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We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations
of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy
effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The ap-
proximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence
of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative
approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in
D =3+1and D =2+1, and to k-strings in gluodynamics in D = 2+ 1. We identify a massive pseudoscalar
resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar
resonances on the worldsheet of k£ = 2,3 strings in SU(6) gluodynamics in D =2 + 1.
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1. INTRODUCTION

String theory originated as a candidate theory of
strong interactions [1]. However, it was soon aban-
doned as a theory of hadrons, at least for the time be-
ing, because it failed to reproduce the observed prop-
erties of deep inelastic scattering as well as the asymp-
totic freedom of non-Abelian gauge theories. But the
success of the Veneziano amplitude in describing many
aspects of the hadron spectrum and scattering is hardly
a coincidence. Confining strings (flux tubes) are cru-
cial ingredients in the strongly coupled QCD dynamics
responsible for color confinement, and their presence is
vividly revealed by lattice QCD simulations [2]"), sug-
gesting that understanding the structure and dynamics
of QCD flux tubes might provide insights into the dy-
namics of color confinement.

The modern approach to the relation between string
theory and gauge theories relies on the AdS/CFT cor-
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1) See http://www.physics.adelaide.edu.au/theory /staff/
leinweber/VisualQCD /Nobel/ for animations.

respondence [3]. Within this framework, the QCD flux
tube is expected to be described by a string propagating
in a space—time with an extra curved dimension, which
can be interpreted as the dynamical string tension, or
equivalently, the renormalization group scale [4]. Iden-
tifying a concrete string theory that would provide a
holographic description of nonsupersymmetric QCD re-
mains a long shot, and even if this dual string theory
were found, it would be outside the regime in which we
currently have theoretical control.

In this paper, we therefore focus on a rather direct
path towards understanding the structure of the flux
tube theory that does not involve holography. Instead,
it is based on existing lattice techniques combined with
effective field theory and tools from integrability.

Advances in lattice QCD simulations have allowed
measuring the spectrum of low-lying worldsheet exci-
tations with impressive accuracy [5-7]. But the theo-
retical interpretation of these results was problematic
until now. For most states, the string lengths accessible
in the lattice simulations were too short for the exist-
ing techniques to be reliable. The conventional pertur-
bative methods [8-10] for calculating the spectrum of
string excitations result in badly diverging asymptotic
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series in this regime, preventing the interpretation of
the data. At the same time, the data exhibited a num-
ber of puzzling and suggestive features. In particu-
lar, while perturbative calculations were not reliable,
many of the levels show surprisingly good agreement
with the spectrum of a free bosonic string quantized
in the light-cone gauge following the classic paper [11]
by Goddard, Goldstone, Rebbi, and Thorn (GGRT)
(see also [12]). This is confusing, given that the GGRT
spectrum is well known to be incompatible with the
bulk Poincaré symmetry if the number of space—time
dimensions is different from 26.

For the lattice simulations, the computational cost
grows exponentially with the length of the string. At
least with the current technology, this makes it essen-
tially impossible to push lattice calculations into the
regime in which conventional perturbation techniques
converge. Alternative techniques for calculating the
flux tube spectra are thus required, to provide better
convergence for relatively short strings. We proposed
such a technique in [13], and its success relies on the
observation that the worldsheet theory becomes inte-
grable at low energies. This technique seems sufficient
to explain the previously puzzling features seen in lat-
tice results. In addition, it allowed showing that the ex-
isting lattice data provide strong evidence for the exis-
tence of a massive pseudoscalar state on the worldsheet
of the QCD flux tube, the worldsheet axion.

The goal of this paper is to provide a detailed ac-
count of the method proposed in [13]. In Sec. 2, we
begin with a brief summary of the lattice results and
of the effective string theory approach (for a detailed
recent review, see [14]). We review the results of the
conventional perturbative expansion for energy levels,
which exhibits a large number of universal terms. We
explain that the GGRT spectrum, in spite of being in-
consistent with the bulk Poincaré symmetry, still rep-
resents a finite-volume spectrum of a certain integrable
relativistic two-dimensional theory. As we explain, this
observation immediately allows calculating all the uni-
versal terms in the spectrum of relativistic effective
strings [15].

In Sec. 3, we present the new method for calculating
the flux tube spectrum. The main idea of the method is
to divide the calculation into two steps. First, we per-
turbatively calculate the worldsheet S-matrix describ-
ing the scattering of the flux tube excitations within
the effective string theory. We then determine the cor-
responding finite-volume spectrum using the excited
state thermodynamic Bethe ansatz (TBA) [16, 17],
which is very similar to the techniques developed by
Liischer [18, 19], which are routinely used to extract
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four-dimensional scattering amplitudes from the lattice
QCD data. We provide a partial diagrammatic inter-
pretation of the perturbative resummation performed
by the TBA and explain why it is natural to expect
that this method results in a better behaved perturba-
tion theory for excited states.

In Sec. 4, we use this technique to interpret the
lattice data. We provide more details than in [13] as
to how to implement the method and include a larger
set. of excited states in our analysis. This extended
analysis confirms the conclusion reached in [13]: the
lattice data provides strong evidence for the existence
of a pseudoscalar state bound to a confining string.
We also apply the technique to the available data for
three-dimensional gluodynamics. There, we find no evi-
dence for any massive excitations on the fundamental
flux tube, but identify massive scalar excitations on k-
strings.

We conclude in Sec. 5 by discussing future directions
and prospects. We also present an intriguing hint for
the existence of additional light bound states, coming
from the precision ground-state data.

2. LATTICE DATA VERSUS CONVENTIONAL
PERTURBATIVE EXPANSION

We start with a brief summary of lattice results for
the excitation spectrum of confining flux tubes. A de-
tailed description of these results and techniques can be
found in [5-7] (for a review, see [20]). In most of our
discussion, we assume the space-time dimension D =
= 4. However, we also apply our techniques to the
available D = 3 data. We are interested in the inter-
nal dynamics of a single closed flux tube, rather than
in effects coming from its boundaries and from inter-
actions between several flux tubes. To discuss these
separately, it is necessary to suppress processes where
the flux tube can break. This is achieved by perform-
ing simulations in pure gluodynamics without dynam-
ical quarks. Gauge-invariant operators in a pure glue
theory are constructed as traces of path-ordered expo-
nentials of the gauge field A, (Wilson loops),

Op=TrP exp/A ,
c

(1)

where C' is a closed path. In what follows, we mostly
discuss flux tubes carrying a single unit of fundamen-
tal flux. This amounts to taking the trace in (1) in the
fundamental representation of the gauge group.

A nice trick, which allows concentrating on the dy-
namics of long flux tubes, is to use the nontrivial lattice
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topology. Namely, we consider states created by ope-
rators of form (1), such that the corresponding path
winds around one of the lattice dimensions. It is con-
venient to think about the corresponding direction as
a spatial one, although, of course, all directions on the
lattice are Euclidean anyway. States of this kind are or-
thogonal to conventional glueball states created by ope-
rators (1) with contractible paths. This follows from a
global Zx symmetry (center symmetry) present in the
SU(N) Yang-Mills theory compactified on a circle. It
is generated by gauge transformations such that the
corresponding gauge functions satisfy twisted bound-
ary conditions. The twist is performed using a multi-
plication by an element from the center of the gauge

group,
g(R) = ™ /N g(0), (2)

where k is an integer.

Transformations satisfying boundary condition (2)
act properly on the gauge configurations and preserve
the action functional, but do not originate from a well-
defined gauge function. Hence, they should be consid-
ered as generating a global, rather than gauge, sym-
metry. Any two transformations with the same twist &
are equivalent up to a conventional gauge transforma-
tions, and hence the resulting symmetry group is Zy.
A state created by operator (1) with a winding number
k carries charge k£ with respect to this symmetry, and
therefore the full Hilbert space splits into a direct sum
of N orthogonal subspaces labeled by corresponding
winding number (modulo N).

Most of the lattice data discussed here is extracted
from the two-point correlators of the states carrying
a unit charge under the center symmetry (a brief dis-
cussion of k-strings with larger values of the charge is
presented in Sec. 4.6). These states represent closed
flux tubes with a unit winding number around the
compact direction. Considering a large enough set of
shapes of the Wilson lines allows probing not only the
ground state but also the low-lying excitations of the
flux tubes. By measuring the exponential fall-off of the
correlators, we extract energies of the states created
from the vacuum by the corresponding operators, in
the same way as for conventional glueball mass mea-
surements.

A theoretical framework for perturbative calcula-
tions of these energies from first principles is provided
by effective string theory. The idea is that the flux tube
states whose excitation energy above the ground state
in the k£ = 1 sector is smaller than the mass of the light-
est glueball are described by a two-dimensional effective
field theory. In the absence of additional symmetries

(such as supersymmetry), the only massless degrees of
freedom in this theory are Goldstone modes describing
the spontaneous breaking of the bulk Poincaré group
ISO(1,D —1) to a residual symmetry group, which re-
mains unbroken in the presence of an infinite straight
string. The latter is the product of the worldsheet
Poincaré symmetry I1.SO(1,1) with the transverse ro-
tations O(D —2). This symmetry breaking pattern im-
plies the presence of D — 2 massless Goldstone degrees
of freedom represented by scalar fields X?. Geometri-
cally, they parametrize transverse excitations of a flux
tube, such that its embedding into the bulk space is
given by

X0 = (5", X°),

where 0 (a = 1,2) are the worldsheet coordinates.

The effective action is constructed as a sum of local
geometric invariants corresponding to this embedding,
and starts with a Nambu-Goto (NG) term

Sstring = —E;Q/d% —dethas +...=

1o oo 1 S
= (2 /d2a <—1—55»‘,1)(’5)“)(1—g (FaX'0°X7)” +

1 . .
+4 (0aX105X7)" + . ) . (3)
where
hag = 0o X"03X,, (4)

is the induced metric on the worldsheet, 5 is the string
scale, and ... stands for higher-order terms.

Within this formalism, the problem of calculating
the spectrum of low-lying flux tube excitations becomes
the computation of the spectrum of low-lying Kaluza—
Klein (KK) modes of this two-dimensional effective the-
ory upon compactification on a spatial circle of circum-
ference R. The traditional approach to this problem is
a perturbative expansion in powers of ¢5/R. One per-
turbatively calculates the spectrum of a quantum me-
chanical Hamiltonian obtained after KK decomposition
of effective action (3). At any finite order in the (;/R-
expansion, only a finite number of terms from (3) con-
tribute. The procedure is straightforward, even though
the algebra may become rather messy in calculating
subleading terms in this expansion. The major subtlety
in this approach is to enforce the invariance under non-
linearly realized bulk Lorentz transformations at each
order of the expansion,

0 XT = —€(69 0™ + X197 XY), (5)
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where € is an infinitesimal parameter of the boost/ro-
tation. By construction, classical action (3) enjoys this
symmetry, but depending on the regularization scheme,
it may be broken at the intermediate stages of the cal-
culation.

