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FLUX TUBE SPECTRA FROM APPROXIMATE INTEGRABILITYAT LOW ENERGIESS. Dubovsky a*, R. Flauger a;b, V. Gorbenko aaCenter for Cosmology and Parti
le Physi
s Department of Physi
s, New York University10003, New York, USAbS
hool of Natural S
ien
es, Institute for Advan
ed Study08540, Prin
eton, USARe
eived September 30, 2014We provide a detailed introdu
tion to a method we re
ently proposed for 
al
ulating the spe
trum of ex
itationsof e�e
tive strings su
h as QCD �ux tubes. The method relies on the approximate integrability of the low-energye�e
tive theory des
ribing the �ux tube ex
itations and is based on the thermodynami
 Bethe ansatz. The ap-proximate integrability is a 
onsequen
e of the Lorentz symmetry of QCD. For ex
ited states, the 
onvergen
eof the thermodynami
 Bethe ansatz te
hnique is signi�
antly better than that of the traditional perturbativeapproa
h. We apply the new te
hnique to the latti
e spe
tra for fundamental �ux tubes in gluodynami
s inD = 3+ 1 and D = 2+ 1, and to k-strings in gluodynami
s in D = 2+ 1. We identify a massive pseudos
alarresonan
e on the worldsheet of the 
on�ning strings in SU(3) gluodynami
s in D = 3 + 1, and massive s
alarresonan
es on the worldsheet of k = 2; 3 strings in SU(6) gluodynami
s in D = 2 + 1.Contribution for the JETP spe
ial issue in honor of V. A. Rubakov's 60th birthdayDOI: 10.7868/S00444510150300881. INTRODUCTIONString theory originated as a 
andidate theory ofstrong intera
tions [1℄. However, it was soon aban-doned as a theory of hadrons, at least for the time be-ing, be
ause it failed to reprodu
e the observed prop-erties of deep inelasti
 s
attering as well as the asymp-toti
 freedom of non-Abelian gauge theories. But thesu

ess of the Veneziano amplitude in des
ribing manyaspe
ts of the hadron spe
trum and s
attering is hardlya 
oin
iden
e. Con�ning strings (�ux tubes) are 
ru-
ial ingredients in the strongly 
oupled QCD dynami
sresponsible for 
olor 
on�nement, and their presen
e isvividly revealed by latti
e QCD simulations [2℄1), sug-gesting that understanding the stru
ture and dynami
sof QCD �ux tubes might provide insights into the dy-nami
s of 
olor 
on�nement.The modern approa
h to the relation between stringtheory and gauge theories relies on the AdS/CFT 
or-*E-mail: sergei.dubovsky�gmail.
om1) See http://www.physi
s.adelaide.edu.au/theory/sta�/leinweber/VisualQCD/Nobel/ for animations.

responden
e [3℄. Within this framework, the QCD �uxtube is expe
ted to be des
ribed by a string propagatingin a spa
e�time with an extra 
urved dimension, whi
h
an be interpreted as the dynami
al string tension, orequivalently, the renormalization group s
ale [4℄. Iden-tifying a 
on
rete string theory that would provide aholographi
 des
ription of nonsupersymmetri
 QCD re-mains a long shot, and even if this dual string theorywere found, it would be outside the regime in whi
h we
urrently have theoreti
al 
ontrol.In this paper, we therefore fo
us on a rather dire
tpath towards understanding the stru
ture of the �uxtube theory that does not involve holography. Instead,it is based on existing latti
e te
hniques 
ombined withe�e
tive �eld theory and tools from integrability.Advan
es in latti
e QCD simulations have allowedmeasuring the spe
trum of low-lying worldsheet ex
i-tations with impressive a

ura
y [5�7℄. But the theo-reti
al interpretation of these results was problemati
until now. For most states, the string lengths a

essiblein the latti
e simulations were too short for the exist-ing te
hniques to be reliable. The 
onventional pertur-bative methods [8�10℄ for 
al
ulating the spe
trum ofstring ex
itations result in badly diverging asymptoti
458
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tra from approximate integrability : : :series in this regime, preventing the interpretation ofthe data. At the same time, the data exhibited a num-ber of puzzling and suggestive features. In parti
u-lar, while perturbative 
al
ulations were not reliable,many of the levels show surprisingly good agreementwith the spe
trum of a free bosoni
 string quantizedin the light-
one gauge following the 
lassi
 paper [11℄by Goddard, Goldstone, Rebbi, and Thorn (GGRT)(see also [12℄). This is 
onfusing, given that the GGRTspe
trum is well known to be in
ompatible with thebulk Poin
aré symmetry if the number of spa
e�timedimensions is di�erent from 26.For the latti
e simulations, the 
omputational 
ostgrows exponentially with the length of the string. Atleast with the 
urrent te
hnology, this makes it essen-tially impossible to push latti
e 
al
ulations into theregime in whi
h 
onventional perturbation te
hniques
onverge. Alternative te
hniques for 
al
ulating the�ux tube spe
tra are thus required, to provide better
onvergen
e for relatively short strings. We proposedsu
h a te
hnique in [13℄, and its su

ess relies on theobservation that the worldsheet theory be
omes inte-grable at low energies. This te
hnique seems su�
ientto explain the previously puzzling features seen in lat-ti
e results. In addition, it allowed showing that the ex-isting latti
e data provide strong eviden
e for the exis-ten
e of a massive pseudos
alar state on the worldsheetof the QCD �ux tube, the worldsheet axion.The goal of this paper is to provide a detailed a
-
ount of the method proposed in [13℄. In Se
. 2, webegin with a brief summary of the latti
e results andof the e�e
tive string theory approa
h (for a detailedre
ent review, see [14℄). We review the results of the
onventional perturbative expansion for energy levels,whi
h exhibits a large number of universal terms. Weexplain that the GGRT spe
trum, in spite of being in-
onsistent with the bulk Poin
aré symmetry, still rep-resents a �nite-volume spe
trum of a 
ertain integrablerelativisti
 two-dimensional theory. As we explain, thisobservation immediately allows 
al
ulating all the uni-versal terms in the spe
trum of relativisti
 e�e
tivestrings [15℄.In Se
. 3, we present the new method for 
al
ulatingthe �ux tube spe
trum. The main idea of the method isto divide the 
al
ulation into two steps. First, we per-turbatively 
al
ulate the worldsheet S-matrix des
rib-ing the s
attering of the �ux tube ex
itations withinthe e�e
tive string theory. We then determine the 
or-responding �nite-volume spe
trum using the ex
itedstate thermodynami
 Bethe ansatz (TBA) [16, 17℄,whi
h is very similar to the te
hniques developed byLüs
her [18, 19℄, whi
h are routinely used to extra
t

four-dimensional s
attering amplitudes from the latti
eQCD data. We provide a partial diagrammati
 inter-pretation of the perturbative resummation performedby the TBA and explain why it is natural to expe
tthat this method results in a better behaved perturba-tion theory for ex
ited states.In Se
. 4, we use this te
hnique to interpret thelatti
e data. We provide more details than in [13℄ asto how to implement the method and in
lude a largerset of ex
ited states in our analysis. This extendedanalysis 
on�rms the 
on
lusion rea
hed in [13℄: thelatti
e data provides strong eviden
e for the existen
eof a pseudos
alar state bound to a 
on�ning string.We also apply the te
hnique to the available data forthree-dimensional gluodynami
s. There, we �nd no evi-den
e for any massive ex
itations on the fundamental�ux tube, but identify massive s
alar ex
itations on k-strings.We 
on
lude in Se
. 5 by dis
ussing future dire
tionsand prospe
ts. We also present an intriguing hint forthe existen
e of additional light bound states, 
omingfrom the pre
ision ground-state data.2. LATTICE DATA VERSUS CONVENTIONALPERTURBATIVE EXPANSIONWe start with a brief summary of latti
e results forthe ex
itation spe
trum of 
on�ning �ux tubes. A de-tailed des
ription of these results and te
hniques 
an befound in [5�7℄ (for a review, see [20℄). In most of ourdis
ussion, we assume the spa
e-time dimension D == 4. However, we also apply our te
hniques to theavailable D = 3 data. We are interested in the inter-nal dynami
s of a single 
losed �ux tube, rather thanin e�e
ts 
oming from its boundaries and from inter-a
tions between several �ux tubes. To dis
uss theseseparately, it is ne
essary to suppress pro
esses wherethe �ux tube 
an break. This is a
hieved by perform-ing simulations in pure gluodynami
s without dynam-i
al quarks. Gauge-invariant operators in a pure gluetheory are 
onstru
ted as tra
es of path-ordered expo-nentials of the gauge �eld A� (Wilson loops),OP = TrP 0�exp ZC A1A ; (1)where C is a 
losed path. In what follows, we mostlydis
uss �ux tubes 
arrying a single unit of fundamen-tal �ux. This amounts to taking the tra
e in (1) in thefundamental representation of the gauge group.A ni
e tri
k, whi
h allows 
on
entrating on the dy-nami
s of long �ux tubes, is to use the nontrivial latti
e459
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onsider states 
reated by ope-rators of form (1), su
h that the 
orresponding pathwinds around one of the latti
e dimensions. It is 
on-venient to think about the 
orresponding dire
tion asa spatial one, although, of 
ourse, all dire
tions on thelatti
e are Eu
lidean anyway. States of this kind are or-thogonal to 
onventional glueball states 
reated by ope-rators (1) with 
ontra
tible paths. This follows from aglobal ZN symmetry (
enter symmetry) present in theSU(N) Yang�Mills theory 
ompa
ti�ed on a 
ir
le. Itis generated by gauge transformations su
h that the
orresponding gauge fun
tions satisfy twisted bound-ary 
onditions. The twist is performed using a multi-pli
ation by an element from the 
enter of the gaugegroup, g(R) = e2�ki=N g(0); (2)where k is an integer.Transformations satisfying boundary 
ondition (2)a
t properly on the gauge 
on�gurations and preservethe a
tion fun
tional, but do not originate from a well-de�ned gauge fun
tion. Hen
e, they should be 
onsid-ered as generating a global, rather than gauge, sym-metry. Any two transformations with the same twist kare equivalent up to a 
onventional gauge transforma-tions, and hen
e the resulting symmetry group is ZN .A state 
reated by operator (1) with a winding numberk 
arries 
harge k with respe
t to this symmetry, andtherefore the full Hilbert spa
e splits into a dire
t sumof N orthogonal subspa
es labeled by 
orrespondingwinding number (modulo N).Most of the latti
e data dis
ussed here is extra
tedfrom the two-point 
orrelators of the states 
arryinga unit 
harge under the 
enter symmetry (a brief dis-
ussion of k-strings with larger values of the 
harge ispresented in Se
. 4.6). These states represent 
losed�ux tubes with a unit winding number around the
ompa
t dire
tion. Considering a large enough set ofshapes of the Wilson lines allows probing not only theground state but also the low-lying ex
itations of the�ux tubes. By measuring the exponential fall-o� of the
orrelators, we extra
t energies of the states 
reatedfrom the va
uum by the 
orresponding operators, inthe same way as for 
onventional glueball mass mea-surements.A theoreti
al framework for perturbative 
al
ula-tions of these energies from �rst prin
iples is providedby e�e
tive string theory. The idea is that the �ux tubestates whose ex
itation energy above the ground statein the k = 1 se
tor is smaller than the mass of the light-est glueball are des
ribed by a two-dimensional e�e
tive�eld theory. In the absen
e of additional symmetries

