) + v^2} - \frac{\pi\sigma_{10}}{4}v(1-v^2)\operatorname{sh} R\operatorname{ch}^2 RN, \quad (15)$$

$$\frac{dR}{d\tau} = \frac{v}{\sqrt{1-v^2}}.$$

Здесь

$$F = \frac{\Delta E}{2} \sqrt{1 - v^2} \operatorname{sh} R - \sigma_2 v \operatorname{ch} R,$$

Рис. 8. Изменение скоростей солитона и антисолитона вблизи точки взаимодействия R=0 в режиме рассеяния без аннигиляции: кривая 1 описывает вклад вырождения по энергии основного состояния элементарной ячейки; 2 — вклад потерь энергии на анизотропное трение; 3 — вклад потерь энергии на обычное молекулярное трение; 4 — результирующая кривая, $\pi |\sigma_{10}|/4 < \sigma_2$, $\sigma_{10} > 0$

$$\begin{split} L &= \frac{1}{v^2} + \frac{1}{2 \operatorname{sh} R \sqrt{\operatorname{sh}^2 R + v^2}} \times \\ & \times \ln \left| \frac{\sqrt{\operatorname{sh}^2 R + v^2} + \operatorname{sh} R}{\sqrt{\operatorname{sh}^2 R + v^2} - \operatorname{sh} R} \right|, \\ N &= \frac{4v^2 + \operatorname{sh}^2 R}{\left(\operatorname{sh}^2 R + v^2\right)^{5/2}}. \end{split}$$

Характер солитон-антисолитонного взаимодействия на малых расстояниях между солитоном и антисолитоном определяется из решения уравнения (12). Наглядное представление о нем, как было сказано выше, может быть получено из анализа поведения скоростей солитона и антисолитона вблизи области рассеяния R = 0 (рис. 8) для комбинаций параметров $\pi |\sigma_{10}|/4 < \sigma_2$, $\sigma_{10} > 0$.

Качественная картина изменения скорости со временем может быть получена из решения первого уравнения системы (11) в предположении $v = v_m$, где v_m — средняя скорость, с которой возбуждение преодолевает точку R = 0. Чем больше скорость v_m , тем более плавными являются зависимости $dv(R)/d\tau$. Как видно из рис. 8, при приближении солитона и антисолитона друг к другу (R < 0) их скорости возрастают, что соответствует состоянию бризерного дефекта на рис. 36. При их взаимном удалении после столкновения (R > 0) их скорости уменьшаются, т.е. имеет место притяжение. В реальной системе это соответствует образованию дипольной пары классических дефектов по пространственной границе бризера (рис. 3*a*), для чего системе необходимо дополнительное время τ_r (см. выражение (13)). Результирующая функция $dv(R)/d\tau$ не является симметричной относительно точки R = 0. Для величин ΔE и σ_{10} , существенно меньших по сравнению с σ_2 , результирующая функция $dv(R)/d\tau$ может целиком лежать в отрицательной области, так что перед столкновением солитон и антисолитон отталкиваются, что соответствует гашению скорости, а после столкновения — притяжению. В случае, когда $\pi |\sigma_{10}|/4 > \sigma_2$ и $\sigma_{10} < 0$, солитон и антисолитон отталкиваются после их столкновения.

Таким образом, наблюдаемая асимметрия поведения при сочетании параметров $\pi |\sigma_{10}|/4 < \sigma_2$, $\sigma_{10} > 0$, по-видимому, является внутренним свойством электроконвективной твист-структуры нематика.

3.3. Взаимодействие бризероподобного дефекта с дислокацией: бризер на ловушке

Данный раздел посвящен исследованию особенностей структурных трансформаций в ситуации, когда колебательная динамика бризера в значительной степени осложнена наличием неоднородностей доменной решетки (например, в магнитных системах при локализации бризера на доменных стенках, зародышах новой фазы и т. д. [48]).

В случае НЖК наибольший интерес представляет анализ более тонких структурных процессов, являющихся следствием взаимодействия бризера и «заряженного» дефекта (дислокации). Подобные реакции являются вполне типичными для системы дефектов в доменной структуре НЖК при электроконвекции, когда, возникнув, дефекты движутся через систему доменов и, сталкиваясь, аннигилируют либо трансформируются в другие виды искажений решетки доменов. При этом, когда приложенное напряжение превышает U_c , скорость их зарождения и общее число, а также, соответственно, и вероятность столкновений возрастают.