As we can see from (3), a large number of terms in
the effective action are fixed as a consequence of non-
linearly realized Lorentz transformations (5). Hence,
several leading-order terms in the ¢;/R expansion are
universal and can be predicted in a model-independent
way in any D-dimensional theory, giving rise to effec-
tive string-like objects. The only assumptions entering
this prediction are that the bulk theory is relativistic,
has a gap, and the space-time Goldstones X* are the
only massless degrees of freedom carried by the string
worldsheet. One example of a leading-order nonuni-
versal term in effective action (3) that does not vanish
on-shell?) and is compatible with (5) is

58 o (2 /d% (Pads X '0°0°X7)”.

These terms originate from local geometric invariants,
such as R* and R 5, where Rap is the induced curva-
ture of the worldsheet metric. Power counting demon-
strates that this term contributes to the spectrum at
the order ¢¢/R", and hence all the terms up to (1/R°
are universal. A brute force calculation of all the uni-
versal terms is tedious, however, and has not been per-
formed yet. Shortly, following [15], we will review a
shortcut that allows obtaining all the universal ¢2/R5
terms bypassing a direct calculation.

Confronting the effective string theory predictions
with lattice data for D =4 SU(3) gluodynamics leads
to several puzzles, as can be seen from Figs. 1, 2, and 3.
The data points on these plots represent string energies
as a function of the compactification size R. Figure 1
shows the ground-state energies, Fig. 2 shows states
with a single left-moving phonon with different values
of the KK momentum, and Fig. 3 shows a state with
one left-moving and one right-moving phonon, each
with one unit of KK momentum. In the last case, dif-
ferent, colors label different two-particle states, classi-
fied according to representations of the O(2) group of
unbroken rotations in the transverse plane.

In addition, we present two theoretical expectations
of how these energies might look like. Dotted lines
show the sum of universal (Z/R® effective string theory
terms. As explained above, these follow from the con-
sistent first-principle calculation and should agree with
the data for sufficiently long strings.

2) Or, equivalently, cannot be removed by a field redefinition.
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Fig.1. AE = E—R/(? for the ground state of the flux

tube. The value of /s was determined from the lattice

data. The dotted line shows the prediction of a deriva-

tive expansion. The dashed line shows the prediction
of the GGRT theory

The second set of theoretical curves, shown as
dashed lines, is an ad hoc spectrum, which is tradi-
tionally referred to as the “free string spectrum” in the
lattice community, following [12]. It is obtained by ap-
plying the light-cone quantization method of [11] to a
free bosonic string at D = 4,

Erc(N,N) =

4m2(N-N)2 R? 4r . D=2
= — 44— [ N+N-—Z).
\/ R U;%Ug( * 12) ©)

Here, R is the length of the string, and N and N are
levels of an excited string state, such that 27(N—N)/R
is the total KK momentum of the state. In what fol-
lows, we refer to this spectrum as the GGRT spec-
trum. It is not expected to match the spectrum of
the QCD flux tube. Indeed, as discussed above, non-
linearly realized Lorentz symmetry imposes strong con-
straints on the properties of QCD strings. The light-
cone quantization is famously incompatible with the
target-space Poincaré group away from the critical di-
mension D = 263). Hence, a priori, one might only ex-

3) Another interesting exception is D = 3, cf. [21].
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Fig.2. AE = E — R/(? for excited states of the Fig.3. AE = E — R/(? for an excited state with one

flux tube with one and two units of KK momentum

in orange and red, respectively. The dotted lines show

the prediction of a derivative expansion. The dashed

lines show the prediction of the GGRT theory (color
online [37])

pect an agreement with a classical limit of the GGRT
spectrum in the regime in which the quantum effects
can be neglected.

Nevertheless, as seen from Figs. 1-3, the GGRT
spectrum surprisingly fits the lattice data better than
the perturbative calculations. In fact, the situation is
somewhat different for different classes of states. For
the ground state, Fig. 1, both the perturbative calcu-
lations and the GGRT spectrum agree with each other
and with the data even for the shortest strings. This is
already a surprise, given that the agreement holds even
for strings as short as R = 2(;.

For the purely left-moving states, Fig. 2, perturba-
tive calculations agree with the GGRT spectrum and
with the data for relatively long strings. For shorter
strings, the perturbative expansion breaks down and
the data follow the GGRT prediction.

Finally, for the state with both left- and right-
moving phonons, Fig. 3, the perturbative expansion is
practically useless in the range of the string length for
which lattice data are available. The GGRT approxi-
mation provides a reasonable approximation for some
of the states (the scalar and symmetric tensor), while
others (the pseudoscalar) are not explained at all.
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left- and one right-mover, each with one unit of KK
momentum. The dotted lines show the prediction of a
derivative expansion. The dashed lines show the predic-
tion of the GGRT theory. The green color represents a
state that is a symmetric tensor with respect to SO(2),
the blue color represents the states that are scalar with
respect to SO(2), and the red data points represent the
antisymmetric tensor with respect to SO(2). All states
are predicted to be degenerate in the GGRT theory.
In the derivative expansion, the scalar and the anti-
symmetric tensor are still predicted to be degenerate,
as indicated by the blue dotted line. The degeneracy
with the symmetric state is lifted, which is predicted to
have higher energies, as shown by the green dotted line
(color online [37])

These observations taken together provide strong
motivation to set up an alternative perturbative ex-
pansion with better convergence properties. As a first
step, it is desirable to understand the physical origin
of the GGRT spectrum for D # 26. As presented at
the moment, it only has the status of an ad hoc fitting
formula.

The answer to this question was given in [15, 22].
For any value of D, GGRT formula (6) provides an ex-
act answer for the finite-volume spectrum of a certain
integrable reflectionless relativistic two-dimensional
theory. The exact S-matrix of this theory is deter-
mined by a two-particle scattering phase shift of the
form
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(7)

The special role of the critical dimension D = 26 (and
also of D = 3[21]) is that in this case, the theory is both
integrable and enjoys a nonlinearly realized target-
space Poincaré symmetry I.SO(1, D—1). The existence
of this family of integrable models is not surprising,
given that the light-cone string quantization provides
a direct canonical construction of the corresponding
Hilbert space, and does not break the two-dimensional
part of the Poincaré algebra. However, Lorentz invari-
ance had not been firmly established prior to [15, 22|,
The subtlety is that the conventional light-cone quan-
tization is performed in the sector with zero winding
number, while the spectrum (6) arises in the sector
with a nontrivial winding. The normal-ordering con-
stant in the light-cone quantization (which determines
the (D — 2)-term in (6)) is usually fixed by imposing
the target-space Poincaré symmetry, and it remains un-
clear what fixes it in the noncritical dimension.

These questions are resolved by applying the TBA
method to reconstruct the finite-volume spectrum from
the S-matrix in (7). This exactly reproduces the GGRT
spectrum (6), both demonstrating that the GGRT
spectrum is indeed the finite-volume spectrum of a
relativistic two-dimensional theory and showing that
the normal-ordering constant is in fact fixed from the
requirement of a two-dimensional Poincaré symmetry
alone in the sector with a nontrivial winding.

This observation turns out to be important for the
idea behind the method described in this paper, and
to illustrate its power, following [15], we review how
it allows deriving the universal part of the flux tube
spectrum in the conventional ¢;/R expansion in a sim-
ple way. By straightforward perturbative calculation
of the scattering amplitudes, we find that at the level
of the Lagrangian, the relation between the integrable
family of GGRT theories and the effective theory on
the worldsheet of an infinitely long relativistic flux tube
takes the form

exp(2idaarr) = exp(ié?s/él) .

(8)

Here, Laarr stands for the Lagrangian of the GGRT
theory (determined by the S-matrix in (7)), Ly is the
Lagrangian of the relativistic flux tube theory,

D —26

Lrs = Soar

is the Polchinski-Strominger (PS) operator [23], and
. stands for higher-order terms in the (s;-expansion.

Loorr = Lng + Lps + ...

Da05X'0°0° X0, XTI XT + ... (9)

4) We thank Ofer Aharony and Zohar Komargodski for em-
phasizing this point to us.
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Upon compactification on a circle of circumference R,
the infinite-volume relation (8) implies that up to the
order ({5/R)?, the flux tube spectrum coincides with
the expansion of the GGRT spectrum. The leading
(¢s/R)>-difference between the two is given simply by
the matrix elements of the PS operator. This is the
fastest way to derive the universal perturbative (s/R-
results presented in Figs. 1-3. This general argument
agrees with the explicit calculations [24] performed for
a large set of states in the conformal gauge.

In fact, the flux tube spectrum exhibits an even
larger set of universal relations. Relation (8) is a con-
sequence of the universality of the one-loop two-to-two
scattering amplitude on the worldsheet of the relativis-
tic flux tube. Power counting demonstrates that actu-
ally arbitrary connected one-loop amplitudes are uni-
versal and determined solely by the NG part of the
action. At a finite volume, this universality translates
into relations between energies of different flux tube ex-
citations at higher orders in the (s/R-expansion. This
can be checked by inspecting the leading corrections to
binding energies of different states.

Unfortunately, as discussed above, in spite of this
high degree of universality, the conventional {4/ R-ex-
pansion is not very useful for the study of the excited
flux tube states observed in current lattice simulations,
which brings us to the main subject of this paper, the
description of an alternative technique based on the
TBA.

3. FINITE-VOLUME SPECTRA FROM
INFINITE-VOLUME SCATTERING

To find a cure for the bad convergence property of
the (s/R-expansion, we first understand the physical
origin of the problem. Why do excited states behave so
much worse than the ground state, for which the expan-
sion works extremely well? The difference between the
ground state and the excited states is visible already in
the GGRT theory. As is apparent from expression (6)
for the GGRT spectrum, the (;/R-expansion for ex-
cited states breaks down when R?/(?> ~ 4x(N + N),
which can be a relatively large number. For the ground
state, however, the radius of convergence corresponds
to R?/(2 = (D — 2)rr/3, which is much smaller. Physi-
cally, the origin of additional terms of the order 27N/ R
in the excited states energies is clear. These are the
momenta of free phonons comprising the excited state.
This suggests that it is useful to think of the finite-
volume energies to be functions of the form

E = ﬁ;lg(pz[m gs/R)a
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where p; are the momenta of individual particles prop-
agating on the worldsheet. The conventional (s/R ex-
pansion assumes the free theory answer for p; and ex-
pands the resulting function in ¢;/R. The key idea of
the new method is to calculate the spectrum in such
a way that these two functional dependences become
disentangled.