(su
h as supersymmetry), the only massless degrees offreedom in this theory are Goldstone modes des
ribingthe spontaneous breaking of the bulk Poin
aré groupISO(1; D�1) to a residual symmetry group, whi
h re-mains unbroken in the presen
e of an in�nite straightstring. The latter is the produ
t of the worldsheetPoin
aré symmetry ISO(1; 1) with the transverse ro-tations O(D�2). This symmetry breaking pattern im-plies the presen
e of D� 2 massless Goldstone degreesof freedom represented by s
alar �elds X i. Geometri-
ally, they parametrize transverse ex
itations of a �uxtube, su
h that its embedding into the bulk spa
e isgiven by X� = (��; X i);where �� (� = 1; 2) are the worldsheet 
oordinates.The e�e
tive a
tion is 
onstru
ted as a sum of lo
algeometri
 invariants 
orresponding to this embedding,and starts with a Nambu�Goto (NG) termSstring = �`�2s Z d2�p� deth�� + : : : == `�2s Z d2���1�12��X i��X i�18 ���X i��X i�2 ++ 14 ���X i��X i�2 + : : :� ; (3)where h�� = ��X���X� (4)is the indu
ed metri
 on the worldsheet, `s is the strings
ale, and : : : stands for higher-order terms.Within this formalism, the problem of 
al
ulatingthe spe
trum of low-lying �ux tube ex
itations be
omesthe 
omputation of the spe
trum of low-lying Kaluza�Klein (KK) modes of this two-dimensional e�e
tive the-ory upon 
ompa
ti�
ation on a spatial 
ir
le of 
ir
um-feren
e R. The traditional approa
h to this problem isa perturbative expansion in powers of `s=R. One per-turbatively 
al
ulates the spe
trum of a quantum me-
hani
al Hamiltonian obtained after KK de
ompositionof e�e
tive a
tion (3). At any �nite order in the `s=R-expansion, only a �nite number of terms from (3) 
on-tribute. The pro
edure is straightforward, even thoughthe algebra may be
ome rather messy in 
al
ulatingsubleading terms in this expansion. The major subtletyin this approa
h is to enfor
e the invarian
e under non-linearly realized bulk Lorentz transformations at ea
horder of the expansion,Æ�i� Xj = ��(Æij�� +X i��Xj); (5)460
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tra from approximate integrability : : :where � is an in�nitesimal parameter of the boost/ro-tation. By 
onstru
tion, 
lassi
al a
tion (3) enjoys thissymmetry, but depending on the regularization s
heme,it may be broken at the intermediate stages of the 
al-
ulation.As we 
an see from (3), a large number of terms inthe e�e
tive a
tion are �xed as a 
onsequen
e of non-linearly realized Lorentz transformations (5). Hen
e,several leading-order terms in the `s=R expansion areuniversal and 
an be predi
ted in a model-independentway in any D-dimensional theory, giving rise to e�e
-tive string-like obje
ts. The only assumptions enteringthis predi
tion are that the bulk theory is relativisti
,has a gap, and the spa
e-time Goldstones X i are theonly massless degrees of freedom 
arried by the stringworldsheet. One example of a leading-order nonuni-versal term in e�e
tive a
tion (3) that does not vanishon-shell2) and is 
ompatible with (5) isÆS / `2s Z d2� �����X i����X i�2 :These terms originate from lo
al geometri
 invariants,su
h as R2 and R2�� , where R�� is the indu
ed 
urva-ture of the worldsheet metri
. Power 
ounting demon-strates that this term 
ontributes to the spe
trum atthe order `6s=R7, and hen
e all the terms up to `4s=R5are universal. A brute for
e 
al
ulation of all the uni-versal terms is tedious, however, and has not been per-formed yet. Shortly, following [15℄, we will review ashort
ut that allows obtaining all the universal `4s=R5terms bypassing a dire
t 
al
ulation.Confronting the e�e
tive string theory predi
tionswith latti
e data for D = 4 SU(3) gluodynami
s leadsto several puzzles, as 
an be seen from Figs. 1, 2, and 3.The data points on these plots represent string energiesas a fun
tion of the 
ompa
ti�
ation size R. Figure 1shows the ground-state energies, Fig. 2 shows stateswith a single left-moving phonon with di�erent valuesof the KK momentum, and Fig. 3 shows a state withone left-moving and one right-moving phonon, ea
hwith one unit of KK momentum. In the last 
ase, dif-ferent 
olors label di�erent two-parti
le states, 
lassi-�ed a

ording to representations of the O(2) group ofunbroken rotations in the transverse plane.In addition, we present two theoreti
al expe
tationsof how these energies might look like. Dotted linesshow the sum of universal `4s=R5 e�e
tive string theoryterms. As explained above, these follow from the 
on-sistent �rst-prin
iple 
al
ulation and should agree withthe data for su�
iently long strings.2) Or, equivalently, 
annot be removed by a �eld rede�nition.
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R/,s

76543Fig. 1. �E = E�R=`2s for the ground state of the �uxtube. The value of `s was determined from the latti
edata. The dotted line shows the predi
tion of a deriva-tive expansion. The dashed line shows the predi
tionof the GGRT theoryThe se
ond set of theoreti
al 
urves, shown asdashed lines, is an ad ho
 spe
trum, whi
h is tradi-tionally referred to as the �free string spe
trum� in thelatti
e 
ommunity, following [12℄. It is obtained by ap-plying the light-
one quantization method of [11℄ to afree bosoni
 string at D = 4,ELC(N; ~N) ==s4�2(N� ~N)2R2 +R2`4s +4�`2s �N+ ~N�D�212 �: (6)Here, R is the length of the string, and N and ~N arelevels of an ex
ited string state, su
h that 2�(N� ~N)=Ris the total KK momentum of the state. In what fol-lows, we refer to this spe
trum as the GGRT spe
-trum. It is not expe
ted to mat
h the spe
trum ofthe QCD �ux tube. Indeed, as dis
ussed above, non-linearly realized Lorentz symmetry imposes strong 
on-straints on the properties of QCD strings. The light-
one quantization is famously in
ompatible with thetarget-spa
e Poin
aré group away from the 
riti
al di-mension D = 263). Hen
e, a priori, one might only ex-3) Another interesting ex
eption is D = 3, 
f. [21℄.461
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0Fig. 2. �E = E � R=`2s for ex
ited states of the�ux tube with one and two units of KK momentumin orange and red, respe
tively. The dotted lines showthe predi
tion of a derivative expansion. The dashedlines show the predi
tion of the GGRT theory (
oloronline [37℄)pe
t an agreement with a 
lassi
al limit of the GGRTspe
trum in the regime in whi
h the quantum e�e
ts
an be negle
ted.Nevertheless, as seen from Figs. 1�3, the GGRTspe
trum surprisingly �ts the latti
e data better thanthe perturbative 
al
ulations. In fa
t, the situation issomewhat di�erent for di�erent 
lasses of states. Forthe ground state, Fig. 1, both the perturbative 
al
u-lations and the GGRT spe
trum agree with ea
h otherand with the data even for the shortest strings. This isalready a surprise, given that the agreement holds evenfor strings as short as R = 2`s.For the purely left-moving states, Fig. 2, perturba-tive 
al
ulations agree with the GGRT spe
trum andwith the data for relatively long strings. For shorterstrings, the perturbative expansion breaks down andthe data follow the GGRT predi
tion.Finally, for the state with both left- and right-moving phonons, Fig. 3, the perturbative expansion ispra
ti
ally useless in the range of the string length forwhi
h latti
e data are available. The GGRT approxi-mation provides a reasonable approximation for someof the states (the s
alar and symmetri
 tensor), whileothers (the pseudos
alar) are not explained at all.