В качестве примера исследуем случай, когда в область осциллирующего бризероподобного дефекта попадает дислокация и он становится «заряженным». Рассмотрим пространственно-временную динамику такого «комплексного» дефекта (бризероподобный дефект + дислокация), изображенного на рис. 9, за один период T, который состоит из двух полупериодов, $T = T_1 + T_2$, причем $T_1 \neq T_2$ [49].

Рис. 9. Бризер на ловушке-дислокации с топологическим зарядом S = -1 за один период $T = T_1 + T_2$ $(T_1 > T_2)$ осцилляций. Справа от изображений показаны соответствующие распределения величин $\Phi = 1 - |A_{zig}(x, y, t) - A_{zag}(x, y, t)|$, ось x — направление вдоль дефекта в пикселях. Здесь $A_{zig}(x, y, t)$ и $A_{zag}(x, y, t) -$ амплитуды осцилляционных мод роллов «зиг» и «заг»: a-6 — движение дефекта с S = -1 за время T_1 ; e — распад бризера на пару дислокаций $S = \pm 1$ (положение 1) и аннигиляция (положение 2), Δx_{12} — смещение центра бризера; ∂ — переход в исходное состояние

Пусть в начальный момент времени t = 0 на правом краю ядра дефекта образуется дислокация с зарядом -1 (при обходе контура ядра дефекта против часовой стрелки имеем на одну элементарную ячейку ролловой структуры меньше) (рис. 9a). При этом остальные роллы диссоциированного ядра замкнуты и находятся в состоянии «зиг» (t = 0). Через $t = T_1/2$ дислокация находится примерно в центре диссоциированного ядра (рис. 96). При этом слева от дислокации роллы продолжают находиться в состоянии «зиг», а справа они уже переключились в состояние «заг». По завершению полуцикла $t = T_1$, когда дислокация оказывается на левом краю размытого ядра, все остальные роллы переходят в состояние «заг» (рис. 9*в*). Заряд дефекта по-прежнему равен —1. Справа на рис. 9 показаны соответствующие кривые распределения величины

$$\Phi = 1 - |A_{zig}(x, y, t) - A_{zag}(x, y, t)|$$

в последовательные моменты времени, которая характеризует динамику заряженного дефекта за период осцилляций T,гд
е A_{zig} и A_{zag} — амплитуды осцилляционных «зиг»- и «заг»-мод роллов, полученные при помощи техники пространственной демодуляции исходных изображений [50, 51]. Покадровый анализ динамики демодулированных изображений показал, что за следующий полуцикл дефект демонстрирует совершенно иную динамику. Он остается «зацепленным» на левом краю, через время $t \approx$ $\approx T_2/2$ в размытом ядре дефекта происходит одновременное рождение двух единичных дислокаций с противоположными знаками: +1 (примерно в центре размытого ядра) и -1 (на правом краю ядра), так что суммарный заряд дефекта остается неизменным (рис. 9г) и закон сохранения заряда выполняется. Затем происходит аннигиляция промежуточной дислокации с зарядом +1 и дислокации с зарядом –1 «зацепленного» на левом краю ядра дефекта (рис. 9∂). В результате этого вторая половина периода «зиг-заг»-осцилляций оказывается меньше, чем первая, и на правом краю ядра дислокации остается дефект с зарядом -1, когда t = T (рис. 9*д*). Далее процесс повторяется.

Перейдем теперь к теоретическому обоснованию структурных превращений в пространственно-диссоциированном заряженном дефекте. Используя развитый в предыдущем разделе аппарат, покажем, что наблюдаемая картина осцилляций (см. рис. 9) описывается решением уравнения синус-Гордон

$$\eta_{\tau\tau} = \eta_{\xi\xi} - \sin\eta + \varepsilon f,$$

$$\varepsilon f = -\sigma \eta_{\tau} - \sum_{k=1}^{N} \mu_k \delta(\xi - a_k) F(\eta), \qquad (16)$$