Our previous discussion, most notably the definition
of the GGRT theory by its scattering phase shift (7),
suggests a natural language to achieve this. We should
perform the calculation of the finite-volume spectrum
in two distinct steps: first calculate the (infinite-
volume) S-matrix and then proceed towards extracting
the finite-volume spectrum from this S-matrix. The
first step corresponds to the perturbative expansion in
pils and because of the usual analytic properties of the
S-matrix turns out to be convergent even for momenta
that are not particularly small.

Even though it is widely believed that the S-matrix
of a quantum field theory uniquely determines its finite-
volume properties, the prescription for the second step
is not known in general. However, it is understood in
two circumstances.

For massive theories below the particle production
threshold, there is a perturbative procedure first imple-
mented by Liischer [19] and commonly used in lattice
calculations. There is no principal obstruction to ex-
tending this technique above the inelastic threshold,
and multichannel generalizations of Liischer formulas
are being developed (see, e.g., [25, 26]). One of the
major challenges (at least at the technical level) within
this approach is to calculate winding corrections, com-
ing from virtual particles traveling around the compact
dimension. In massive theories, these are exponentially
suppressed, and usually are either neglected or calcu-
lated by accounting for the lowest-order winding con-
tributions. In a massless theory, like the effective string
theory, more care is needed because the winding cor-
rections are only power-law suppressed.

For two-dimensional integrable theories, there is
an exact (nonperturbative) method for calculating the
finite-volume spectrum known as the TBA [16, 17].
Even writing the complete set of equations, especially
for excited states, is in general quite nontrivial and
usually involves some amount of guesswork. However,
there is a special class of reflectionless integrable scat-
tering, where the TBA for excited states appears to
take a simple universal form [22,27]. The GGRT model
belongs to this class and the corresponding set of exci-
ted-state TBA equations is known exactly.

The worldsheet theory of flux tubes does not have a
mass gap and is not integrable. However, its leading-or-
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der scattering amplitudes (in the ply expansion) coin-
cide with those of the GGRT theory. At the next-to-
leading order, relativistic effective strings deviate from
the GGRT theory for general D, and reflections and
annihilations appear at this order. But in D = 4, they
still take a special form for which it is possible to write
the full set of excited-state TBA equations. This is our
starting point for the analysis of the flux tube spect-
ra observed on the lattice. As we see in what follows,
this method provides much better control of the spect-
ra than the conventional ¢;/R expansion, and makes
it clear that the minimal effective string theory has to
be extended to explain the lattice data. The extension
it to be incorporated in the TBA equations perturba-
tively.

3.1. Thermodynamic Bethe ansatz for
reflectionless scattering

We review the basics of the TBA. For now, we
consider massless theories with integrable reflectionless
S-matrices with any number of particle species. By in-
tegrability, we mean that in every scattering process
the number of particles is conserved, the final particles
have the same momenta as the initial ones, and the ab-
sence of reflections implies that the final distribution of
flavors coincides with the initial one. Integrability im-
plies that the S-matrix element for scattering of n left-
and m right-moving particles is equal to the product
of n x m pairwise S-matrices. Every 2 — 2 S-matrix
element in every flavor channel must be just a number
with the absolute value 1, as demanded by unitarity,

Sed = 5268 exp(2i6ap).

The TBA allows extracting the finite-volume spec-
trum of the theory from the phase shifts d,,. There
are three key ideas underlying this method. The first is
called the asymptotic Bethe ansatz (ABA). It is a set of
algebraic equations that gives the spectrum in the ap-
proximation where the contributions from virtual par-
ticles traveling around the “world” are neglected. The
ABA equations are discussed in more detail in Sec. 3.2
together with their derivation.

The second idea is the following: instead of con-
sidering the theory in a finite volume R and at zero
temperature, we consider the theory in which time and
space directions are interchanged. Consequently, this
theory appears to live in an infinite volume but at a
finite temperature T = 1/R. For a relativistic the-
ory, the space-time-interchanged (“mirror”) theory co-
incides with the initial one. The ABA becomes exact in
the thermodynamic limit and takes the form of certain
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integral equations that allow finding the free energy

density f(T) in the mirror interchanged theory. The

functional integral representation of the partition func-

tion implies that it is related to the ground-state energy

of the initial theory as
Eo(R) = Rf(1/R).

To calculate the energy of excited states, the third
idea is needed. The prescription is to deform the con-
tour in the integral equations used for calculating the
ground-state energy in a certain way [17]. Although
the derivation of this procedure for the general case is
not yet known, there is a rigorous mathematical proof
of the resulting TBA equations for certain integrable
theories, such as the sinh-Gordon model [27]. For the
GGRT theory (the case we are mainly interested in
here) rather nontrivial checks were performed [22] to
be certain that the method can be safely applied. In
addition to this, in Sec. 3.3, we provide partial dia-
grammatic intuition behind the TBA equations.

We now turn to presenting the TBA equations
themselves. There are two contributions to the energy
of a state in this formalism. First, there are ‘“real” par-
ticles, with (positive) momenta equal to p;; and p,; for
left and right movers present in the state. In addition,
there is a “thermal bath” of particles with pseudo-ener-
gies €f'(q) and €%(q) for left- and right-moving compo-
nents of the bath?,

AE = Zpli +me’ +

+_ /dqln [1 —exp(—Ref(q))] +

ey / dqln [1 — exp(~Ref(@))]. (10)
¢ 0

The thermal bath contribution is responsible for wind-
ing corrections and indeed has a thermal origin from the
standpoint of the mirror theory. To distinguish thermal
particles from the real ones, we let the momenta of the
former be denoted by ¢. The index a labels a flavor.
The momenta p; label the state. The case without real
particles naturally corresponds to the vacuum state.
The real particle momenta p and the pseudo-ener-
gies €(q) are determined from solving the TBA set of
integral equations. These consist of two groups of equa-

5) As before, we let the energy be denoted by AFE, as a re-
minder that the full energy F in addition contains the classical
string tension contribution R/(2.

6 ZKOT®, Beim. 3

tions. First, there are generalized quantization condi-

tions for the real momenta

pii R+ Z 26041'04]' (i prj) —

J
7@

x In [1 — exp(—Rel(q ))] =2rN;, (11)

Zplzv q) %

@
>1

pm’R + Z 26a]-ai priaplj) +

00 2a
+z /@débz
0

x In [1 — exp(—Re)(q))] = 27 N;.  (12)

—ippi, q) %

:]

In the absence of interactions, § = 0, these reduce to
the free theory quantization conditions for a set of par-
ticles on a circle. For an interacting theory, the quan-
tization condition is modified for two reasons. First,
pairwise interactions between real particles explain the
appearance of the corresponding phase shifts in (11),
(12) (we explain the origin of this effect in Sec. 3.2 in
detail). Second, there are integral contributions that
account for winding corrections. Imaginary momenta
appearing in (11)—(14) come from performing the dou-
ble Wick rotation to the mirror theory. However, the
crossing symmetry, which in terms of the phase shift
can be written as

5(17!7 )

guarantees that the equations are actually real. We
did not use this to simplify the equations and eliminate
the i, because the crossing symmetry is modified in the
presence of annihilations, which we discuss below.

Finally, the pseudo-energies satisfy the TBA con-
straints

6( plapr) = _6(plapr)a

=q + = Z 25ab me) ﬁ X
i d26a
X /dq' b q, 7) In [1 — exp(—Reﬁ(q'))] , (13)
0
a 1
67’ _q__z25ba qalpll 2 R

X Z/dq'%;q’q’) In[1 —exp(=Rel(q'))] . (14)
b o
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For the GGRT phase shift 204, = C2piipyj, it is
straightforward to solve the full TBA system (11)—(14)
analytically, resulting in (6). We note that in the mas-
sive sinh-Gordon model, the full TBA system takes
the same form [27], strongly suggesting that this form
should be universal for reflectionless scattering. The
full set of TBA equations has a rather intimidating ap-
pearance, but as we just explained, the major compli-
cations come from winding corrections. Dropping them
results in the ABA equations, which are known as the
Liischer formula in the context of lattice calculations,

PiryiR+ Z 20a;a; (Pi(ryis Pryj) = 27N (15)
J

In the massive case, all integral terms are suppressed
as exp(—uR), where p is the mass gap, as is natural to
expect for winding corrections. In our case, the wind-
ing corrections are only power-law suppressed, and we
have to pay more attention to them. However, as we
see in what follows, for the values of R we consider,
the main effect still comes from the asymptotic part
of the Bethe ansatz. We explain the reason for this in
Sec. 3.4.

3.2. Asymptotic Bethe ansatz

In this section, we sketch a simple derivation of the
multichannel generalization of the ABA equations. It
is certainly not new. One of the reasons to present
the ABA derivation here is to stress that the logic un-
derlying this derivation does not directly rely on inte-
grability. In particular, we allow nondiagonal scatter-
ing, and hence the amplitude is no longer reflection-
less. Conceptually, there appears to be no obstruction
to generalizing the ABA to accommodate particle pro-
duction. For example, to account for the 2 < 4 pro-
cesses, we should add matrix elements mixing two- and
four-particle states. In the case at hand, however, these
processes are suppressed at low energies. In what fol-
lows, we therefore neglect these effects and assume that
the 2 — 2 part of the S-matrix S¢¢ is unitary.

We first consider two particles in an infinite volume,
the first one moving to the right and the second mov-
ing to the left. The basis for the in-states is formed by
|pr, @; pr, b) and the wave function of a generic state is
defined as

(1, 22) = (0|6 (1) 8" (22) FIpy, s pry dy,  (16)

where the field operators are taken at equal time, F°¢
denotes the flavor wave function, and we suppressed
the time dependence. Strictly speaking, our discussion
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assumes that the states are taken to be wave packets,
but to keep the formulas short, we do not write this
explicitly. When particles are far apart, they do not in-
teract with each other, the energy of the state is given
by |pi| + |pr], and the wave function is just a product
of two plane waves. Thus, in the region zy < w2, the
wave function consists of two contributions: either the
first particle is found at z; and the second at xs (be-
fore they scattered), or the second particle is found at
1 and the first at z5. In the latter case, the particles
have to scatter before they reach their positions. As a
result, the total wave function in this region takes the
form

(21 < @2) = exp(ipyxy + ipiws) F* +

+ exp(ipizy + ipye) S FL. (17)

The same reasoning applied in the region x; > x, gives

Qp“b(xl > o) = expl(ipxr + iper)Fb“ +

+ exp(iprx1 + ipixs2) gé’FCd. (18)

Now we consider this state in a finite volume and
impose the corresponding periodicity condition. To
achieve this, we consider z; and x5 such that z; <
& x93 € w1 + R. Then the periodicity of the wave
function ¢ (x1,z2) = ¥ (21 + R, x2) requires that

exp(ip,R) S Fed = Fab, (19)

All other periodicity conditions are equivalent because
the total momentum p; + po is quantized in units of
27/ R. Equation (19) has solutions if and only if

det [exp(ip, R)S% — 6265] = 0, (20)

where (ab) as well as (cd) should be treated as a sin-
gle matrix index when the determinant is taken. This
is the multi-channel generalization of the Liischer for-
mula, which imposes a relation between the S-matrix
and the allowed momenta of particles in a finite volume.
If the S-matrix is known, it allows finding the energy
spectra, given by |p;| + |pr|. Conversely, if the spectra
as functions of R are known, we can reconstruct the
S-matrix.