∆E ,s
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R/,s

76543
1.0

3.5

3.0

2.5

2.0

1.5

Fig. 3. �E = E �R=`2s for an ex
ited state with oneleft- and one right-mover, ea
h with one unit of KKmomentum. The dotted lines show the predi
tion of aderivative expansion. The dashed lines show the predi
-tion of the GGRT theory. The green 
olor represents astate that is a symmetri
 tensor with respe
t to SO(2),the blue 
olor represents the states that are s
alar withrespe
t to SO(2), and the red data points represent theantisymmetri
 tensor with respe
t to SO(2). All statesare predi
ted to be degenerate in the GGRT theory.In the derivative expansion, the s
alar and the anti-symmetri
 tensor are still predi
ted to be degenerate,as indi
ated by the blue dotted line. The degenera
ywith the symmetri
 state is lifted, whi
h is predi
ted tohave higher energies, as shown by the green dotted line(
olor online [37℄)These observations taken together provide strongmotivation to set up an alternative perturbative ex-pansion with better 
onvergen
e properties. As a �rststep, it is desirable to understand the physi
al originof the GGRT spe
trum for D 6= 26. As presented atthe moment, it only has the status of an ad ho
 �ttingformula.The answer to this question was given in [15, 22℄.For any value of D, GGRT formula (6) provides an ex-a
t answer for the �nite-volume spe
trum of a 
ertainintegrable re�e
tionless relativisti
 two-dimensionaltheory. The exa
t S-matrix of this theory is deter-mined by a two-parti
le s
attering phase shift of theform462
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tra from approximate integrability : : :exp(2iÆGGRT ) = exp(i`2ss=4): (7)The spe
ial role of the 
riti
al dimension D = 26 (andalso ofD = 3 [21℄) is that in this 
ase, the theory is bothintegrable and enjoys a nonlinearly realized target-spa
e Poin
aré symmetry ISO(1; D�1). The existen
eof this family of integrable models is not surprising,given that the light-
one string quantization providesa dire
t 
anoni
al 
onstru
tion of the 
orrespondingHilbert spa
e, and does not break the two-dimensionalpart of the Poin
aré algebra. However, Lorentz invari-an
e had not been �rmly established prior to [15, 22℄4).The subtlety is that the 
onventional light-
one quan-tization is performed in the se
tor with zero windingnumber, while the spe
trum (6) arises in the se
torwith a nontrivial winding. The normal-ordering 
on-stant in the light-
one quantization (whi
h determinesthe (D � 2)-term in (6)) is usually �xed by imposingthe target-spa
e Poin
aré symmetry, and it remains un-
lear what �xes it in the non
riti
al dimension.These questions are resolved by applying the TBAmethod to re
onstru
t the �nite-volume spe
trum fromthe S-matrix in (7). This exa
tly reprodu
es the GGRTspe
trum (6), both demonstrating that the GGRTspe
trum is indeed the �nite-volume spe
trum of arelativisti
 two-dimensional theory and showing thatthe normal-ordering 
onstant is in fa
t �xed from therequirement of a two-dimensional Poin
aré symmetryalone in the se
tor with a nontrivial winding.This observation turns out to be important for theidea behind the method des
ribed in this paper, andto illustrate its power, following [15℄, we review howit allows deriving the universal part of the �ux tubespe
trum in the 
onventional `s=R expansion in a sim-ple way. By straightforward perturbative 
al
ulationof the s
attering amplitudes, we �nd that at the levelof the Lagrangian, the relation between the integrablefamily of GGRT theories and the e�e
tive theory onthe worldsheet of an in�nitely long relativisti
 �ux tubetakes the formLGGRT = LNG + LPS + : : : (8)Here, LGGRT stands for the Lagrangian of the GGRTtheory (determined by the S-matrix in (7)), LNG is theLagrangian of the relativisti
 �ux tube theory,LPS = D � 26192� ����X i����X i�
Xj�
Xj + : : : (9)is the Pol
hinski�Strominger (PS) operator [23℄, and: : : stands for higher-order terms in the `s-expansion.4) We thank Ofer Aharony and Zohar Komargodski for em-phasizing this point to us.

Upon 
ompa
ti�
ation on a 
ir
le of 
ir
umferen
e R,the in�nite-volume relation (8) implies that up to theorder (`s=R)3, the �ux tube spe
trum 
oin
ides withthe expansion of the GGRT spe
trum. The leading(`s=R)5-di�eren
e between the two is given simply bythe matrix elements of the PS operator. This is thefastest way to derive the universal perturbative `s=R-results presented in Figs. 1�3. This general argumentagrees with the expli
it 
al
ulations [24℄ performed fora large set of states in the 
onformal gauge.In fa
t, the �ux tube spe
trum exhibits an evenlarger set of universal relations. Relation (8) is a 
on-sequen
e of the universality of the one-loop two-to-twos
attering amplitude on the worldsheet of the relativis-ti
 �ux tube. Power 
ounting demonstrates that a
tu-ally arbitrary 
onne
ted one-loop amplitudes are uni-versal and determined solely by the NG part of thea
tion. At a �nite volume, this universality translatesinto relations between energies of di�erent �ux tube ex-
itations at higher orders in the `s=R-expansion. This
an be 
he
ked by inspe
ting the leading 
orre
tions tobinding energies of di�erent states.Unfortunately, as dis
ussed above, in spite of thishigh degree of universality, the 
onventional `s=R-ex-pansion is not very useful for the study of the ex
ited�ux tube states observed in 
urrent latti
e simulations,whi
h brings us to the main subje
t of this paper, thedes
ription of an alternative te
hnique based on theTBA.3. FINITE-VOLUME SPECTRA FROMINFINITE-VOLUME SCATTERINGTo �nd a 
ure for the bad 
onvergen
e property ofthe `s=R-expansion, we �rst understand the physi
alorigin of the problem. Why do ex
ited states behave somu
h worse than the ground state, for whi
h the expan-sion works extremely well? The di�eren
e between theground state and the ex
ited states is visible already inthe GGRT theory. As is apparent from expression (6)for the GGRT spe
trum, the `s=R-expansion for ex-
ited states breaks down when R2=`2s � 4�(N + ~N),whi
h 
an be a relatively large number. For the groundstate, however, the radius of 
onvergen
e 
orrespondsto R2=`2s = (D � 2)�=3, whi
h is mu
h smaller. Physi-
ally, the origin of additional terms of the order 2�N=Rin the ex
ited states energies is 
lear. These are themomenta of free phonons 
omprising the ex
ited state.This suggests that it is useful to think of the �nite-volume energies to be fun
tions of the formE = `�1s E(pi`s; `s=R);463
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les prop-agating on the worldsheet. The 
onventional `s=R ex-pansion assumes the free theory answer for pi and ex-pands the resulting fun
tion in `s=R. The key idea ofthe new method is to 
al
ulate the spe
trum in su
ha way that these two fun
tional dependen
es be
omedisentangled.Our previous dis
ussion, most notably the de�nitionof the GGRT theory by its s
attering phase shift (7),suggests a natural language to a
hieve this. We shouldperform the 
al
ulation of the �nite-volume spe
trumin two distin
t steps: �rst 
al
ulate the (in�nite-volume) S-matrix and then pro
eed towards extra
tingthe �nite-volume spe
trum from this S-matrix. The�rst step 
orresponds to the perturbative expansion inpi`s and be
ause of the usual analyti
 properties of theS-matrix turns out to be 
onvergent even for momentathat are not parti
ularly small.Even though it is widely believed that the S-matrixof a quantum �eld theory uniquely determines its �nite-volume properties, the pres
ription for the se
ond stepis not known in general. However, it is understood intwo 
ir
umstan
es.For massive theories below the parti
le produ
tionthreshold, there is a perturbative pro
edure �rst imple-mented by Lüs
her [19℄ and 
ommonly used in latti
e
al
ulations. There is no prin
ipal obstru
tion to ex-tending this te
hnique above the inelasti
 threshold,and multi
hannel generalizations of Lüs
her formulasare being developed (see, e. g., [25, 26℄). One of themajor 
hallenges (at least at the te
hni
al level) withinthis approa
h is to 
al
ulate winding 
orre
tions, 
om-ing from virtual parti
les traveling around the 
ompa
tdimension. In massive theories, these are exponentiallysuppressed, and usually are either negle
ted or 
al
u-lated by a

ounting for the lowest-order winding 
on-tributions. In a massless theory, like the e�e
tive stringtheory, more 
are is needed be
ause the winding 
or-re
tions are only power-law suppressed.For two-dimensional integrable theories, there isan exa
t (nonperturbative) method for 
al
ulating the�nite-volume spe
trum known as the TBA [16, 17℄.Even writing the 
omplete set of equations, espe
iallyfor ex
ited states, is in general quite nontrivial andusually involves some amount of guesswork. However,there is a spe
ial 
lass of re�e
tionless integrable s
at-tering, where the TBA for ex
ited states appears totake a simple universal form [22; 27℄. The GGRT modelbelongs to this 
lass and the 
orresponding set of ex
i-ted-state TBA equations is known exa
tly.The worldsheet theory of �ux tubes does not have amass gap and is not integrable. However, its leading-or-

der s
attering amplitudes (in the p`s expansion) 
oin-
ide with those of the GGRT theory. At the next-to-leading order, relativisti
 e�e
tive strings deviate fromthe GGRT theory for general D, and re�e
tions andannihilations appear at this order. But in D = 4, theystill take a spe
ial form for whi
h it is possible to writethe full set of ex
ited-state TBA equations. This is ourstarting point for the analysis of the �ux tube spe
t-ra observed on the latti
e. As we see in what follows,this method provides mu
h better 
ontrol of the spe
t-ra than the 
onventional `s=R expansion, and makesit 
lear that the minimal e�e
tive string theory has tobe extended to explain the latti
e data. The extensionit to be in
orporated in the TBA equations perturba-tively.3.1. Thermodynami
 Bethe ansatz forre�e
tionless s
atteringWe review the basi
s of the TBA. For now, we
onsider massless theories with integrable re�e
tionlessS-matri
es with any number of parti
le spe
ies. By in-tegrability, we mean that in every s
attering pro
essthe number of parti
les is 
onserved, the �nal parti
leshave the same momenta as the initial ones, and the ab-sen
e of re�e
tions implies that the �nal distribution of�avors 
oin
ides with the initial one. Integrability im-plies that the S-matrix element for s
attering of n left-and m right-moving parti
les is equal to the produ
tof n �m pairwise S-matri
es. Every 2 ! 2 S-matrixelement in every �avor 
hannel must be just a numberwith the absolute value 1, as demanded by unitarity,S
dab = Æ
aÆdb exp(2iÆab):The TBA allows extra
ting the �nite-volume spe
-trum of the theory from the phase shifts Æab. Thereare three key ideas underlying this method. The �rst is
alled the asymptoti
 Bethe ansatz (ABA). It is a set ofalgebrai
 equations that gives the spe
trum in the ap-proximation where the 
ontributions from virtual par-ti
les traveling around the �world� are negle
ted. TheABA equations are dis
ussed in more detail in Se
. 3.2together with their derivation.The se
ond idea is the following: instead of 
on-sidering the theory in a �nite volume R and at zerotemperature, we 
onsider the theory in whi
h time andspa
e dire
tions are inter
hanged. Consequently, thistheory appears to live in an in�nite volume but at a�nite temperature T = 1=R. For a relativisti
 the-ory, the spa
e�time-inter
hanged (�mirror�) theory 
o-in
ides with the initial one. The ABA be
omes exa
t inthe thermodynami
 limit and takes the form of 
ertain464
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tra from approximate integrability : : :integral equations that allow �nding the free energydensity f(T ) in the mirror inter
hanged theory. Thefun
tional integral representation of the partition fun
-tion implies that it is related to the ground-state energyof the initial theory asE0(R) = Rf(1=R):To 
al
ulate the energy of ex
ited states, the thirdidea is needed. The pres
ription is to deform the 
on-tour in the integral equations used for 
al
ulating theground-state energy in a 
ertain way [17℄. Althoughthe derivation of this pro
edure for the general 
ase isnot yet known, there is a rigorous mathemati
al proofof the resulting TBA equations for 
ertain integrabletheories, su
h as the sinh-Gordon model [27℄. For theGGRT theory (the 
ase we are mainly interested inhere) rather nontrivial 
he
ks were performed [22℄ tobe 
ertain that the method 
an be safely applied. Inaddition to this, in Se
. 3.3, we provide partial dia-grammati
 intuition behind the TBA equations.We now turn to presenting the TBA equationsthemselves. There are two 
ontributions to the energyof a state in this formalism. First, there are �real� par-ti
les, with (positive) momenta equal to pli and pri forleft and right movers present in the state. In addition,there is a �thermal bath� of parti
les with pseudo-ener-gies �al (q) and �ar(q) for left- and right-moving 
ompo-nents of the bath5),�E =Xi pli +Xi pri ++ 12�Xa 1Z0 dq ln [1� exp(�R�al (q))℄ ++ 12�Xa 1Z0 dq ln [1� exp(�R�ar(q))℄ : (10)The thermal bath 
ontribution is responsible for wind-ing 
orre
tions and indeed has a thermal origin from thestandpoint of the mirror theory. To distinguish thermalparti
les from the real ones, we let the momenta of theformer be denoted by q. The index a labels a �avor.The momenta pi label the state. The 
ase without realparti
les naturally 
orresponds to the va
uum state.The real parti
le momenta p and the pseudo-ener-gies �(q) are determined from solving the TBA set ofintegral equations. These 
onsist of two groups of equa-5) As before, we let the energy be denoted by �E, as a re-minder that the full energy E in addition 
ontains the 
lassi
alstring tension 
ontribution R=`2s.