$$F(\eta) = \sin\eta,$$

где $-\sigma\eta_{\tau}$ — потери энергии на диссипативные процессы, $-\sum_{k=1}^{N} \mu_k \delta(\xi - a_k) F(\eta)$ — потери энергии при прохождении солитонного возбуждения через k-й дефект, $\mu_k > 0$, $\varepsilon \ll 0$. На протяжении всего времени жизни дислокации с размытым ядром процесс происходит без изменения формы осцилляций, что указывает на малость потерь энергии на диссипацию ($\sigma \rightarrow 0$). Результатом является возбуждение, энергетически соответствующее трехсолитонному,

$$E = E_{sol} + E_B, \tag{17}$$

где E_{sol} — энергия односолитонного решения, $E_B = 2E_{sol}\sqrt{1-\omega^2}$ — энергия бризера.

В отличие от связанного трехсолитонного решения (вобблер), данные осцилляции представляют собой сложение бризерного возбуждения,

$$\eta_B(\xi\tau) = 4 \operatorname{arctg}\left(\frac{\sqrt{1-\omega^2}}{\omega}\right) \times \\ \times \frac{\sin[\omega(\tau-\tau_0)]}{\operatorname{ch}\left[(\xi-\xi_0)\sqrt{1-\omega^2}\right]}, \quad (18)$$

и односолитонного возбуждения [52],

$$\eta = 4 \arctan\left[\pm \frac{\xi - X(\tau)}{\sqrt{1 - v^2(\tau)}}\right],$$

$$X(\tau) = \int_0^\tau v(\tau')d\tau' + \xi_0(\tau)$$
(19)

(знаки «+» и «-» соответствуют солитону и антисолитону),

$$\frac{dv}{d\tau} = -\sigma v (1 - v^2) - \frac{1}{2} (1 - v^2) \times \\ \times \sum_{i} \mu_i \operatorname{sech}^2 \left(\frac{a_i - X}{\sqrt{1 - v^2}} \right) \operatorname{th} \left(\frac{a_i - X}{\sqrt{1 - v^2}} \right), \quad (20)$$

$$\frac{dX}{d\tau} = v - \frac{v}{2}(1 - v^2) \sum_i \mu_i (a_i - X) \times \operatorname{sech}^2 \left(\frac{a_i - X}{\sqrt{1 - v^2}}\right) \operatorname{th} \left(\frac{a_i - X}{\sqrt{1 - v^2}}\right). \quad (21)$$

Возникновение близерного и односолитонного возбуждений и их совместное существование в ограниченном пространстве обусловлено тем, что бризер рождается на дефекте ($\xi = a$) и солитон совершает движение по спиральной фазовой траектории вокруг точки с координатой X^* , определяемой как корень уравнения

$$\operatorname{sech}^{2}(a - X^{*})\operatorname{th}(a - X^{*}) = 0.$$
 (22)

Частота осцилляций равна

$$\omega^{*2} = \frac{\mu}{2} [\operatorname{sech}^2(a - X^*) \operatorname{th}(a - X^*) - \operatorname{sech}^4(a - X^*)]. \quad (23)$$

При $\sigma \neq 0$ такую же картину дает сложение затухающего двухсолитонного решения [38],

 $\eta \\ 12$

a

$$\eta = -4 \operatorname{arctg}\left(\frac{\operatorname{sh} T}{v \operatorname{ch} \psi}\right),$$

$$T = \frac{1}{\sqrt{1 - v^2}} \left[\int_0^\tau v(\tau') d\tau' + X_0(\tau) \right],$$

$$\psi = \frac{\eta}{1 - v^2},$$

$$\frac{dv}{d\tau} = \frac{\operatorname{ch} T(1 - v^2) v^2 F L}{\operatorname{sh}^2 T - v^2},$$

$$\frac{dT}{d\tau} = \frac{v}{\sqrt{1 - v^2}},$$

$$F = -\sigma v \operatorname{ch} T,$$

$$L = \frac{1}{v^2} + \frac{1}{2 \operatorname{sh} T \sqrt{\operatorname{sh}^2 T + v^2}} \times$$

$$\times \ln \left| \frac{\sqrt{\operatorname{sh}^2 T + v^2} + \operatorname{sh} T}{\sqrt{\operatorname{sh}^2 T + v^2} - \operatorname{sh} T} \right|,$$
(24)

и односолитонного.