It is straightforward to extend this derivation to
mulitparticle states in integrable theories. In particu-
lar, for reflectionless scattering, we immediately arrive
at (15). As we already said, there appears no fun-
damental obstruction to extending these arguments to
nonintegrable theories, even though obtaining the ex-
plicit equations is likely to be quite challenging due to
inevitable mixing between states with different num-
bers of particles.
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Anticipating a discussion in what follows, we point
out one of the main reasons why the TBA technique dis-
plays better convergence than the conventional ({s/R)
expansion. As follows from ABA equations (15), the
actual momenta p; of interacting phonons are smaller
than the free-theory value 27w N;/R, if the phase shift
0 is an increasing function of the momentum. Given
that the perturbative parameter for the low-energy ex-
pansion is p;{s, accounting for this effect improves the
convergence properties of the expansion.

3.3. Towards a diagrammatic interpretation of
the thermodynamic Bethe ansatz

It is clear from the presented derivation that the
winding corrections are absent in ABA system (20)
because we did not take virtual quanta propagating
around the world into account. For the GGRT theory,
these are accounted for by the “thermal” contributions
in (10) and (11), (12) together with a set of integral
equations (13), (14) for pseudo-energies.

These equations were obtained following the idea pi-
oneered in [17]. The starting point are the ground-state
TBA equations derived in [16]. These are Eqs. (10) and
(13), (14) without any real particle contributions. The
idea in [17] is that the ground-state energy as a function
of a sufficiently large set of external parameters allows
reconstructing the full set of excited states energies by
analytic continuation in the parameters and exploiting
the monodromies the equations and solutions undergo
when circling singularities in the complex plane.

To arrive at the excited-state TBA equations for the
GGRT model, we can for example introduce chemical
potentials :“7(7») for the number of phonons. These are
incorporated by shifting the pseudo-energies

€l(r) = €l T i)

in the thermal integrals in (13) and (14). As a result
of an analytic continuation along a contour in the com-
plex plane of the u, which starts and ends at u = 0,
the integrals may pick up extra contributions from cir-
cling around the branch points of the logarithm. These
give rise to the contributions in (13) and (14) corre-
sponding to real particles. The generalized ABA equa-
tions (11), (12) determine the positions of the singu-
larities. The particle number simply counts how many
times different singularities were circled.
Unfortunately, there is still an ambiguity left in this
prescription concerning the correct direction for cir-
cling around the singularities (the one corresponding
to positive particle numbers N;). This may be fixed by
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requiring that the correct result be reproduced in the
free-theory limit, 5 — 0.

This line of reasoning leads to the correct result for
the excited-state TBA. Nevertheless, it is tempting to
look for a diagrammatic understanding of how the ex-
cited-state TBA arises. In particular, we may hope
to see that it corresponds to a certain resummation of
the conventional perturbative expansion, which would
help to illuminate the origin of the better convergence
of the TBA method. Some insight into this issue was
given in [18, 19] (see [28] for a review and generaliza-
tion to an arbitrary dispersion relation). However, the
proposed diagrammatic method corresponds to an ex-
pansion in winding corrections or exp(—mR) because
massive particles were considered. Since winding cor-
rections in massless theories are only power-law sup-
pressed, this expansion does not provide a good ap-
proximation. This motivates us to seek an alternative
resummation of Feynman diagrams.

At this point, we do not have a complete solution
to this problem, but instead merely report on partial
progress in this direction. First, we recall that even
though our theory is massless and winding corrections
are not suppressed exponentially, numerically they are
nevertheless small for the relevant values of D — 2. We
already mentioned the reason for this at the end of
Sec. 3.1 and illustrate this point numerically below.
This suggests an iterative solution of the TBA equa-
tions, in which we first ignore the integral parts, find
the corresponding € and p, and then solve the integral
equations iteratively.

We note that this expansion is different from the
expansion in the winding number mentioned above.
The latter corresponds, roughly, to expanding the ther-
mal TBA logarithms in a series of exponential terms
exp(—nRe).

To see that the convergence of this method is good
at least for the GGRT theory, we note that to the lea-
ding order, it corresponds to the expansion of the squa-
re-root formula (6) in a formal parameter D — 2, and
that expansion is convergent for any state for the val-
ues of R and D — 2 we consider. For the ground state,
the (D — 2) expansion is equivalent to the {5/ R expan-
sion, but they behave differently for all excited states.
For instance, completely neglecting the (D — 2) contri-
butions results in the following ABA spectrum for the
GGRT theory:

Ey(N,N) =
_, |R?  4m22(N — N)? -
= (7! E+$+4W(N+N). (21)

6*
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e R N

Fig.4. Propagator for a virtual quantum in the pre-
sence of the real left-moving particles indicated by
crosses

This coincides with the spectrum of the classical string.
In the rest of this section, we demonstrate how the first
term of the (D — 2) expansion of spectrum (6) arises in
the diagrammatic language.

We will organize the calculation in the following
way. We start with a set of particles corresponding
to a chosen state, with momenta determined by the
ABA quantization conditions. At this stage, winding
corrections are not yet included, and it is therefore ap-
propriate to think of this state as a “gas” in an infinite
volume, albeit in a very special state in which all par-
ticles have the same momentum. The leading winding
corrections then take the form of conventional bubble
diagrams with the propagator taken to be the one for
fluctuations around this gas.

To illustrate how this works in practice, we first
consider a state on a circle with a single left-moving
phonon. The ABA quantization is equivalent to the
free one in this case, and hence the momentum of the
particles in the gas is p; = 20 N/R. Tt is convenient
to also introduce the parameter oy %’p,/R; physi-
cally, this is the energy density of the gas (in string
units). We consider a probe particle with a momen-
tum ¢, propagating through the gas. To calculate the
dressed propagator for this particle, we need to resum
the diagrams represented in Fig. 4. In terms of the mo-
mentum expansion, we restrict ourselves to the leading
term; only tree-level diagrams are then taken into ac-
count. All one-particle irreducible diagrams containing
more than two gas insertions vanish in this case, and
we thus obtain the propagator exactly to all orders in
oy as a geometric series,

G(q) =

B-7 @G WRE-q
where M is the forward scattering amplitude for the
scattering of the virtual particle off a phonon in the

gas,

+..., (22)

M =203p} (q0 + 11)?,
and the factor of 1/R stands for the number density

of phonons. By calculating the geometric series, we
obtain
i
Glg) = (23)

(g0 + 1) (a0 — a1 + (g0 + ¢1)au]’
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Since left-movers do not interact with each other, the
dispersion relation for a left-moving quantum is not
modified in a purely left-moving gas. On the other
hand, the right-moving probe is slowed down by inter-
actions and its dressed dispersion relation is

].—O/,[

QO=1+al

q1-

We note that for a; > 1, a ‘“right-mover” is carried away
by the gas and actually propagates to the left. It is now
straightforward to construct the quadratic effective ac-
tion reproducing propagator (23),

Seff =

— [

Now, following the logic outlined above, we calcu-
late the energy of the state on a circle as the sum of the
energy of the real left-moving particle, p;, and the win-
ding contribution. In the leading order, the latter is the
ground-state energy of the free theory with action (24).
It can be calculated either using the ground-state TBA
(for the mirror theory) or directly. Proceeding in the
direct way, we calculate the energy as the expectation
value of the Hamiltonian corresponding to (24),

. 1-— o
:'v’a'c’-l-Talac“x“>. (25)

1+ay
2

i“i"-l—%i"m“—%x“x“). (24)

R

/

0

1
doo T

(Hegr) = <

Using the Poisson summation formula, we write the
result as a sum over windings,

<Heff>=2/(;ng2 x

n#0
iR ((1+a)gg + (1 — ar)gi) exp(iqinR) (26)
2(g0 + ¢1)(00 — a1 + (00 + @1)er)
where we drop the zero-winding contribution. Af-

ter performing the Wick rotation for gg, we close the
q1-contour and take the ¢;-integral by residues. The
resulting total energy of the state is

p-2|7
AE =p + o /dq In[1 —exp(—Rq)] +
0

+ /dq (1—a;)In[l —exp(—Rq(1+ ay))]

27N _
R

(D —-2)7R
6(R? 1 27N E2)"

(27)
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Fig.5. AE = E—R/(? for excited states of the GGRT
theory with one and two units of the KK momentum
in orange and red, respectively. The dotted lines show
the prediction of the derivative expansion, the longer
dashes show the prediction of the GGRT theory, and
the shorter darker dashes represent our diagrammatic
approximation. The diagrammatic approximation and
the exact result are virtually indistinguishable (color on-
line [37])

This is exactly the result that follows from the first ite-
ration of solving integral equations (10)—(13) pertur-
batively in winding contributions, or equivalently by
expanding the exact answer (6) in D — 2. Unlike the
ls/R expansion, approximation (27) provides an ex-
tremely accurate estimate for the exact result down to
R ~ (; (see Fig. 5).

Furthermore, just like the exact result, expression
(27) turns into a series with a rather small radius of con-
vergence, when expanded in ¢;/R. The above deriva-
tion sheds light on the physical origin of this behavior
and on the nature of the improvement achieved by the
TBA method. The singularity in (27), which deter-
mines the radius of convergence of the (;/R expan-
sion, corresponds to a; = 1, when both modes become
left-movers. Using the dressed propagator in our calcu-
lation allows avoiding spurious singularities associated
with this effect.