tions. First, there are generalized quantization 
ondi-tions for the real momentapliR+Xj 2Æaiaj (pli; prj)�� iXb 1Z0 dq2� d 2Æaib(ipli; q)dq �� ln �1� exp(�R�br(q))� = 2�Ni; (11)priR+Xj 2Æajai(pri; plj) ++ iXb 1Z0 dq2� d 2Æbai(�ipri; q)dq �� ln �1� exp(�R�bl (q))� = 2� ~Ni: (12)In the absen
e of intera
tions, Æ = 0, these redu
e tothe free theory quantization 
onditions for a set of par-ti
les on a 
ir
le. For an intera
ting theory, the quan-tization 
ondition is modi�ed for two reasons. First,pairwise intera
tions between real parti
les explain theappearan
e of the 
orresponding phase shifts in (11),(12) (we explain the origin of this e�e
t in Se
. 3.2 indetail). Se
ond, there are integral 
ontributions thata

ount for winding 
orre
tions. Imaginary momentaappearing in (11)�(14) 
ome from performing the dou-ble Wi
k rotation to the mirror theory. However, the
rossing symmetry, whi
h in terms of the phase shift
an be written asÆ(pl;�pr) = Æ(�pl; pr) = �Æ(pl; pr);guarantees that the equations are a
tually real. Wedid not use this to simplify the equations and eliminatethe i, be
ause the 
rossing symmetry is modi�ed in thepresen
e of annihilations, whi
h we dis
uss below.Finally, the pseudo-energies satisfy the TBA 
on-straints�al (q) = q + iRXi 2Æabi(q;�ipri) + 12�R ��Xb 1Z0 dq0 d 2Æab(q; q0)dq0 ln �1� exp(�R�br(q0))� ; (13)�ar(q) = q � iRXi 2Æbia(q; ipli) + 12�R ��Xb 1Z0 dq0 d 2Æba(q; q0)dq0 ln �1� exp(�R�bl (q0))� : (14)6 ÆÝÒÔ, âûï. 3 465



S. Dubovsky, R. Flauger, V. Gorbenko ÆÝÒÔ, òîì 147, âûï. 3, 2015For the GGRT phase shift 2Æaibj = `2spliprj , it isstraightforward to solve the full TBA system (11)�(14)analyti
ally, resulting in (6). We note that in the mas-sive sinh-Gordon model, the full TBA system takesthe same form [27℄, strongly suggesting that this formshould be universal for re�e
tionless s
attering. Thefull set of TBA equations has a rather intimidating ap-pearan
e, but as we just explained, the major 
ompli-
ations 
ome from winding 
orre
tions. Dropping themresults in the ABA equations, whi
h are known as theLüs
her formula in the 
ontext of latti
e 
al
ulations,pl(r)iR+Xj 2Æaiaj (pl(r)i; pr(l)j) = 2�Ni: (15)In the massive 
ase, all integral terms are suppressedas exp(��R), where � is the mass gap, as is natural toexpe
t for winding 
orre
tions. In our 
ase, the wind-ing 
orre
tions are only power-law suppressed, and wehave to pay more attention to them. However, as wesee in what follows, for the values of R we 
onsider,the main e�e
t still 
omes from the asymptoti
 partof the Bethe ansatz. We explain the reason for this inSe
. 3.4. 3.2. Asymptoti
 Bethe ansatzIn this se
tion, we sket
h a simple derivation of themulti
hannel generalization of the ABA equations. Itis 
ertainly not new. One of the reasons to presentthe ABA derivation here is to stress that the logi
 un-derlying this derivation does not dire
tly rely on inte-grability. In parti
ular, we allow nondiagonal s
atter-ing, and hen
e the amplitude is no longer re�e
tion-less. Con
eptually, there appears to be no obstru
tionto generalizing the ABA to a

ommodate parti
le pro-du
tion. For example, to a

ount for the 2 $ 4 pro-
esses, we should add matrix elements mixing two- andfour-parti
le states. In the 
ase at hand, however, thesepro
esses are suppressed at low energies. In what fol-lows, we therefore negle
t these e�e
ts and assume thatthe 2! 2 part of the S-matrix S
dab is unitary.We �rst 
onsider two parti
les in an in�nite volume,the �rst one moving to the right and the se
ond mov-ing to the left. The basis for the in-states is formed byjpr; a; pl; bi and the wave fun
tion of a generi
 state isde�ned as ab(x1; x2) = h0j�a(x1)�b(x2)F 
djpr; 
; pl; di; (16)where the �eld operators are taken at equal time, F 
ddenotes the �avor wave fun
tion, and we suppressedthe time dependen
e. Stri
tly speaking, our dis
ussion

assumes that the states are taken to be wave pa
kets,but to keep the formulas short, we do not write thisexpli
itly. When parti
les are far apart, they do not in-tera
t with ea
h other, the energy of the state is givenby jplj + jprj, and the wave fun
tion is just a produ
tof two plane waves. Thus, in the region x1 � x2, thewave fun
tion 
onsists of two 
ontributions: either the�rst parti
le is found at x1 and the se
ond at x2 (be-fore they s
attered), or the se
ond parti
le is found atx1 and the �rst at x2. In the latter 
ase, the parti
leshave to s
atter before they rea
h their positions. As aresult, the total wave fun
tion in this region takes theform ab(x1 � x2) = exp(iprx1 + iplx2)F ab ++ exp(iplx1 + iprx2)Sba
dF 
d: (17)The same reasoning applied in the region x1 � x2 gives ab(x1 � x2) = exp(iplx1 + iprx2)F ba ++ exp(iprx1 + iplx2)Sab
dF 
d: (18)Now we 
onsider this state in a �nite volume andimpose the 
orresponding periodi
ity 
ondition. Toa
hieve this, we 
onsider x1 and x2 su
h that x1 �� x2 � x1 + R. Then the periodi
ity of the wavefun
tion  (x1; x2) =  (x1 +R; x2) requires thatexp(iprR)Sab
dF 
d = F ab: (19)All other periodi
ity 
onditions are equivalent be
ausethe total momentum p1 + p2 is quantized in units of2�=R. Equation (19) has solutions if and only ifdet �exp(iprR)Sab
d � Æa
 Æbd� = 0; (20)where (ab) as well as (
d) should be treated as a sin-gle matrix index when the determinant is taken. Thisis the multi-
hannel generalization of the Lüs
her for-mula, whi
h imposes a relation between the S-matrixand the allowed momenta of parti
les in a �nite volume.If the S-matrix is known, it allows �nding the energyspe
tra, given by jplj+ jprj. Conversely, if the spe
traas fun
tions of R are known, we 
an re
onstru
t theS-matrix.It is straightforward to extend this derivation tomulitparti
le states in integrable theories. In parti
u-lar, for re�e
tionless s
attering, we immediately arriveat (15). As we already said, there appears no fun-damental obstru
tion to extending these arguments tononintegrable theories, even though obtaining the ex-pli
it equations is likely to be quite 
hallenging due toinevitable mixing between states with di�erent num-bers of parti
les.466
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tra from approximate integrability : : :Anti
ipating a dis
ussion in what follows, we pointout one of the main reasons why the TBA te
hnique dis-plays better 
onvergen
e than the 
onventional (`s=R)expansion. As follows from ABA equations (15), thea
tual momenta pi of intera
ting phonons are smallerthan the free-theory value 2�Ni=R, if the phase shiftÆ is an in
reasing fun
tion of the momentum. Giventhat the perturbative parameter for the low-energy ex-pansion is pi`s, a

ounting for this e�e
t improves the
onvergen
e properties of the expansion.3.3. Towards a diagrammati
 interpretation ofthe thermodynami
 Bethe ansatzIt is 
lear from the presented derivation that thewinding 
orre
tions are absent in ABA system (20)be
ause we did not take virtual quanta propagatingaround the world into a

ount. For the GGRT theory,these are a

ounted for by the �thermal� 
ontributionsin (10) and (11), (12) together with a set of integralequations (13), (14) for pseudo-energies.These equations were obtained following the idea pi-oneered in [17℄. The starting point are the ground-stateTBA equations derived in [16℄. These are Eqs. (10) and(13), (14) without any real parti
le 
ontributions. Theidea in [17℄ is that the ground-state energy as a fun
tionof a su�
iently large set of external parameters allowsre
onstru
ting the full set of ex
ited states energies byanalyti
 
ontinuation in the parameters and exploitingthe monodromies the equations and solutions undergowhen 
ir
ling singularities in the 
omplex plane.To arrive at the ex
ited-state TBA equations for theGGRT model, we 
an for example introdu
e 
hemi
alpotentials �al(r) for the number of phonons. These arein
orporated by shifting the pseudo-energies�al(r) ! �al(r) + �al(r)in the thermal integrals in (13) and (14). As a resultof an analyti
 
ontinuation along a 
ontour in the 
om-plex plane of the �, whi
h starts and ends at � = 0,the integrals may pi
k up extra 
ontributions from 
ir-
ling around the bran
h points of the logarithm. Thesegive rise to the 
ontributions in (13) and (14) 
orre-sponding to real parti
les. The generalized ABA equa-tions (11), (12) determine the positions of the singu-larities. The parti
le number simply 
ounts how manytimes di�erent singularities were 
ir
led.Unfortunately, there is still an ambiguity left in thispres
ription 
on
erning the 
orre
t dire
tion for 
ir-
ling around the singularities (the one 
orrespondingto positive parti
le numbers Ni). This may be �xed by