Исходя из изложенного выше, проанализируем наблюдаемые особенности осцилляционной динамики «комплексного» дефекта. На рис. 10 представлены несколько конфигураций, определяющих локализацию бризера и солитона, проходящего через бризер, что как раз соответствует сложению бризерного (18) и солитонного (19) возбуждений. Ключевым моментом представленной временной динамики является смещение $\Delta \xi$ центра бризера после прохождения солитона (рис. 10 г). В реальности этому соответствует смещение Δx_{12} , отмеченное на рис. 9*г*, с переходом в исходное состояние (см. рис. 9*д*). В целом же, фактически, получается следующее. В первый пространственный полупериод T_1 , определяемый позициями элементарных дефектов, имеет место их регулярное движение справа налево (рис. 9а-в). В полупериод T₂ процесс перемещения идет через сложный каскад рождения и аннигиляции пар дефектов (дислокаций) разных знаков (рис. 9г, д). В начале второго полупериода происходит распад бризера на пару дислокаций разных топологических знаков (соответствующие им векторы Бюргерса антипараллельны) с последующей аннигиляцией. Пространственное разнесение этих двух процессов и определяет смещение $\Delta \xi$ местоположения бризера (рис. 10г). Завершающаяся фаза полного периода движения дислокации определяется ее появлением на правом конце дефекта, т. е. в исходном начальном

Рис.10. Иллюстрация симуляции процесса сложения бризерного и солитонного возбуждений решений (18) и (19) во второй части колебательного цикла T_2 ; $\Delta \xi$ — смещение центра бризера после прохождения солитона

положении, что вполне аналогично пространственной «телепортации», так как исчезнувшая дислокация с S = -1 на левом конце ядра (см. рис. 9*г*) вследствие аннигиляции неотличима от появившейся дислокации на правом конце (см. рис. 9*е* или 9*а*).

ξ

È

Ė

È

Таким образом, в динамике осцилляций этого «комплексного» дефекта наблюдается не только временная асимметрия $T = T_1 + T_2$, где $T_1 \neq T_2$, но и пространственная анизотропия. В данном случае обнаружено, что пространственная анизотропия в колебательном процессе бризерного дефекта коррелирует с его временной асимметрией, когда регулярное перемещение дислокации справа налево за время T_1 , большее времени T_2 ее возврата в исходное состояние, происходит через распад бризера на дипольную пару дислокаций с $S = \pm 1$ с последующей аннигиляцией.

4. ЗАКЛЮЧЕНИЕ

В данной работе экспериментально и теоретически изучена динамика бризероподобного несингулярного дефекта с топологическим зарядом S = 0. В отличие от сингулярных дефектов на краях бризероподобного дефекта периодически рождаются структурные дислокации с топологическими зарядами +1 и -1, а суммарный заряд равен нулю. Показана принципиальная возможность описания динамики такого дефекта в рамках уравнения синус-Гордон и проведена аналогия поведения несингулярного дефекта с решением в виде стоячего бризера.

Детальные экспериментальные исследования также показывают, что бризероподобный дефект характеризуется пространственной анизотропией осцилляционного процесса, а именно, неэквивалентностью правых и левых состояний в «точках разворота» за период колебаний. В одном из состояний происходит расщепление такого пространственно-диссоциированного дефекта с несингулярным ядром и нулевым топологическим зарядом на дипольную пару дефектов с векторами Бюргерса ± 1 (см. рис. 3a), тогда как в другом состоянии расщепления нет (см. рис. 36). При этом суммарный топологический заряд всегда равен нулю, S = 0.

Кроме того, также имеет место асимметрия временной динамики, суть которой состоит в том, что время перехода (переключения) T_1 из состояния на рис. 3a в состояние на рис. 3b меньше времени перехода T_2 из состояния на рис. 3b в состояние на рис. 3d. Предполагается, что разница «полупериодов» связана с релаксационными процессами твист-моды исходной структуры закрученного нематика. Последнее учитывается в рамках модели одномерного анизотропного трения, которое и определяет неэквивалентность взаимно противоположных движений бризероподобного дефекта, а его поведение описывается решением возмущенного уравнения синус-Гордон в виде взаимодействующих солитона и антисолитона.