The same reasoning can be applied to all states that
contain only left-moving excitations. In principle, there

is no obstacle to extend the same logic to the states
containing both left- and right-moving phonons. One
modification in this case is that the momenta p; and
pr of the particles in the gas are not given by the free
quantization condition anymore, but are solutions of
Liischer equation (15). The difficulty now, however, is
how to obtain the result in all orders in the particle
energy densities a;(,) = égpl(,,)/R. The reason is that
left- and right-moving particles now interact with each
other, and hence there are nonvanishing one-particle
irreducible diagrams with more than four outgoing legs
contributing to the dressed propagator. It may be pos-
sible to sum all these diagrams for the NG action at
least at the tree level, but we leave this for future work.
Instead, we present the perturbative result in the «, ac-
counting only for the four-particle interactions, as be-
fore. This leads to the following dressed propagator for
a probe particle:

—i
@ -G+ (@ +a)u+ (@ —aG)R

Glg) = (28)
As expected, the dispersion relation for both left- and
right-movers is modified in this case. A calculation si-
milar to the one we did for the purely left-moving state
results in the following expression for the energy at the
leading order in the a:

m(l—a;—ap)

AE =p +pr — (D —-2) R

(20)
As illustrated in Fig. 6, this leads to a significant im-
provement compared with the naive ¢;/R expansion,
but still is not accurate at small radii, where the energy
densities ay(,) become large and multiparticle interac-
tions must be included.

We feel the above perturbative examples serve well
the purpose of illustrating the physics underlying the
TBA method. It is an interesting open question
whether they can be pushed to higher orders. We have
mentioned that already at the tree level, we must learn
how to resum an infinite number of tree-level diagrams.
But we may also try to be more ambitious and push the
matching calculation resulting in effective action (24) to
higher orders. It would be interesting to study whether
this method allows reproducing the full TBA system in
the (D — 2) expansion, or whether new physical ingre-
dients are required.

3.4. UV insensitivity of winding corrections

It is apparent from the above discussions that win-
ding corrections are more subtle and harder to account
for than the ABA part of the finite-volume spectrum.
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Fig.6. AFE = E—R/(? for excited states of the GGRT

theory with one left- and one right-moving phonon,

each with one unit of the KK momentum. The dotted

lines show the prediction of the derivative expansion,

the longer dashes show the prediction of the GGRT

theory, and the shorter darker dashes represent our di-
agrammatic approximation

In particular, if one is interested in a specific state with
a fixed number of particles, solving the ABA requires
diagonalizing the S-matrix only in that sector. On
the other hand, accounting for winding corrections al-
ways involves a complete diagonalization of the S-mat-
rix for an arbitrary number of particles. Below, when
discussing the resonance contribution in Sec. 4.3, we
find ourselves in the situation where the ABA part is
straightforward to write and solve. At the same time,
a complete diagonalization of the S-matrix is currently
unavailable, and the winding corrections cannot be ac-
counted for.

In a situation like this in massive theories, it is a
common practice to neglect the winding corrections,
given that these are now exponentially suppressed. In
Sec. 4.3, we follow a similar strategy and use a lower-
order approximation for the phase shift in the wind-
ing part of the TBA than in the ABA part. Heuristi-
cally, this may be justified by noting that the problem
arises due to the massive resonant contribution, and
the same justification as in the massive case applies. In
fact, there is a general reason for winding corrections
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Fig.7. The integrand appearing in the winding correc-
tions as a function of momentum. The blue line repre-
sents the integrand for the ground state. The red line
shows the integrand for left-moving pseudo-particles in
the presence of a right-moving excitation with one unit
of the KK momentum or wice versa. The radius of the
circle is taken to be R = 1.5(s, smaller than the radii
we are typicall interested in. Nevertheless, the integral is
dominated by soft pseudo-particles and is rather insensi-
tive to the UV behavior of the scattering amplitude (color
online [37])

to be less sensitive to the UV physics than the asymp-
totic part. The integrals over the thermal bath in the
full TBA system are exponentially cut off for momenta
above ¢ ~ 1/R, which is smaller than the characteristic
momenta of real particles. In the free-theory approxi-
mation, the latter are of the order 27 /R. We illustrate
this point for the GGRT theory in Fig. 7. We see that
even for a very short compactification radius, the wind-
ing integral is dominated by rather soft momenta and,
as a consequence, is not very sensitive to higher-order
corrections to the amplitude.

4. ENERGY LEVELS OF FLUX TUBES

We are now in a good position to move on to the
main topic of the paper and to apply the TBA tech-
nique to the calculation of the flux tube spectra. The
first step is to calculate the worldsheet, S-matrix pertur-
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batively in the pl; expansion. As explained in Sec. 2,
the phonon scattering on the worldsheet of a flux tube
is universal up to (4. The corresponding amplitudes
were calculated in [15]. At this order, there is no par-
ticle production, and hence the S-matrix is integrable
and completely determined by the two-particle elastic
amplitudes. To describe these last, it is convenient
to characterize two-particle states according to their
quantum numbers under the unbroken group O(2) of
rotations in the transverse plane. We find one scalar
|s), one pseudoscalar |p), and two components |¢,+)
of the symmetric tensor O(2) representations. Intro-
ducing creation operators for states of definite helicity,
i.e., eigenstates of the continuous SO(2) rotations in
the transverse (X2, X3) plane,

to_ .t

Uryr = Qyry2 T 103 (30)
we write the corresponding states in the form

) = (af,al_ +al_al,)|0),

) = (af ,al_ —af_al}))0), (31)

It,+) = al _al,|0).

The two-particle S-matrix is diagonal in basis (31) and
in the order ¢ reduces to the elastic scattering phases
in each of the channels, which are equal to

Ss(p) = daarT + Ops + O(L5), (32)

8t = daarr — 6ps + O((8), (33)

where dggrr is the GGRT phase shift (7) and dgarr
is the PS phase shift given by

6—D

2
2Wpg =
Ps 241

E;l (plpr)2 )

(34)

where we restored the dependence on the dimension D
of the target space-time®) . The appearance of the criti-
cal string dimension D, = 26 in the PS phase shift (34)
indicates that it introduces qualitatively new effects as
compared to the leading GGRT phase shift. Indeed,
it can be shown that the PS phase shift is responsible
for the eventual breaking of integrability on the world-
sheet of a noncritical string at a higher order in the £
expansion.

At the order ¢4, which we are working in, the theo-
ry is still integrable, but is not reflectionless anymore.
The PS shift removes the degeneracy between phase

6) Of course, for D # 4, expressions (31) should be modified,
and the pseudoscalar representation turns into an antisymmetric
tensor.
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shifts in different channels; the phase shift in the ten-
sor channel is different from the one in the scalar and
pseudoscalar channels. As a consequence, annihilation
transitions like azr2a12|0) — a;f3a:[3|0) are possible at
this order.

As a result, in general, one expects that the re-
flectionless TBA described in Sec. 3 can no longer be
applied. For general D, this is indeed the case. But
the case D = 4, where the string has only two trans-
verse directions, is special. Switching to the helicity
basis (30) allows diagonalizing the S-matrix for an ar-
bitrary number of particles. Hence, for two flavors, we
can still apply the full reflectionless excited TBA sys-
tem described in Sec. 3. The only modification is that
the TBA particles have to be labeled by their helicities
rather than by O(2) flavors. The corresponding phase
shifts are given by

6++ - 677 - 6t,

(35)
(S+_ == (5_+ = (Ss(p).

Before concluding the section, we briefly comment
on the D = 3 case because we discuss the D = 3 lat-
tice data in what follows. In that case, we find a single
two-particle state with zero total momentum. The PS
amplitude in this case vanishes for kinematic reasons,
and the worldsheet S-matrix agrees with the GGRT
S-matrix at the order (2.

We now apply the TBA approach to various states
(and theories).

4.1. Ground-state energy

As discussed in Sec. 2, the ground state is the only
state for which the conventional {s/R expansion is ad-
equate for explaining the data. The vacuum matrix
element of the PS operator in (9) vanishes. Hence, the
ground-state energy deviates from that in the GGRT
model only at the order (/;/R)7. As shown in Fig. 1,
the sum of the universal terms agrees very well with
the lattice data. We find equally good agreement by
applying the TBA method. Using the leading ¢2-or-
der expression for the phase shift (i.e., the GGRT
phase shift), the solution of the TBA equations with
N = N = 0 reproduces the GGRT vacuum energy
(see [22] for details). Figure 1 shows that the two re-
sults are undistinguishable at the currently available
level of precision of the lattice data.

Including the PS phase shift does not change the
answer, in agreement with the result from the ¢;/R ex-
pansion. Indeed, in this case, all TBA particles are
characterized by a single pseudo-energy €(q), which is
obtained by solving a single TBA constraint that takes
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the form (cf. with the general form of the TBA con-
straints in (13), (14)),

1 , (d25 .q
€(q)=Q+m dgq <$+
d264_(q,q" ,
+ 7+dng 4 )) In[1 —exp(—Re(q"))]. (36)

The PS contribution cancels in the sum of the phase
shifts, and we obtain exactly the same pseudo-energy
as in the GGRT theory, and correspondingly the same
result for the vacuum energy.

4.2. Purely left(right)-moving states

We turn to states that contain only left- (or right-)
moving real phonons, i.e., N = 0 and arbitrary N.
This is the simplest class of states for which the stan-
dard (5/R expansion breaks down even for relatively
long strings, as can be seen in Fig. 2. Fortunately,
these states are still simple from the point of view of
the TBA. The ABA is especially simple because there
are no interactions between left-movers. Accounting for
windings by keeping the leading GGRT part of the scat-
tering amplitude, we obtain the GGRT expression as
an approximation for the energies of these states. As
we already discussed, this approximation works very
well.

To find the result for the amplitude to the order
(% given in Eq. (35), we have to solve the TBA con-
straints (13) and (14) for four different pseudo-energies,
eli and e*. As a consequence, different from the ground
state, the energies acquire a dependence on the PS
phase shift (even though the PS operator has zero mat-
rix elements for these states, and hence there is no
(¢s/R)5-correction in the standard perturbative expan-
sion). The TBA equations together with the explicit
expressions for the phase shifts (35) imply that pseudo-
energies are now complex and have the form

+

€I(r) (37)

(9) = ama £ idira’

with real ¢,y and dy(,y.

The resulting set of equations for the coefficients
c and d is straightforward to solve numerically. The
result is presented in Fig. 8. The figure shows both
the result in which the windings are evaluated for the
phase shift at the order ¢2 as discussed here and for the
GGRT phase. In accordance with our earlier discussion
about the UV insensitivity of the winding corrections,
the effect of the PS phase is very small (< 0.5 %).

The GGRT winding corrections are in fact also
small. This can be seen in Fig. 8, which also shows
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R/

Fig.8. AE = E — R/(? as a function of the length
of the flux tube for the states with left-movers with
one and two units of the KK momentum in orange
and red, respectively. The data is taken from [5]. The
solid lines show the theoretical predictions derived from
Eqgs. (41)—(43) with the PS interaction taken into ac-
count to all orders. The darker dashed lines show the
result in which only the GGRT phase is included. The
dot-dashed line shows the ABA or in this case equiva-
lently the free-theory result (color online [37])

the ABA result, or equivalently the free-theory answer,
for the energies. The physics of these states is very
simple. To a very good approximation, they are just
collections of free phonons.