requiring that the 
orre
t result be reprodu
ed in thefree-theory limit, `s ! 0.This line of reasoning leads to the 
orre
t result forthe ex
ited-state TBA. Nevertheless, it is tempting tolook for a diagrammati
 understanding of how the ex-
ited-state TBA arises. In parti
ular, we may hopeto see that it 
orresponds to a 
ertain resummation ofthe 
onventional perturbative expansion, whi
h wouldhelp to illuminate the origin of the better 
onvergen
eof the TBA method. Some insight into this issue wasgiven in [18, 19℄ (see [28℄ for a review and generaliza-tion to an arbitrary dispersion relation). However, theproposed diagrammati
 method 
orresponds to an ex-pansion in winding 
orre
tions or exp(�mR) be
ausemassive parti
les were 
onsidered. Sin
e winding 
or-re
tions in massless theories are only power-law sup-pressed, this expansion does not provide a good ap-proximation. This motivates us to seek an alternativeresummation of Feynman diagrams.At this point, we do not have a 
omplete solutionto this problem, but instead merely report on partialprogress in this dire
tion. First, we re
all that eventhough our theory is massless and winding 
orre
tionsare not suppressed exponentially, numeri
ally they arenevertheless small for the relevant values of D� 2. Wealready mentioned the reason for this at the end ofSe
. 3.1 and illustrate this point numeri
ally below.This suggests an iterative solution of the TBA equa-tions, in whi
h we �rst ignore the integral parts, �ndthe 
orresponding � and p, and then solve the integralequations iteratively.We note that this expansion is di�erent from theexpansion in the winding number mentioned above.The latter 
orresponds, roughly, to expanding the ther-mal TBA logarithms in a series of exponential termsexp(�nR�).To see that the 
onvergen
e of this method is goodat least for the GGRT theory, we note that to the lea-ding order, it 
orresponds to the expansion of the squa-re-root formula (6) in a formal parameter D � 2, andthat expansion is 
onvergent for any state for the val-ues of R and D� 2 we 
onsider. For the ground state,the (D� 2) expansion is equivalent to the `s=R expan-sion, but they behave di�erently for all ex
ited states.For instan
e, 
ompletely negle
ting the (D� 2) 
ontri-butions results in the following ABA spe
trum for theGGRT theory:E
l(N; ~N) == `�1s sR2`2s + 4�2`2s(N � ~N)2R2 + 4� �N + ~N�: (21)467 6*
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e of the real left-moving parti
les indi
ated by
rossesThis 
oin
ides with the spe
trum of the 
lassi
al string.In the rest of this se
tion, we demonstrate how the �rstterm of the (D�2) expansion of spe
trum (6) arises inthe diagrammati
 language.We will organize the 
al
ulation in the followingway. We start with a set of parti
les 
orrespondingto a 
hosen state, with momenta determined by theABA quantization 
onditions. At this stage, winding
orre
tions are not yet in
luded, and it is therefore ap-propriate to think of this state as a �gas� in an in�nitevolume, albeit in a very spe
ial state in whi
h all par-ti
les have the same momentum. The leading winding
orre
tions then take the form of 
onventional bubblediagrams with the propagator taken to be the one for�u
tuations around this gas.To illustrate how this works in pra
ti
e, we �rst
onsider a state on a 
ir
le with a single left-movingphonon. The ABA quantization is equivalent to thefree one in this 
ase, and hen
e the momentum of theparti
les in the gas is pl = 2�N=R. It is 
onvenientto also introdu
e the parameter �l = `2spl=R; physi-
ally, this is the energy density of the gas (in stringunits). We 
onsider a probe parti
le with a momen-tum q�, propagating through the gas. To 
al
ulate thedressed propagator for this parti
le, we need to resumthe diagrams represented in Fig. 4. In terms of the mo-mentum expansion, we restri
t ourselves to the leadingterm; only tree-level diagrams are then taken into a
-
ount. All one-parti
le irredu
ible diagrams 
ontainingmore than two gas insertions vanish in this 
ase, andwe thus obtain the propagator exa
tly to all orders in�l as a geometri
 series,G(q) = iq20 � q21 + iq20 � q21 iM2plR iq20 � q21 + : : : ; (22)where M is the forward s
attering amplitude for thes
attering of the virtual parti
le o� a phonon in thegas, M = 2`2sp2l (q0 + q1)2;and the fa
tor of 1=R stands for the number densityof phonons. By 
al
ulating the geometri
 series, weobtainG(q) = i(q0 + q1) [q0 � q1 + (q0 + q1)�l℄ : (23)

Sin
e left-movers do not intera
t with ea
h other, thedispersion relation for a left-moving quantum is notmodi�ed in a purely left-moving gas. On the otherhand, the right-moving probe is slowed down by inter-a
tions and its dressed dispersion relation isq0 = 1� �l1 + �l q1:We note that for �l > 1, a �right-mover� is 
arried awayby the gas and a
tually propagates to the left. It is nowstraightforward to 
onstru
t the quadrati
 e�e
tive a
-tion reprodu
ing propagator (23),Seff == Z d2��1+�l2 _xi _xi+�l2 _xixi0�1��l2 xi0xi0� : (24)Now, following the logi
 outlined above, we 
al
u-late the energy of the state on a 
ir
le as the sum of theenergy of the real left-moving parti
le, pl, and the win-ding 
ontribution. In the leading order, the latter is theground-state energy of the free theory with a
tion (24).It 
an be 
al
ulated either using the ground-state TBA(for the mirror theory) or dire
tly. Pro
eeding in thedire
t way, we 
al
ulate the energy as the expe
tationvalue of the Hamiltonian 
orresponding to (24),hHeff i = * RZ0 d� 1 + �l2 _xi _xi + 1� �l2 xi0xi0+ : (25)Using the Poisson summation formula, we write theresult as a sum over windings,hHeff i =Xn6=0Z d2q(2�)2 �� iR �(1 + �l)q20 + (1� �l)q21� exp(iq1nR)2(q0 + q1)(q0 � q1 + (q0 + q1)�l) ; (26)where we drop the zero-winding 
ontribution. Af-ter performing the Wi
k rotation for q0, we 
lose theq1-
ontour and take the q1-integral by residues. Theresulting total energy of the state is�E = pl + D � 22� 8<: 1Z0 dq ln [1� exp(�Rq)℄ ++ 1Z0 dq (1� �l) ln [1� exp(�Rq(1 + �l))℄9=; == 2�NR � (D � 2)�R6(R2 + 2�N`2s) : (27)468



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spe
tra from approximate integrability : : :

8

∆E ,s

2

6

R/,s

76543

5

4

3

2

1

0Fig. 5. �E = E�R=`2s for ex
ited states of the GGRTtheory with one and two units of the KK momentumin orange and red, respe
tively. The dotted lines showthe predi
tion of the derivative expansion, the longerdashes show the predi
tion of the GGRT theory, andthe shorter darker dashes represent our diagrammati
approximation. The diagrammati
 approximation andthe exa
t result are virtually indistinguishable (
olor on-line [37℄)This is exa
tly the result that follows from the �rst ite-ration of solving integral equations (10)�(13) pertur-batively in winding 
ontributions, or equivalently byexpanding the exa
t answer (6) in D � 2. Unlike the`s=R expansion, approximation (27) provides an ex-tremely a

urate estimate for the exa
t result down toR � `s (see Fig. 5).Furthermore, just like the exa
t result, expression(27) turns into a series with a rather small radius of 
on-vergen
e, when expanded in `s=R. The above deriva-tion sheds light on the physi
al origin of this behaviorand on the nature of the improvement a
hieved by theTBA method. The singularity in (27), whi
h deter-mines the radius of 
onvergen
e of the `s=R expan-sion, 
orresponds to �l = 1, when both modes be
omeleft-movers. Using the dressed propagator in our 
al
u-lation allows avoiding spurious singularities asso
iatedwith this e�e
t.The same reasoning 
an be applied to all states that
ontain only left-moving ex
itations. In prin
iple, there

is no obsta
le to extend the same logi
 to the states
ontaining both left- and right-moving phonons. Onemodi�
ation in this 
ase is that the momenta pl andpr of the parti
les in the gas are not given by the freequantization 
ondition anymore, but are solutions ofLüs
her equation (15). The di�
ulty now, however, ishow to obtain the result in all orders in the parti
leenergy densities �l(r) = `2spl(r)=R. The reason is thatleft- and right-moving parti
les now intera
t with ea
hother, and hen
e there are nonvanishing one-parti
leirredu
ible diagrams with more than four outgoing legs
ontributing to the dressed propagator. It may be pos-sible to sum all these diagrams for the NG a
tion atleast at the tree level, but we leave this for future work.Instead, we present the perturbative result in the �, a
-
ounting only for the four-parti
le intera
tions, as be-fore. This leads to the following dressed propagator fora probe parti
le:G(q) = �iq20 � q21 + (q20 + q21)�l + (q20 � q21)�rR: (28)As expe
ted, the dispersion relation for both left- andright-movers is modi�ed in this 
ase. A 
al
ulation si-milar to the one we did for the purely left-moving stateresults in the following expression for the energy at theleading order in the �:�E = pl + pr � (D � 2)� (1� �l � �r)6R : (29)As illustrated in Fig. 6, this leads to a signi�
ant im-provement 
ompared with the naive `s=R expansion,but still is not a

urate at small radii, where the energydensities �l(r) be
ome large and multiparti
le intera
-tions must be in
luded.We feel the above perturbative examples serve wellthe purpose of illustrating the physi
s underlying theTBA method. It is an interesting open questionwhether they 
an be pushed to higher orders. We havementioned that already at the tree level, we must learnhow to resum an in�nite number of tree-level diagrams.But we may also try to be more ambitious and push themat
hing 
al
ulation resulting in e�e
tive a
tion (24) tohigher orders. It would be interesting to study whetherthis method allows reprodu
ing the full TBA system inthe (D � 2) expansion, or whether new physi
al ingre-dients are required.3.4. UV insensitivity of winding 
orre
tionsIt is apparent from the above dis
ussions that win-ding 
orre
tions are more subtle and harder to a

ountfor than the ABA part of the �nite-volume spe
trum.469
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h with one unit of the KK momentum. The dottedlines show the predi
tion of the derivative expansion,the longer dashes show the predi
tion of the GGRTtheory, and the shorter darker dashes represent our di-agrammati
 approximationIn parti
ular, if one is interested in a spe
i�
 state witha �xed number of parti
les, solving the ABA requiresdiagonalizing the S-matrix only in that se
tor. Onthe other hand, a

ounting for winding 
orre
tions al-ways involves a 
omplete diagonalization of the S-mat-rix for an arbitrary number of parti
les. Below, whendis
ussing the resonan
e 
ontribution in Se
. 4.3, we�nd ourselves in the situation where the ABA part isstraightforward to write and solve. At the same time,a 
omplete diagonalization of the S-matrix is 
urrentlyunavailable, and the winding 
orre
tions 
annot be a
-
ounted for.In a situation like this in massive theories, it is a
ommon pra
ti
e to negle
t the winding 
orre
tions,given that these are now exponentially suppressed. InSe
. 4.3, we follow a similar strategy and use a lower-order approximation for the phase shift in the wind-ing part of the TBA than in the ABA part. Heuristi-
ally, this may be justi�ed by noting that the problemarises due to the massive resonant 
ontribution, andthe same justi�
ation as in the massive 
ase applies. Infa
t, there is a general reason for winding 
orre
tions