Также исследован случай, когда несингулярный бризероподобный дефект взаимодействует с заряженной дислокацией. Показано, что такое поведение также описывается решением уравнения синус-Гордон, которое представляет собой сложение бризерного и односолитонного возбуждений. Интригующим моментом здесь является то, что завершающаяся фаза полного периода движений дислокации определяется ее внезапным появлением в исходном начальном положении, аналогичным пространственной «телепортации», так как исчезнувший элементарный дефект с S = -1 на левом конце ядра (рис. 9г) вследствие аннигиляции не отличим от появившегося после этого дефекта на правом конце (рис. 9 в или 9a).

Следует отметить, что дефекты доменной решетки электроконвективных роллов, возникающих в НЖК во внешних электрических полях, наряду с дислокациями в кристаллах, доменными границами в сегнетоэлектриках и магнетиках являются новым примером реалистических нелинейных физических систем, для которых применение нелинейных моделей (Френкеля – Конторовой, синус-Гордон, Гинзбурга-Ландау) и учет локализованных возмущений решетки представляются вполне успешными [10, 21, 29]. Важным преимуществом системы электроконвекции в НЖК, по сравнению с другими, является относительная простота управления структурой и симметрией доменной решетки роллов посредством изменения частоты и величины внешнего электрического поля, приложенного к ЖК-слою (толщиной $d \sim 10-100$ мкм). Использование прозрачных электродов в ЖК-ячейке позволяет легко визуализировать эту систему конвективных доменов и возникающие в ней дефекты. Кроме того, имеются апробированные способы создания неоднородных слоев НЖК (закрученных и/или гомеопланарных), что увеличивает разнообразие типов и симметрий наблюдаемых доменных структур, а также их дефектов (см., например, работу [30]). Все это делает эту систему электроконвекции в НЖК перспективным объектом приложения классической модели Френкеля-Конторовой и ее обобщений.

Работа выполнена при поддержке РФФИ (гранты №№ 13-02-01117, 15-02-09366).

ЛИТЕРАТУРА

- 1. P. G. de Gennes and J. Prost, *The Physics of Liquid Crystals*, Clarendon, Oxford (1994).
- M. Kleman, Points, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media, John Wiley & Sons, Chichester (1983).
- М. В. Курик, О. Д. Лаврентович, УФН 154, 381 (1988).
- 4. Defects in Liquid Crystals: Computer Simulations, Theory and Experiments, ed. by O. D. Lavrentovich, P. Pasini, C. Zannoni, and S. Zumer, Kluwer Acad. Publ., Netherlands (2001).
- 5. П. В. Долганов, В. М. Жилин, В. К. Долганов, Е. И. Кац, Письма в ЖЭТФ **89**, 181 (2009).
- 6. О. А. Скалдин, Ю. И. Тимиров, Письма в ЖЭТФ
 90, 699 (2009).
- 7. Е. Г. Екомасов, Р. Р. Муртазин, В. Н. Назаров, ФММ **115**, 125 (2014).
- 8. С. А. Пикин, Структурные превращения в жидких кристаллах, Наука, Москва (1981).
- **9**. Pattern Formation in Liquid Crystals, ed. by A. Buka and L. Kramer, Springer-Verlag, New York (1996).
- A. Weber, E. Bodenschatz, and L. Kramer. Adv. Mater. 3, 191 (1991).
- H. Yamazaki, S. Kai, and K. Hirakawa, J. Phys. Soc. Jpn. 56, 1 (1987).
- S. Kai, N. Chizumi, and M. Kohno, J. Phys. Soc. Jpn. 58, 3541 (1989).
- 13. S. Nasuno, S. Takeuchi, and Y. Sawada, Phys. Rev. A 40, 3457 (1989).
- 14. S. Rasenat, V. Steinberg, and I. Rehberg, Phys. Rev. A 42, 5998 (1990).
- 15. E. Bodenschatz, W. Zimmermann, and L. Kramer, J. de Phys. 49, 1875 (1988).
- 16. E. Bodenschatz, W. Pesch, and L. Kramer, Physica D 32, 135 (1988).
- 17. L. Kramer, E. Bodenschatz, W. Pesch et al., Liq. Cryst. 5, 699 (1989).
- 18. L. Kramer, E. Bodenschatz, and W. Pesch, Phys. Rev. Lett. 64, 2588 (1990).
- 19. E. Bodenschatz, W. Pesch, and L. Kramer, J. Stat. Phys. 64, 1007 (1991).