4.3. States with a left- and a right-mover and a
new massive state

We now consider the states with one left- and one
right-moving particle, each carrying one unit of mo-
mentum, i.e., N = N = 1. These are the lowest-energy
states for which the ABA is nontrivial and we finally
can see all ingredients of the TBA method at work.
Figure 3 shows that for these states, the naive deriva-
tive expansion does not provide a good approximation
for strings with lengths accessible on the lattice.

Ag before, keeping the GGRT part of the phase shift
in the TBA system results in the GGRT expression for
the energies. From Fig. 3, we find that it provides a



MWITD, Tom 147, BBm. 3, 2015

Flux tube spectra from approximate integrability . ..

AE¢,
4.0 T T T T T T

3.5

1

3.0

2.5

2.0

1.5 .
1.0 1 1 1 | | 1
2 3 4 5 6 7 8
R/,
Fig.9. AE = E — R/(? as a function of the length

of the flux tube for the lowest-lying states containing
both left- and right-movers. The respective parity-even
and parity-odd states with spin 0 are shown in blue
and red. The states with spin 2 are shown in green.
The data is taken from [5]. The red, blue, and lighter
green lines show the theoretical predictions derived
from Eqs. (41)—(43) with the PS interaction included
to all orders. The darker green dashed line shows the
result when both the GGRT and PS phases are taken
into account in the ABA, but only the GGRT phase is
taken into account for winding corrections. The two
are virtually indistinguishable, once again showing the
UV insensitivity of the winding corrections. The dashed
gray line shows the result for the GGRT theory (color
online [37])

reasonable approximation for the scalar and tensor le-
vels, but not for the pseudoscalar. We now include the
PS phase shift. Similarly to purely left-moving states,
we are after four complex pseudo-energies, eli and €F.
They are again of the quadratic form (37) and satisfy
the same reality conditions. Since our states satisfy
P = pr, the TBA system imposes the additional re-
lation €(q) = € (g) for the scalar and pseudoscalar
state and eli(q) = ef(q) for the tensor states. The re-
sulting equations for ¢ and d are again readily solved
numerically. The results are shown in Fig. 9. The con-
vergence of the TBA result is significantly better than
that of the ¢;/R-expansion. For the scalar and tensor
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levels, we also find significantly improved agreement
with the lattice data. This is noteworthy especially be-
cause so far we have not introduced any free parameter
in our analysis in addition to ¢, which is fixed from
the ground-state data, just like in the ¢;/R expansion.
The curves presented in Fig. 9 are therefore the results
of a calculation from first principles.

The improvements in the convergence of the per-
turbative expansion are more prominent for the scalar
state than for the tensor states. The reason for this
is that in the TBA method, the perturbative approxi-
mation enters in the calculation of the scattering am-
plitudes. How good the perturbative expansion is, is
controlled by how soft the phonon momenta pl; are
that comprise the states. These momenta are deter-
mined from solving the TBA system and take different
values in the different channels for the same value of
R. The PS correction in the (pseudo)scalar channels
adds to the tree-level phase shift. In the tensor chan-
nel, it has the opposite sign, and hence the phase shift
grows more slowly. In agreement with the discussion
at the end of Sec. 3.2, the phonon momenta are then
softer in the (pseudo)scalar sectors, and therefore the
perturbative expansion behaves better.

To demonstrate this effect, the theoretical curves on
the plot are terminated when the momenta of the par-
ticles become large enough such that the one-loop con-
tribution to the phase shift dpg becomes equal to the
tree-level one dggrr- This happens when p &~ 1.8(;.

Even though the PS contribution to the phase shift
affects these states significantly, its effect on the win-
ding corrections is still negligible because the winding
corrections are UV insensitive, as shown above. To il-
lustrate this explicitly for these states, we also solved
the TBA system by including the PS phase shift in
the asymptotic Bethe ansatz but neglecting it in all
winding contributions (i.e., in TBA constraints (13)
and (14) and in the integral terms in momenta quanti-
zation conditions (11) and (12)). The result is shown
in Fig. 9 together with the exact treatment. The dif-
ference is again less than 0.5 %.

The improved theoretical control makes it manifest
that the anomalous behavior of the pseudoscalar level
is a genuinely new physical effect and is unrelated to
the bad convergence of the expansion. At this order,
the scalar and pseudoscalar states, for which the ex-
pansion is well-behaved, are predicted to be degenera-
te. But the observed splitting between the scalar and
pseudoscalar states is larger than the splitting (both
predicted and observed) between the scalar and tensor
states even for relatively long strings. It is then im-
plausible to expect that this discrepancy would disap-
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pear when higher-order contributions to the worldsheet
S-matrix are included.

This strongly suggests that to explain the anoma-
lous behavior of the pseudoscalar level, we need to re-
consider the basic assumptions underlying our calcu-
lation and add a qualitatively new input. An impor-
tant hint suggesting the missing ingredient comes from
observing that the energy of the pseudoscalar level is
practically independent of the length of a flux tube.
This suggests that we are observing a light massive
excitation on the worldsheet of a flux tube — a new
particle. A similar explanation for the energy of the
pseudoscalar level was suggested earlier in [5].

It is straightforward to incorporate such a state into
our effective string theory framework. The minimal
possibility is to introduce a new massive pseudoscalar
field ¢ on the flux tube worldsheet. At the leading order
in the derivative expansion, interactions of such a field
with the Goldstones are described by the Lagrangian

1 1
Ly = _5(3@2 - §m2¢2 -
- %¢eijea68a37Xi3587Xj .., (38)

where dots stand for terms that are of higher orders
in fields and derivatives. In particular, these include
model-independent quartic ¢p¢X X couplings origina-
ting from the covariant completion of the kinetic and
mass term for ¢.

The presence of four-derivative terms in the leading
pseudoscalar ¢ X X coupling in (38) is dictated by non-
linearly realized Lorentz invariance. It requires that
every term in the action corresponds to the expansion
of some geometric invariant (see, e.g., [29] for a recent
discussion). The invariant that corresponds to the in-
teraction term in (38) is rather special and deserves
some attention. It originates from

o
v= 0K, K Teley;, (39)
where I&fm is the extrinsic curvature of the worldsheet.

Thus, ¢ is coupled to the topological invariant known
as the self-intersection number of the string worldsheet.
The existence of this worldsheet #-term for a string
in a four-dimensional target-space was pointed out by
Polyakov [30], and it was suggested that it should be
generated on the flux tube worldsheet in the presence of
the bulk #-term [31]. Given this coupling, it is natural
to refer to the field ¢ as the worldsheet axion.

This axion is not a stable particle, and it should
not therefore be added to the set of asymptotic states
in the TBA system. However, it does contribute to the

scattering of Goldstones. In particular, it appears as
a resonance in the pseudoscalar channel, where its ef-
fect is most pronounced. A diagrammatic calculation
using action (38) to the leading order in a gives the
contribution to the two-particle phase shift,

(J42€4p6
20,05(p) = 0 ——— S
(0) = 82 (4p? + m?) +
2€4 6
S a——T)
8m2(m? — 4p?)

with o7 = (=1,1,1), o2 = (0,0,1) for the respective
scalar, symmetric, and pseudoscalar channels. The
oa-term represents the resonant s-channel contribution,
while the o;-term arises from the ¢- and u-channels.
Accounting for the pseudoscalar resonance in the
winding contributions is problematic because switching
to the helicity field basis (30) no longer diagonalizes the
full S-matrix. Already in the two-particle sector, phase
shifts (40) now take different values in the scalar and
pseudoscalar channels (which is, of course, the reason
we introduced the resonance in the first place). As
a consequence, we can no longer include the PS con-
tribution into winding corrections. However, we have
already seen that the winding corrections are not UV
sensitive and that the error introduced by not inclu-
ding the PS contribution into the winding corrections
is negligible (< 0.5%). From now on, we therefore ac-
count for the full phase shifts only in the ABA part
of the generalized momentum quantization conditions
(11) and (12) and everywhere else keep only the GGRT
contribution. This significantly simplifies the TBA sys-
tem. The pseudo-energies become real, independent of
the flavor of the particles, and linear in the momenta,

+ 205 tan! (

ell(r) (9) = €l2(r) (q) = cq.

This converts the TBA equations into the simple sys-
tem of algebraic equations

p@ _ ﬂ-(D — 2)£2 (41)

—1
=1t TR T e v

m(D—-2) ,
2 ————(lp=2nN 42
PR +20(p) = —om—Llep = 21N, (42)
where N = 1, and the expression for the energy is
m(D —2)
AE =2p— ——=. 43
P T (43)

Depending on the state, the phase shift in Eq. (42) is
given by the sum of one of (32), (33) and of (40).

The axion introduces two free parameters, the mass
m and the coupling « (or, equivalently, the width). We
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Fig.10. AE = E — R/(? as a function of the length
of the flux tube for the lowest-lying states containing
both left- and right-movers. The data is again taken
from [5] and the coloring is as in Fig. 9. The red,
blue, and green lines show the theoretical predictions
derived from Eqs. (41)—(43) with the GGRT, PS, and
resonance contributions to the phase shift included in
the ABA, but with winding corrections only taken into
account for the GGRT contribution. Lines are shown
as dashed where the PS contribution becomes larger
than the GGRT contribution (color online [37])

determine them by fitting the model to the data and
find

0.02
0.03»

ml, = 1.85% al;?=9.6+0.1. (44)
In physical units, this corresponds to approximately
750 MeV, which is about a half of the mass of the
lightest glueball. It should be kept in mind that the
presented error bars reflect the statistical uncertainty
only. We estimate the systematic errors to be compa-
rable. The results are presented in Fig. 10. The lines
on the plot become dashed where dpg becomes equal
to dng- We see that including the axion not only pro-
vided a very good fit for the pseudoscalar state but also
significantly improved the fit in other channels thanks
to the oj-term in (40). We note that changing the
sign of this correction by varying the parameters is not

possible, and is therefore rather nontrivial. The best
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fit values correspond to a relatively narrow resonance
with a width equal to

T =0.39/(, = 0.21m.