2.0

ln
[1

 −
 e

x
p

(−
e

(p
)R

)]
/2
π

0

0

−0.2

−0.4

−0.6

−1.0

p,s

1.51.00.5

R = 1.5,s−0.8

Fig. 7. The integrand appearing in the winding 
orre
-tions as a fun
tion of momentum. The blue line repre-sents the integrand for the ground state. The red lineshows the integrand for left-moving pseudo-parti
les inthe presen
e of a right-moving ex
itation with one unitof the KK momentum or vi
e versa. The radius of the
ir
le is taken to be R = 1:5`s, smaller than the radiiwe are typi
all interested in. Nevertheless, the integral isdominated by soft pseudo-parti
les and is rather insensi-tive to the UV behavior of the s
attering amplitude (
oloronline [37℄)to be less sensitive to the UV physi
s than the asymp-toti
 part. The integrals over the thermal bath in thefull TBA system are exponentially 
ut o� for momentaabove q � 1=R, whi
h is smaller than the 
hara
teristi
momenta of real parti
les. In the free-theory approxi-mation, the latter are of the order 2�=R. We illustratethis point for the GGRT theory in Fig. 7. We see thateven for a very short 
ompa
ti�
ation radius, the wind-ing integral is dominated by rather soft momenta and,as a 
onsequen
e, is not very sensitive to higher-order
orre
tions to the amplitude.4. ENERGY LEVELS OF FLUX TUBESWe are now in a good position to move on to themain topi
 of the paper and to apply the TBA te
h-nique to the 
al
ulation of the �ux tube spe
tra. The�rst step is to 
al
ulate the worldsheet S-matrix pertur-470
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tra from approximate integrability : : :batively in the p`s expansion. As explained in Se
. 2,the phonon s
attering on the worldsheet of a �ux tubeis universal up to `4s. The 
orresponding amplitudeswere 
al
ulated in [15℄. At this order, there is no par-ti
le produ
tion, and hen
e the S-matrix is integrableand 
ompletely determined by the two-parti
le elasti
amplitudes. To des
ribe these last, it is 
onvenientto 
hara
terize two-parti
le states a

ording to theirquantum numbers under the unbroken group O(2) ofrotations in the transverse plane. We �nd one s
alarjsi, one pseudos
alar jpi, and two 
omponents jt;�iof the symmetri
 tensor O(2) representations. Intro-du
ing 
reation operators for states of de�nite heli
ity,i. e., eigenstates of the 
ontinuous SO(2) rotations inthe transverse (X2; X3) plane,ayl(r)� = ayl(r)2 � iayl(r)3; (30)we write the 
orresponding states in the formjsi = (ayl+ayr� + ayl�ayr+)j0i;jpi = (ayl+ayr� � ayl�ayr+)j0i;jt;�i = ayl�ayr�j0i: (31)The two-parti
le S-matrix is diagonal in basis (31) andin the order `4s redu
es to the elasti
 s
attering phasesin ea
h of the 
hannels, whi
h are equal toÆs(p) = ÆGGRT + ÆPS +O(`6s); (32)Æt = ÆGGRT � ÆPS +O(`6s); (33)where ÆGGRT is the GGRT phase shift (7) and ÆGGRTis the PS phase shift given by2ÆPS = 26�D24� `4s(plpr)2; (34)where we restored the dependen
e on the dimension Dof the target spa
e-time6). The appearan
e of the 
riti-
al string dimension D
 = 26 in the PS phase shift (34)indi
ates that it introdu
es qualitatively new e�e
ts as
ompared to the leading GGRT phase shift. Indeed,it 
an be shown that the PS phase shift is responsiblefor the eventual breaking of integrability on the world-sheet of a non
riti
al string at a higher order in the `sexpansion.At the order `4s, whi
h we are working in, the theo-ry is still integrable, but is not re�e
tionless anymore.The PS shift removes the degenera
y between phase6) Of 
ourse, for D 6= 4, expressions (31) should be modi�ed,and the pseudos
alar representation turns into an antisymmetri
tensor.

shifts in di�erent 
hannels; the phase shift in the ten-sor 
hannel is di�erent from the one in the s
alar andpseudos
alar 
hannels. As a 
onsequen
e, annihilationtransitions like ayl2ayr2j0i ! ayl3ayr3j0i are possible atthis order.As a result, in general, one expe
ts that the re-�e
tionless TBA des
ribed in Se
. 3 
an no longer beapplied. For general D, this is indeed the 
ase. Butthe 
ase D = 4, where the string has only two trans-verse dire
tions, is spe
ial. Swit
hing to the heli
itybasis (30) allows diagonalizing the S-matrix for an ar-bitrary number of parti
les. Hen
e, for two �avors, we
an still apply the full re�e
tionless ex
ited TBA sys-tem des
ribed in Se
. 3. The only modi�
ation is thatthe TBA parti
les have to be labeled by their heli
itiesrather than by O(2) �avors. The 
orresponding phaseshifts are given byÆ++ = Æ�� = Æt;Æ+� = Æ�+ = Æs(p): (35)Before 
on
luding the se
tion, we brie�y 
ommenton the D = 3 
ase be
ause we dis
uss the D = 3 lat-ti
e data in what follows. In that 
ase, we �nd a singletwo-parti
le state with zero total momentum. The PSamplitude in this 
ase vanishes for kinemati
 reasons,and the worldsheet S-matrix agrees with the GGRTS-matrix at the order `4s.We now apply the TBA approa
h to various states(and theories).4.1. Ground-state energyAs dis
ussed in Se
. 2, the ground state is the onlystate for whi
h the 
onventional `s=R expansion is ad-equate for explaining the data. The va
uum matrixelement of the PS operator in (9) vanishes. Hen
e, theground-state energy deviates from that in the GGRTmodel only at the order (`s=R)7. As shown in Fig. 1,the sum of the universal terms agrees very well withthe latti
e data. We �nd equally good agreement byapplying the TBA method. Using the leading `2s-or-der expression for the phase shift (i. e., the GGRTphase shift), the solution of the TBA equations withN = ~N = 0 reprodu
es the GGRT va
uum energy(see [22℄ for details). Figure 1 shows that the two re-sults are undistinguishable at the 
urrently availablelevel of pre
ision of the latti
e data.In
luding the PS phase shift does not 
hange theanswer, in agreement with the result from the `s=R ex-pansion. Indeed, in this 
ase, all TBA parti
les are
hara
terized by a single pseudo-energy �(q), whi
h isobtained by solving a single TBA 
onstraint that takes471
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f. with the general form of the TBA 
on-straints in (13), (14)),�(q) = q + 12�R Z dq0�d 2Æ++(q; q0)dq0 ++ d 2Æ+�(q; q0)dq0 � ln [1� exp(�R�(q0))℄ : (36)The PS 
ontribution 
an
els in the sum of the phaseshifts, and we obtain exa
tly the same pseudo-energyas in the GGRT theory, and 
orrespondingly the sameresult for the va
uum energy.4.2. Purely left(right)-moving statesWe turn to states that 
ontain only left- (or right-)moving real phonons, i. e., ~N = 0 and arbitrary N .This is the simplest 
lass of states for whi
h the stan-dard `s=R expansion breaks down even for relativelylong strings, as 
an be seen in Fig. 2. Fortunately,these states are still simple from the point of view ofthe TBA. The ABA is espe
ially simple be
ause thereare no intera
tions between left-movers. A

ounting forwindings by keeping the leading GGRT part of the s
at-tering amplitude, we obtain the GGRT expression asan approximation for the energies of these states. Aswe already dis
ussed, this approximation works verywell.To �nd the result for the amplitude to the order`4s given in Eq. (35), we have to solve the TBA 
on-straints (13) and (14) for four di�erent pseudo-energies,��l and ��r . As a 
onsequen
e, di�erent from the groundstate, the energies a
quire a dependen
e on the PSphase shift (even though the PS operator has zero mat-rix elements for these states, and hen
e there is no(`s=R)5-
orre
tion in the standard perturbative expan-sion). The TBA equations together with the expli
itexpressions for the phase shifts (35) imply that pseudo-energies are now 
omplex and have the form��l(r)(q) = 
l(r)q � idl(r)q2 (37)with real 
l(r) and dl(r).The resulting set of equations for the 
oe�
ients
 and d is straightforward to solve numeri
ally. Theresult is presented in Fig. 8. The �gure shows boththe result in whi
h the windings are evaluated for thephase shift at the order `4s as dis
ussed here and for theGGRT phase. In a

ordan
e with our earlier dis
ussionabout the UV insensitivity of the winding 
orre
tions,the e�e
t of the PS phase is very small (. 0:5%).The GGRT winding 
orre
tions are in fa
t alsosmall. This 
an be seen in Fig. 8, whi
h also shows
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0Fig. 8. �E = E � R=`2s as a fun
tion of the lengthof the �ux tube for the states with left-movers withone and two units of the KK momentum in orangeand red, respe
tively. The data is taken from [5℄. Thesolid lines show the theoreti
al predi
tions derived fromEqs. (41)�(43) with the PS intera
tion taken into a
-
ount to all orders. The darker dashed lines show theresult in whi
h only the GGRT phase is in
luded. Thedot-dashed line shows the ABA or in this 
ase equiva-lently the free-theory result (
olor online [37℄)the ABA result, or equivalently the free-theory answer,for the energies. The physi
s of these states is verysimple. To a very good approximation, they are just
olle
tions of free phonons.4.3. States with a left- and a right-mover and anew massive stateWe now 
onsider the states with one left- and oneright-moving parti
le, ea
h 
arrying one unit of mo-mentum, i. e., N = ~N = 1. These are the lowest-energystates for whi
h the ABA is nontrivial and we �nally
an see all ingredients of the TBA method at work.Figure 3 shows that for these states, the naive deriva-tive expansion does not provide a good approximationfor strings with lengths a