- 20. Т. А. Конторова, Я. И. Френкель, ЖЭТФ 8, 89, 1340, 1349 (1938).
- O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications, Springer-Verlag, New York (2004).
- 22. A. V. Ustinov, M. Cirillo, and B. A. Malomed, Phys. Rev. B 47, 8357 (1993).
- 23. H. S. J. van der Zant, T. P. Orlando, S. Watanabe, and S. H. Strogats, Phys. Rev. Lett. 74, 174 (1995).
- 24. R. A. Cowley, J. D. Axe, and M. Iizumi, Phys. Rev. Lett. 36, 806 (1976).
- 25. A. R. Bishop and W. F. Lewis, J. Phys. C 12, 3811 (1979).
- **26**. А. С. Ковалев, ФНТ **20**, 1034 (1994).
- 27. И. Ф. Люксютов, А. Г. Наумовец, В. Л. Покровский, Двумерные кристаллы, Наук. думка, Киев (1988).
- 28. J. de la Figuera, K. Pohl, O. Rodriguez de la Fuente et al., Phys. Rev. Lett. 86, 3819 (2001).
- **29**. А. Н. Чувыров, О. А. Скалдин, В. А. Делев и др., ЖЭТФ **130**, 1072 (2006).
- 30. A. Hertrich, A. P. Krekhov, and O. A. Scaldin, J. de Phys. II 4, 239 (1994).
- 31. V. A. Delev, P. Toth, and A. P. Krekhov, Mol. Cryst. Liq. Cryst. 351, 179 (2000).
- 32. Г. Р. Якупова, О. А. Скалдин, Письма в ЖТФ 29, 27 (2003).
- 33. О. А. Скалдин, Г. Р. Якупова, В. А. Делев и др., ФТТ 47, 361 (2005).
- 34. A. Joets and R. Ribotta, J. Stat. Phys. 64, 981 (1991).
- 35. О. А. Скалдин, В. А. Делев, Е. С. Шиховцева и др., Письма в ЖЭТФ 93, 431 (2011).
- 36. S. Frunza, R. Moldovan, T. Beica et al., Europhys. Lett. 20, 407 (1992).
- 37. R. H. Kraichnan, J. Fluid Mech. 67, 155 (1975).
- **38**. E. S. Shikhovtseva, Physica A **303**, 133 (2002).
- **39**. E. S. Shikhovtseva, Physica A **349**, 421 (2005).
- 40. G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).
- 41. Р. Парментье, Флюксоны в распределенных джозефсоновских контактах, в кн.: Солитоны в действии, под ред. К. Лонгрена, Э. Скотта, Мир, Москва (1981), сс. 185–209.
- 42. J. K. Perring and T. H. R. Skyrme, Nucl. Phys. 31, 550 (1962).

- **43**. J. P. Hirth and J. Lothe, *Theory of Dislocations*, Willey-Interscience, New York (1982).
- 44. Л. М. Блинов, Электро- и магнитооптика жидких кристаллов, Наука, Москва (1978).
- **45**. Е. С. Шиховцова, О. А. Пономарев, Письма в ЖЭТФ **64**, 467 (1996).
- 46. E. S. Shikhovtseva, Phys. Low-Dim. Struct. 11/12, 77 (1999).
- 47. D. W. McLauglin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).
- 48. М. А. Шамсутдинов, И. Ю. Ломакина, В. Н. Назаров, А. Т. Харисов, Д. М. Шамсутдинов, Ферро-

и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны, Наука, Москва (2009).

- **49**. О. А. Скалдин, В. А. Делев, Е. С. Шиховцева, Письма в ЖЭТФ **97**, 98 (2013).
- 50. M. Dennin, D. S. Cannell, and G. Ahlers, Phys. Rev. E 57, 638 (1998).
- 51. M. Scheuring, L. Kramer, and J. Peinke, Phys. Rev. E 58, 2018 (1998).
- 52. E. S. Shikhovtseva and O. A. Ponomarev, Phys. Low-Dim. Struct. 5/6, 43 (1998).