4.4. Determination of phase shifts from the
data and excited levels

Another advantage of the method developed in this
paper is that it allows us to present the data in a
new way. Similarly to the standard procedure used
to extract scattering amplitudes from lattice calcula-
tions [19], we can use the system of equations (41)—(43)
to solve for p and § given AE(R). The only differen-
ce is that we include winding corrections because our
phonons are massless. This alternative way of presen-
ting data allows us to directly visualize the presence
of a resonance and the extent to which the resonance
improves the fit in the scalar and tensor channels. In
addition, it has the advantage that we can combine
different excited states in the same plot because they
probe the same underlying scattering amplitudes. As
an example, we consider the phase shift for the states
with one left- and one right-mover as a function of the
center-of-mass energy extracted from the data for the
energy levels. In this case, the solution can be written
in a relatively compact form

AE

™
Pr=Pr = Y AR 1 2R) (45)
AER 1w 3AE2 4 2102 — 12R?
W= - = Y 3 T (AB® 4 2R) (46)

The resulting phase shift as a function of momen-
tum extracted from the data is shown in Fig. 11 along
with the theoretical predictions for scattering phase
shifts in various channels. We also included the data for
the next excited pseudoscalar level in the lower panel.
The theoretical prediction and the data still agree for
the excited state at low momenta, but the agreement
becomes noticeably worse as the momentum increases.
Nevertheless, we clearly see the characteristic resonance
shape with a mass m & (1.8-1.9)¢;'. The middle and
upper panels of the same figure show the scalar and
tensor channels, and it is clear that there is no sign of
a resonance in these channels. The dashed curves rep-
resent the theory prediction in the absence of the re-
sonance and only depend on one parameter, the string
width ¢5. The lower panel clearly shows that a new
massive pseudoscalar particle has to be introduced to
explain the data.
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Fig.11. The scattering phase shift ¢ for two Goldstone

bosons as a function of the center-of-mass momentum

in the symmetric traceless, scalar, and antisymmetric

channel in the respective top, middle, and bottom pan-

els. The solid and the long dashed lines respectively

show the theoretical prediction with and without the
worldsheet axion

Of course, introducing a new massive pseudoscalar
state leads to additional predictions. As already men-
tioned, it also affects the scalar and tensor states and
improves the agreement between theory and lattice
data for them. In addition, we should be able to give
momentum to this particle so as to make definite pre-
dictions for excited states with a nonzero total mo-
mentum, for which data is also available. If we ex-
tract phase shifts from the data for excited states with
one left- and one right-mover with unequal momenta,
we expect to find a resonance there as well. We show
the result for the state in which the left-mover has one
and the right-mover has two units of the KK momen-
tum in Fig. 12, together with the theoretical prediction
and the data for the state with zero total momentum,
which we discussed above. Similarly, predictions can be
made for the scalar and tensor states with a nonzero
total momentum. The states with one unit of the total
momentum for scalars and tensors are also shown in
Fig. 12. The phase shifts extracted from the different
excited states agree relatively well, almost within the
statistical errors of the lattice calculations. In particu-
lar, we do see the resonance not only in the state with

2.0 2.5
pt

Fig.12. The scattering phase shift ¢ for two Goldstone
bosons as a function of the center-of-mass momentum
in the symmetric traceless, scalar, and antisymmetric
channel in the respective top, middle, and bottom pan-
els. The darker points show the lowest-lying states with
zero total momentum, the crosses show the first excited
pseudoscalar state, and the squares show the lowest-
lying states with one unit of total momentum. The
lines show the theoretical prediction

the total momentum zero but also in the state with a
nonzero momentum. The small discrepancy between
the two can be attributed to two effects. We did not
include the finite-size corrections due to the resonance
itself into our calculation. An estimate shows that this
affects the data points corresponding to the shortest
lengths more strongly (as one would expect), and brings
the phase shifts from the state with the total momen-
tum zero and unity into slightly better agreement. The
remaining difference seems to be due to discretization
effects in the lattice calculations themselves, which are
also responsible for the splitting between the two tensor
states.

4.5. D = 3 Yang—Mills

These techniques can, of course, be also applied to
the existing lattice data in D = 3 dimensions. In this
case, we have a single channel for two-particle scatte-
ring. The nonlinearly realized Lorentz invariance im-
plies that the phase shift takes the form
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26 = 20qarr + O((3s?). (47)

The corrections here are nonuniversal. In particular, as
already mentioned, the GGRT phase shift itself is com-
patible with nonlinearly realized Lorentz symmetry for
D =3.

In this section, we compare the data from [6], which
is for the gauge group SU(6) with 8 = 171 and the Wil-
son loop in the fundamental representation, with the
GGRT prediction. The result for the five lowest-lying
states with an even number of phonons and zero total
momentum is shown in Fig. 13. We see that all states
are in qualitative agreement with the GGRT phase shift
and see no evidence for new light massive states. How-
ever, there are small quantitative differences between
the GGRT prediction and the data. The energies of the
states shown in yellow and orange correspond to states
with two and four phonons and are predicted to be de-
generate. However, they appear to be split in the data.
Furthermore, the measured energies are systematically
below the GGRT prediction. This suggests that the
binding energy between the phonons is larger in the
SU(6) gauge theory than in the GGRT theory, which
implies a phase shift that grows more rapidly, consis-
tently with what is seen in the right panel of Fig. 13. It
is then natural to introduce corrections into the phase
shift

20 = 20Ggarr + 73(8s°, (48)

and determine this leading correction from the data
using the TBA, taking only the GGRT phase shift in
the windings into account, as before. Such a correc-
tion to the phase shift would follow from higher-order
geometric invariants in the Goldstone theory such as
R? in the action, and we can trust our procedure pro-
vided the coefficient is small enough, such that this is
in fact a correction for the range of momenta of inte-
rest. Based on loop counting, we expect the coefficient
to be of the order 1/(27)2, which should roughly be
reliable for pls < V27, including all data points of the
first excited state for both two- and four-particle states,
but only some of the second excited two-particle state.
We extract 3 from the first excited two-particle state
using the TBA equations (41)—(43) as well as the first
excited four-particle state using the relations

p[;’ m(D —2) 2
=142 - —= 4
=TSR T TR ® (49)
(D —2) 5,
PR+ 44(p) 3Re Cp=2nN (50)

with N =1, and

aAT7

m(D -2

Including all data points with pls; < 2 and taking the
error bars at face value, we find

_0.7+0.1

V3 = (271')2 )

(51)

(52)

nonzero at approximately 7o. This correction increases
the binding energies and thus lowers the energies of
the theory prediction. It also introduces a splitting
between two-particle states and four-particle states, in
agreement with the data simply because the phonons
comprising the two-particle states carry larger mo-
menta and are more strongly bound than the phonons
making up the four-particle states.

Ignoring the contributions to the winding correc-
tions from corrections to the GGRT phase shift has so
far worked well. There is a subtlety, however. The
positive coefficient 3 implies a correction to the pseu-
do-energies with a negative coefficient. As a conse-
quence, the integrals in the TBA equations are no
longer convergent. These divergences are not surprising
and arise because higher-derivative theories typically
come with ghosts around the cut-off scale. The per-
turbative calculation presented in Sec. 3.3 shows that
this happens for positive 73. We know, of course, that
the full theory does not have ghosts and that there are
higher-order terms that cure the divergences. Intro-
ducing such higher-order terms by hand seems unsatis-
factory because it would introduce additional arbitrary
coefficients. It seems more appealing to interptret the
(%5 correction as arising from a heavy resonance that
has been integrated out, which suggests the phase shift

s —2iMT + M?

s+ 2MT+ 2~
s — 2%MT — M2

exp(2id) = exp(2il2p;py)

X aam e 0%
where
i 39T
A i — 4
s =% T MM +ar2)’ (54)

whence the correct phase shift is recovered for s < M?2.
This amplitude (53) is not consistent with the nonline-
arly realized symmetries and should for now be simply
thought of as a fitting function that has the desirable
property that the integrals in the TBA remain finite
and corrections to windings relative to those in the
GGRT theory remain small. Fitting to the data, we
find

M =3.7/t, and T =1.0/¢,. (55)
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Fig.13. The energy and scattering phase shift § for the lowest-lying parity-even states with zero total momentum. The
lines show the theoretical prediction of the GGRT theory (color online [37])

Upon expansion in s, this leads to a value of 73 in
good agreement with Eq. (52), and hence the phase
shift is approximated well by our fitting function below
the resonance. Above the resonance, it does not have
the correct behavior compatible with the nonlinearly
realized Lorentz invariance and should therefore not be
trusted for plg > 1.85.

The resulting predictions for the energy levels of the
states involved in the fit are shown in Fig. 14, and we
see that the modified phase shift correctly reproduces
the larger binding energies and the splitting between
two- and four-particle states seen in the data. The
momenta for some of the data points for the second
excited two-particle state as well as the data points for
the third excited two-particle state are so large that our
approximations become unreliable. The ground state,
however, is rather insensitive to the UV behavior of the
phase shift, and it is interesting to compute the correc-
tion to the ground-state energy that corresponds to our
correction to the phase shift. We do this by solving the
TBA numerically by iterations. The result is shown
in Fig. 15. The left panel shows that the ground-state
data is in good agreement with our prediction. The
right panel shows that the leading correction to the
GGRT ground state energy is well described by an R~
term down to R > 1.5¢; and becomes as steep as R™!!
for the shortest strings studied in [6].
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2 3 4 5 6
R/,

Fig.14. The energies of the states included in the fit
for the correction to the scattering phase shift at the
order (8. The lines show the theoretical prediction. For
the second excited two-particle state, only data for six
longest strings is included in the fit because the phonon

momenta become too large
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Fig.15. The left panel shows the ground-state energy predicted from the fit of the phase shift to the excited states relative
to the GGRT prediction. The right panel shows a log-log plot illustrating that the correction for R > 1.5(, behaves as R~
and becomes as steep as R™'" for smaller R
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Fig.16. The energies of the ground states for k-strings with & = 2 (left) and k& = 3 (right). For k = 2, the data for the

antisymmetric and symmetric representations of SU(6) are shown in green and yellow. For k& = 3, we show the data for

the antisymmetric, mixed, and symmetric representations in orange, red, and purple. The solid lines represent the GGRT

prediction with the tension derived from a fit to the data as before. The dashed lines show the energy for the state with the
same charge under the center group consisting of noninteracting fundamental strings (color online [37])

4.6, k-strings in D = 3 Yang—Mills sented for bound states of such strings with £ = 2 and

k = 3 units of charge under the center symmetry [7].