essible on the latti
e.As before, keeping the GGRT part of the phase shiftin the TBA system results in the GGRT expression forthe energies. From Fig. 3, we �nd that it provides a472
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tion of the lengthof the �ux tube for the lowest-lying states 
ontainingboth left- and right-movers. The respe
tive parity-evenand parity-odd states with spin 0 are shown in blueand red. The states with spin 2 are shown in green.The data is taken from [5℄. The red, blue, and lightergreen lines show the theoreti
al predi
tions derivedfrom Eqs. (41)�(43) with the PS intera
tion in
ludedto all orders. The darker green dashed line shows theresult when both the GGRT and PS phases are takeninto a

ount in the ABA, but only the GGRT phase istaken into a

ount for winding 
orre
tions. The twoare virtually indistinguishable, on
e again showing theUV insensitivity of the winding 
orre
tions. The dashedgray line shows the result for the GGRT theory (
oloronline [37℄)reasonable approximation for the s
alar and tensor le-vels, but not for the pseudos
alar. We now in
lude thePS phase shift. Similarly to purely left-moving states,we are after four 
omplex pseudo-energies, ��l and ��r .They are again of the quadrati
 form (37) and satisfythe same reality 
onditions. Sin
e our states satisfypl = pr, the TBA system imposes the additional re-lation ��l (q) = ��r (q) for the s
alar and pseudos
alarstate and ��l (q) = ��r (q) for the tensor states. The re-sulting equations for 
 and d are again readily solvednumeri
ally. The results are shown in Fig. 9. The 
on-vergen
e of the TBA result is signi�
antly better thanthat of the `s=R-expansion. For the s
alar and tensor

levels, we also �nd signi�
antly improved agreementwith the latti
e data. This is noteworthy espe
ially be-
ause so far we have not introdu
ed any free parameterin our analysis in addition to `s, whi
h is �xed fromthe ground-state data, just like in the `s=R expansion.The 
urves presented in Fig. 9 are therefore the resultsof a 
al
ulation from �rst prin
iples.The improvements in the 
onvergen
e of the per-turbative expansion are more prominent for the s
alarstate than for the tensor states. The reason for thisis that in the TBA method, the perturbative approxi-mation enters in the 
al
ulation of the s
attering am-plitudes. How good the perturbative expansion is, is
ontrolled by how soft the phonon momenta p`s arethat 
omprise the states. These momenta are deter-mined from solving the TBA system and take di�erentvalues in the di�erent 
hannels for the same value ofR. The PS 
orre
tion in the (pseudo)s
alar 
hannelsadds to the tree-level phase shift. In the tensor 
han-nel, it has the opposite sign, and hen
e the phase shiftgrows more slowly. In agreement with the dis
ussionat the end of Se
. 3.2, the phonon momenta are thensofter in the (pseudo)s
alar se
tors, and therefore theperturbative expansion behaves better.To demonstrate this e�e
t, the theoreti
al 
urves onthe plot are terminated when the momenta of the par-ti
les be
ome large enough su
h that the one-loop 
on-tribution to the phase shift ÆPS be
omes equal to thetree-level one ÆGGRT . This happens when p � 1:8`s.Even though the PS 
ontribution to the phase shifta�e
ts these states signi�
antly, its e�e
t on the win-ding 
orre
tions is still negligible be
ause the winding
orre
tions are UV insensitive, as shown above. To il-lustrate this expli
itly for these states, we also solvedthe TBA system by in
luding the PS phase shift inthe asymptoti
 Bethe ansatz but negle
ting it in allwinding 
ontributions (i. e., in TBA 
onstraints (13)and (14) and in the integral terms in momenta quanti-zation 
onditions (11) and (12)). The result is shownin Fig. 9 together with the exa
t treatment. The dif-feren
e is again less than 0.5%.The improved theoreti
al 
ontrol makes it manifestthat the anomalous behavior of the pseudos
alar levelis a genuinely new physi
al e�e
t and is unrelated tothe bad 
onvergen
e of the expansion. At this order,the s
alar and pseudos
alar states, for whi
h the ex-pansion is well-behaved, are predi
ted to be degenera-te. But the observed splitting between the s
alar andpseudos
alar states is larger than the splitting (bothpredi
ted and observed) between the s
alar and tensorstates even for relatively long strings. It is then im-plausible to expe
t that this dis
repan
y would disap-473
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ontributions to the worldsheetS-matrix are in
luded.This strongly suggests that to explain the anoma-lous behavior of the pseudos
alar level, we need to re-
onsider the basi
 assumptions underlying our 
al
u-lation and add a qualitatively new input. An impor-tant hint suggesting the missing ingredient 
omes fromobserving that the energy of the pseudos
alar level ispra
ti
ally independent of the length of a �ux tube.This suggests that we are observing a light massiveex
itation on the worldsheet of a �ux tube � a newparti
le. A similar explanation for the energy of thepseudos
alar level was suggested earlier in [5℄.It is straightforward to in
orporate su
h a state intoour e�e
tive string theory framework. The minimalpossibility is to introdu
e a new massive pseudos
alar�eld � on the �ux tube worldsheet. At the leading orderin the derivative expansion, intera
tions of su
h a �eldwith the Goldstones are des
ribed by the LagrangianL� = �12(��)2 � 12m2�2 �� �8���ij������
X i���
Xj + : : : ; (38)where dots stand for terms that are of higher ordersin �elds and derivatives. In parti
ular, these in
ludemodel-independent quarti
 ��XX 
ouplings origina-ting from the 
ovariant 
ompletion of the kineti
 andmass term for �.The presen
e of four-derivative terms in the leadingpseudos
alar �XX 
oupling in (38) is di
tated by non-linearly realized Lorentz invarian
e. It requires thatevery term in the a
tion 
orresponds to the expansionof some geometri
 invariant (see, e. g., [29℄ for a re
entdis
ussion). The invariant that 
orresponds to the in-tera
tion term in (38) is rather spe
ial and deservessome attention. It originates from� = �8��Ki�
Kj
� ����ij ; (39)where Ki�
 is the extrinsi
 
urvature of the worldsheet.Thus, � is 
oupled to the topologi
al invariant knownas the self-interse
tion number of the string worldsheet.The existen
e of this worldsheet �-term for a stringin a four-dimensional target-spa
e was pointed out byPolyakov [30℄, and it was suggested that it should begenerated on the �ux tube worldsheet in the presen
e ofthe bulk �-term [31℄. Given this 
oupling, it is naturalto refer to the �eld � as the worldsheet axion.This axion is not a stable parti
le, and it shouldnot therefore be added to the set of asymptoti
 statesin the TBA system. However, it does 
ontribute to the

s
attering of Goldstones. In parti
ular, it appears asa resonan
e in the pseudos
alar 
hannel, where its ef-fe
t is most pronoun
ed. A diagrammati
 
al
ulationusing a
tion (38) to the leading order in � gives the
ontribution to the two-parti
le phase shift,2Æres(p) = �1 �2`4sp68�2(4p2 +m2) ++ 2�2 tan�1� �2`4sp68�2(m2 � 4p2)� : (40)with �1 = (�1; 1; 1), �2 = (0; 0; 1) for the respe
tives
alar, symmetri
, and pseudos
alar 
hannels. The�2-term represents the resonant s-
hannel 
ontribution,while the �1-term arises from the t- and u-
hannels.A

ounting for the pseudos
alar resonan
e in thewinding 
ontributions is problemati
 be
ause swit
hingto the heli
ity �eld basis (30) no longer diagonalizes thefull S-matrix. Already in the two-parti
le se
tor, phaseshifts (40) now take di�erent values in the s
alar andpseudos
alar 
hannels (whi
h is, of 
ourse, the reasonwe introdu
ed the resonan
e in the �rst pla
e). Asa 
onsequen
e, we 
an no longer in
lude the PS 
on-tribution into winding 
orre
tions. However, we havealready seen that the winding 
orre
tions are not UVsensitive and that the error introdu
ed by not in
lu-ding the PS 
ontribution into the winding 
orre
tionsis negligible (. 0:5%). From now on, we therefore a
-
ount for the full phase shifts only in the ABA partof the generalized momentum quantization 
onditions(11) and (12) and everywhere else keep only the GGRT
ontribution. This signi�
antly simpli�es the TBA sys-tem. The pseudo-energies be
ome real, independent ofthe �avor of the parti
les, and linear in the momenta,�1l(r)(q) = �2l(r)(q) = 
q:This 
onverts the TBA equations into the simple sys-tem of algebrai
 equations
 = 1 + p`2sR � �(D � 2)12R2
 `2s; (41)pR+ 2Æ(p)� �(D � 2)12R
 `2sp = 2�N; (42)where N = 1, and the expression for the energy is�E = 2p� �(D � 2)6R
 : (43)Depending on the state, the phase shift in Eq. (42) isgiven by the sum of one of (32), (33) and of (40).The axion introdu
es two free parameters, the massm and the 
oupling � (or, equivalently, the width). We474



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spe
tra from approximate integrability : : :

8

∆E ,s

2 76543

4

3

2

1

0

R/,sFig. 10. �E = E � R=`2s as a fun
tion of the lengthof the �ux tube for the lowest-lying states 
ontainingboth left- and right-movers. The data is again takenfrom [5℄ and the 
oloring is as in Fig. 9. The red,blue, and green lines show the theoreti
al predi
tionsderived from Eqs. (41)�(43) with the GGRT, PS, andresonan
e 
ontributions to the phase shift in
luded inthe ABA, but with winding 
orre
tions only taken intoa

ount for the GGRT 
ontribution. Lines are shownas dashed where the PS 
ontribution be
omes largerthan the GGRT 
ontribution (
olor online [37℄)determine them by �tting the model to the data and�nd m`s = 1:85+0:02�0:03; �`�2s = 9:6� 0:1: (44)In physi
al units, this 
orresponds to approximately750 MeV, whi
h is about a half of the mass of thelightest glueball. It should be kept in mind that thepresented error bars re�e
t the statisti
al un
ertaintyonly. We estimate the systemati
 errors to be 
ompa-rable. The results are presented in Fig. 10. The lineson the plot be
ome dashed where ÆPS be
omes equalto ÆNG. We see that in
luding the axion not only pro-vided a very good �t for the pseudos
alar state but alsosigni�
antly improved the �t in other 
hannels thanksto the �1-term in (40). We note that 
hanging thesign of this 
orre
tion by varying the parameters is notpossible, and is therefore rather nontrivial. The best