In addition to the data for Wilson loops in the fun- The left panel of Fig. 16 shows the data for the ground
damental representation presented in [6], nice data for states with & = 2 in the antisymmetric and symmet-
SU(6) gauge group at § = 171 has recently been pre- ric representation together with the GGRT prediction.
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Fig.17. The left panel shows the energy as a function of the string length for the lowest-lying excited states for the anti-

symmetric representation with & = 3 with an even number of phonons and zero total momentum. The solid lines are the

theory predictions for the 2-particle states, dashed lines represent 4-particle states. The right panel shows the phase shift
extracted from the data (color online [37])
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Fig.18. The left panel shows the energy as a function of the string length for the lowest-lying excited states for the anti-

symmetric representation with & = 2 with an even number of phonons and zero total momentum. The solid lines are the

theory predictions for the 2-particle states, the dashed lines represent 4-particle states. The right panel shows the phase
shift extracted from the data (color online [37])

The right panel of Fig. 16 shows the ground-state data
for the antisymmetric, mixed, and symmetric represen-
tations with & = 3. Higher representations are related
to these by charge conjugation. For comparison, we
also show the energies corresponding to two and three
noninteracting fundamental strings as dashed lines. An
analytic calculation of the tension of these objects that
is in remarkable agreement with the numerical data can
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be found in [32]. The antisymmetric representations
are bound for both k¥ = 2 and &k = 3. The symmetric
representations are unbound for both & = 2 and k =
= 3, while the mixed representation for £k = 3 is at
best marginally bound. This motivates us to study the
antisymmetric representations in more detail and leave
the others for a future study. To illustrate that our
methods also work for k-strings, we show the energy
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levels and phase shift for the states with equal num-
bers of left- and right-movers and zero total momentum
in Figs. 17 and 18, extracting phase shifts for 2- and
4-particle states using Eqs. (41)—(43) and (49)-(51).
The data shows clear evidence for a resonance and the
theory predictions are obtained with the resonance with

m =1.88/0>4 and T = 0.29/024, (56)

m =1.74/03* and T = 0.16/¢34, (57)

where the superscript denotes the representation of the
string. It was perhaps natural to expect the presence
of resonances for k-strings, given that these can be
thought of as bound states of two fundamental flux
tubes. It is intriguing that the values for the mass and
the width are close when measured in the correspond-
ing string units (and close to the mass and width of the
worldsheet axion in 4D).

These states nicely illustrate that the energy plots
can be rather complex because of level crossing even
with a very simple phase shift. The solid lines rep-
resent the theory predictions for 2-particle states, the
dashed lines those for 4-particle states. We clearly see
avoided level crossing for the 2-particle states as well
as between the 4-particle states. However, the 2- and
4-particle states, shown in red and purple, cross. In the
integrable theory, these states have different quantum
numbers and do not mix. In QCD, the integrability is
not exact and a certain amount of mixing between 2-
and 4-particle states is expected, which would lead to
avoided level crossing.

The theory predictions also show that the extrac-
tion of these energy levels is very subtle because several
energy levels have comparable energies and the corre-
lation function may not be dominated by a single ex-
ponential. Also, the phase shift extraction from the en-
ergy levels in the region of level crossing is not comp-
letely straightforward due to ambiguities of quantum
number assignments. The identification of two- and
four-particle states employed here appears to produce
the most meaningful results on the phase shift plot,
but we cannot exclude at the moment that some of the
data points might have been misidentified, especially
for k = 2 strings. This motivates further high-precision
lattice measurements of these states. Hopefully, tech-
niques presented here might be helpful in guiding these
measurements.

We note an interesting feature exhibited by the k =
= 2 data: a very pronounced break in the resonance
plateau on the energy plot for the lowest (orange) level
at R/(?* < 3. The corresponding points also show

7 KIOT®, Bein. 3

up very far from the theory curve on the corresponding
phase shift plot. The natural explanation for the origin
of this break is that it occurs when the physical size of
the compact dimension becomes comparable to the size
of the massive resonant state. Qur phase shift extrac-
tion becomes unreliable at these short radii, because
the winding corrections due to the resonance become
large. This interpretation is supported by observing
that a very similar break at the same values of R also
appears in the lightest glueball energy plot [7], sugges-
ting that the size of the resonance is roughly equal to
the size of the lightest glueball.

The k£ = 3 data does not exhibit such a break. Per-
haps only the shortest point in Fig. 17 (with R/(34 ~
/2 2) can be considered an indication for the beginning
of the break. This is in agreement with the £ = 3
string being much more strongly bound than the k = 2
strings. The k£ = 3 tension is equal to 34 ~ 0.6 - 307,
while the £ = 2 tension is 024 = 0.8 - 204, where oy is
the fundamental flux tube tension.

5. FUTURE DIRECTIONS AND
CONCLUSIONS

We feel that the most important conclusion to be
drawn from this paper is that there is strong motivation
for further high-precision lattice studies of the proper-
ties of flux tubes. The TBA method provides a solid an-
alytic framework for theoretical interpretation of lattice
results for the flux tube lengths that are accessible with
the existing computer power. This opens the possibility
for a comprehensive description of the worldsheet dy-
namics of the confining strings in the near future, which
might be an important step towards understanding the
physics of confinement.

The results presented here pose a number of int-
riguing questions, which may be answered with a new
data. Many of them concern the nature of the observed
pseudoscalar resonance in the D = 4 data. In particu-
lar, the phase shift plots in Figs. 11 and 12 show a
systematic disagreement between the theory curve and
the data at the momenta above the resonance in the
pseudoscalar channel. By itself, this disagreement is
not very dramatic, given that the corresponding mo-
menta are already quite large. But an intriguing pro-
perty of the observed phase shift in the pseudoscalar
channel is a pronounced plateau at § ~ m, which cor-
responds to the absence of scattering. Together with
a systematically better agreement between theory and
data in other channels, this suggests that some interes-
ting pieces of physics may still be missing.
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Fig.19. The left panel shows the ground-state energy in the absence and presence of additional massive states in lighter
and darker green, respectively. The data points shift because we simultaneously fit for the mass and the string tension. The
right panel shows the one- and two-sigma contours in the mass—tension plane. The shortest point was not included in the

fit, but nevertheless fits well (color online [37])

The experience with D = 3 k-string data suggests
that (at least partially) the plateau may be an arti-
fact resulting from misidentification of the excited-state
data points. The phase shift plot was constructed as-
suming that these correspond to the two-particle state.
It appears very likely that some of these points (in par-
ticular, those with pls > 2) represent a four-particle
state instead. With this interpretation, the deduced
values of the momenta will be roughly halved, bringing
these points into the resonance region and significantly
decreasing the tension between theory and data. Re-
solving this question will require both more accurate
data for excited states in this region and further theo-
retical work. Indeed, including four-particle states in
the analysis is not as straightforward for D = 4 data
as it was in D = 3 due to a larger number of channels
in D = 4. There is no problem of principle here, and
we plan to implement this in future work.

The plateau may be indicative of even more interes-
ting physics. Indeed, the axion model in (38) represents
only a minimal effective field theory explaining the ob-
served resonance in the pseudoscalar channel. More
complicated scenarios are possible. In particular, we
note that as a consequence of two-dimensional kine-
matics, a two-particle threshold generically appears as
a resonant pole. This opens an interesting possibility
that the axion may in fact be a threshold bound state
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of even lighter massive worldsheet excitations.

Even if this possibility is not realized, it is a
well-motivated question whether the axion is indeed the
lightest massive mode, or there might be lighter mas-
sive states missed by the lattice searches. For an insight
into how light these states might be, we can use the
available high precision data for the ground-state en-
ergy. A free particle of a mass m on the worldsheet re-
sults in an additional contribution to the ground-state
Casimir energy of the form

AE(R) = —% 3 %Kl (mnR).

Given that the lattice data shows no sign of a reso-
nance in the scalar channel, we consider the effect of
adding a pair of such particles on the ground-state en-
ergy (having a massive O(2) vector in mind). The re-
sult is presented in Fig. 19. We exclude the data point
corresponding to the shortest string from the fit to be
conservative. We see that the best-fit value for the
mass is m & 1.3(;. Taking the error bars at face value,
we find an improvement in the fit corresponding to al-
most 40 (and much larger if the data for the shortest
string had been included) in favor of the existence of
additional light particles.

A comparable improvement of the fit may be
achieved by adding an R™7 correction to the gro-
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und-state energy, but the required value for the cor-
responding coefficient is about a factor of five larger
than the typical size of the loop corrections (estimated
from the expansion of the GGRT ground-state energy).

Of course, these considerations do not take possible
lattice systematics into account. Most of the improve-
ment in the fit is driven by the data points correspond-
ing to the shortest strings, which might suffer from pos-
sible discretization effects and from their proximity to
the deconfinement transition. Nevertheless, this ob-
servation provides an additional strong motivation for
the systematic search for “exotic” light states on the
worldsheet with quantum numbers for which the cor-
responding NG state is expected to be heavy.

The natural candidate operators for creating new
massive states on the worldsheet are Polyakov loops
with additional local insertions, such as

W, =Te P [ F, exp / A (58)

c

It is intriguing that the basis of operators used in [5] in-
cludes such an operator with (uv) indices in the trans-
verse plane (i.e., a pseudoscalar), but not with other
orientations. Related to this, to understand the ori-
gin of the worldsheet axion better it will be interesting
to study which operator provides the best overlap for
the corresponding state, with (58) providing the most
natural candidate.

It would be very interesting to understand the mic-
roscopic origin of the worldsheet axion, i.e., to derive
it from the 4D QCD description. We note in this re-
spect that a pseudoscalar state with the same mass (in
string units) is also present in the available SU(5) data
from [5], and hence the axion appears to be present in
the large N limit. Unfortunately, however, it appears
impossible to use holographic gravitational AdS/QCD
models to look for the axion quantitatively. For the
gravitational description to be applicable, the string
length should be short compared to the AdS curva-
ture length. This implies that the mass of the light
glueballs (gravitational KX modes) is parametrically
smaller than the confining string tension, which is not
the appropriate regime to describe the pure glue theory.

A less ambitious goal would be to look for foot-
prints of the worldsheet axion in the spectrum of 4D
states. This should be possible, given that there is no
fundamental obstacle for extending the TBA technique
to open strings. First steps in this direction have al-
ready been taken in [33] (see also [34], where the effect
of the PS interaction on the open string spectrum
was discussed using the conformal gauge approach).

483

Assuming that the worldsheet axion survives in the
presence of quarks, this opens an exciting possibility
to see its presence in the physical spectrum of mesons.
In particular, we may expect mesons with a sufficiently
high spin (such that the corresponding flux tube is
long enough) to exhibit universal excitations with
energy of the order of the axion mass 750 MeV and of
the opposite parity, corresponding to an addition of
the axion to the confining flux tube. This expectation
appears to be supported by the available lattice data
for open strings in SU(3) gluodynamics [35], which
shows an anomalous X, excitation with the energy
that matches the worldsheet axion mass well, as was
previously pointed out in [36].
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