�t values 
orrespond to a relatively narrow resonan
ewith a width equal to� = 0:39=`s = 0:21m:4.4. Determination of phase shifts from thedata and ex
ited levelsAnother advantage of the method developed in thispaper is that it allows us to present the data in anew way. Similarly to the standard pro
edure usedto extra
t s
attering amplitudes from latti
e 
al
ula-tions [19℄, we 
an use the system of equations (41)�(43)to solve for p and Æ given �E(R). The only differen-
e is that we in
lude winding 
orre
tions be
ause ourphonons are massless. This alternative way of presen-ting data allows us to dire
tly visualize the presen
eof a resonan
e and the extent to whi
h the resonan
eimproves the �t in the s
alar and tensor 
hannels. Inaddition, it has the advantage that we 
an 
ombinedi�erent ex
ited states in the same plot be
ause theyprobe the same underlying s
attering amplitudes. Asan example, we 
onsider the phase shift for the stateswith one left- and one right-mover as a fun
tion of the
enter-of-mass energy extra
ted from the data for theenergy levels. In this 
ase, the solution 
an be writtenin a relatively 
ompa
t formpl = pr = �E2 + �6(�E`2s + 2R) ; (45)2Æ = 2� � �ER2 + �18 3�E2`4s + 2�`2s � 12R2(�E`2s + 2R)2 : (46)The resulting phase shift as a fun
tion of momen-tum extra
ted from the data is shown in Fig. 11 alongwith the theoreti
al predi
tions for s
attering phaseshifts in various 
hannels. We also in
luded the data forthe next ex
ited pseudos
alar level in the lower panel.The theoreti
al predi
tion and the data still agree forthe ex
ited state at low momenta, but the agreementbe
omes noti
eably worse as the momentum in
reases.Nevertheless, we 
learly see the 
hara
teristi
 resonan
eshape with a mass m � (1:8�1:9)`�1s . The middle andupper panels of the same �gure show the s
alar andtensor 
hannels, and it is 
lear that there is no sign ofa resonan
e in these 
hannels. The dashed 
urves rep-resent the theory predi
tion in the absen
e of the re-sonan
e and only depend on one parameter, the stringwidth `s. The lower panel 
learly shows that a newmassive pseudos
alar parti
le has to be introdu
ed toexplain the data.475
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Fig. 11. The s
attering phase shift Æ for two Goldstonebosons as a fun
tion of the 
enter-of-mass momentumin the symmetri
 tra
eless, s
alar, and antisymmetri

hannel in the respe
tive top, middle, and bottom pan-els. The solid and the long dashed lines respe
tivelyshow the theoreti
al predi
tion with and without theworldsheet axionOf 
ourse, introdu
ing a new massive pseudos
alarstate leads to additional predi
tions. As already men-tioned, it also a�e
ts the s
alar and tensor states andimproves the agreement between theory and latti
edata for them. In addition, we should be able to givemomentum to this parti
le so as to make de�nite pre-di
tions for ex
ited states with a nonzero total mo-mentum, for whi
h data is also available. If we ex-tra
t phase shifts from the data for ex
ited states withone left- and one right-mover with unequal momenta,we expe
t to �nd a resonan
e there as well. We showthe result for the state in whi
h the left-mover has oneand the right-mover has two units of the KK momen-tum in Fig. 12, together with the theoreti
al predi
tionand the data for the state with zero total momentum,whi
h we dis
ussed above. Similarly, predi
tions 
an bemade for the s
alar and tensor states with a nonzerototal momentum. The states with one unit of the totalmomentum for s
alars and tensors are also shown inFig. 12. The phase shifts extra
ted from the di�erentex
ited states agree relatively well, almost within thestatisti
al errors of the latti
e 
al
ulations. In parti
u-lar, we do see the resonan
e not only in the state with
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Fig. 12. The s
attering phase shift Æ for two Goldstonebosons as a fun
tion of the 
enter-of-mass momentumin the symmetri
 tra
eless, s
alar, and antisymmetri

hannel in the respe
tive top, middle, and bottom pan-els. The darker points show the lowest-lying states withzero total momentum, the 
rosses show the �rst ex
itedpseudos
alar state, and the squares show the lowest-lying states with one unit of total momentum. Thelines show the theoreti
al predi
tionthe total momentum zero but also in the state with anonzero momentum. The small dis
repan
y betweenthe two 
an be attributed to two e�e
ts. We did notin
lude the �nite-size 
orre
tions due to the resonan
eitself into our 
al
ulation. An estimate shows that thisa�e
ts the data points 
orresponding to the shortestlengths more strongly (as one would expe
t), and bringsthe phase shifts from the state with the total momen-tum zero and unity into slightly better agreement. Theremaining di�eren
e seems to be due to dis
retizatione�e
ts in the latti
e 
al
ulations themselves, whi
h arealso responsible for the splitting between the two tensorstates. 4.5. D = 3 Yang�MillsThese te
hniques 
an, of 
ourse, be also applied tothe existing latti
e data in D = 3 dimensions. In this
ase, we have a single 
hannel for two-parti
le s
atte-ring. The nonlinearly realized Lorentz invarian
e im-plies that the phase shift takes the form476



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spe
tra from approximate integrability : : :2Æ = 2ÆGGRT +O(`6ss3): (47)The 
orre
tions here are nonuniversal. In parti
ular, asalready mentioned, the GGRT phase shift itself is 
om-patible with nonlinearly realized Lorentz symmetry forD = 3.In this se
tion, we 
ompare the data from [6℄, whi
his for the gauge group SU(6) with � = 171 and the Wil-son loop in the fundamental representation, with theGGRT predi
tion. The result for the �ve lowest-lyingstates with an even number of phonons and zero totalmomentum is shown in Fig. 13. We see that all statesare in qualitative agreement with the GGRT phase shiftand see no eviden
e for new light massive states. How-ever, there are small quantitative di�eren
es betweenthe GGRT predi
tion and the data. The energies of thestates shown in yellow and orange 
orrespond to stateswith two and four phonons and are predi
ted to be de-generate. However, they appear to be split in the data.Furthermore, the measured energies are systemati
allybelow the GGRT predi
tion. This suggests that thebinding energy between the phonons is larger in theSU(6) gauge theory than in the GGRT theory, whi
himplies a phase shift that grows more rapidly, 
onsis-tently with what is seen in the right panel of Fig. 13. Itis then natural to introdu
e 
orre
tions into the phaseshift 2Æ = 2ÆGGRT + 
3`6ss3; (48)and determine this leading 
orre
tion from the datausing the TBA, taking only the GGRT phase shift inthe windings into a

ount, as before. Su
h a 
orre
-tion to the phase shift would follow from higher-ordergeometri
 invariants in the Goldstone theory su
h asR2 in the a
tion, and we 
an trust our pro
edure pro-vided the 
oe�
ient is small enough, su
h that this isin fa
t a 
orre
tion for the range of momenta of inte-rest. Based on loop 
ounting, we expe
t the 
oe�
ientto be of the order 1=(2�)2, whi
h should roughly bereliable for p`s . p2�, in
luding all data points of the�rst ex
ited state for both two- and four-parti
le states,but only some of the se
ond ex
ited two-parti
le state.We extra
t 
3 from the �rst ex
ited two-parti
le stateusing the TBA equations (41)�(43) as well as the �rstex
ited four-parti
le state using the relations
 = 1 + 2p`2sR � �(D � 2)12R2
 `2s; (49)pR+ 4Æ(p)� �(D � 2)12R
 `2sp = 2�N (50)with N = 1, and

�E = 4p� �(D � 2)6R
 : (51)In
luding all data points with p`s � 2 and taking theerror bars at fa
e value, we �nd
3 = 0:7� 0:1(2�)2 ; (52)nonzero at approximately 7�. This 
orre
tion in
reasesthe binding energies and thus lowers the energies ofthe theory predi
tion. It also introdu
es a splittingbetween two-parti
le states and four-parti
le states, inagreement with the data simply be
ause the phonons
omprising the two-parti
le states 
arry larger mo-menta and are more strongly bound than the phononsmaking up the four-parti
le states.Ignoring the 
ontributions to the winding 
orre
-tions from 
orre
tions to the GGRT phase shift has sofar worked well. There is a subtlety, however. Thepositive 
oe�
ient 
3 implies a 
orre
tion to the pseu-do-energies with a negative 
oe�
ient. As a 
onse-quen
e, the integrals in the TBA equations are nolonger 
onvergent. These divergen
es are not surprisingand arise be
ause higher-derivative theories typi
ally
ome with ghosts around the 
ut-o� s
ale. The per-turbative 
al
ulation presented in Se
. 3.3 shows thatthis happens for positive 
3. We know, of 
ourse, thatthe full theory does not have ghosts and that there arehigher-order terms that 
ure the divergen
es. Intro-du
ing su
h higher-order terms by hand seems unsatis-fa
tory be
ause it would introdu
e additional arbitrary
oe�
ients. It seems more appealing to interptret the`6ss3 
orre
tion as arising from a heavy resonan
e thathas been integrated out, whi
h suggests the phase shiftexp(2iÆ) = exp(2i~̀2splpr)s� 2iM�+M2s+ 2iM�+M2 �� s� 2iM��M2s+ 2iM��M2 ; (53)where ~̀2s = `2s � 32�M(M2 + 4�2) ; (54)when
e the 
orre
t phase shift is re
overed for s�M2.This amplitude (53) is not 
onsistent with the nonline-arly realized symmetries and should for now be simplythought of as a �tting fun
tion that has the desirableproperty that the integrals in the TBA remain �niteand 
orre
tions to windings relative to those in theGGRT theory remain small. Fitting to the data, we�nd M = 3:7=`s and � = 1:0=`s: (55)477
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attering phase shift Æ for the lowest-lying parity-even states with zero total momentum. Thelines show the theoreti
al predi
tion of the GGRT theory (
olor online [37℄)Upon expansion in s, this leads to a value of 
3 ingood agreement with Eq. (52), and hen
e the phaseshift is approximated well by our �tting fun
tion belowthe resonan
e. Above the resonan
e, it does not havethe 
orre
t behavior 
ompatible with the nonlinearlyrealized Lorentz invarian
e and should therefore not betrusted for p`s > 1:85.The resulting predi
tions for the energy levels of thestates involved in the �t are shown in Fig. 14, and wesee that the modi�ed phase shift 
orre
tly reprodu
esthe larger binding energies and the splitting betweentwo- and four-parti
le states seen in the data. Themomenta for some of the data points for the se
ondex
ited two-parti
le state as well as the data points forthe third ex
ited two-parti
le state are so large that ourapproximations be
ome unreliable. The ground state,however, is rather insensitive to the UV behavior of thephase shift, and it is interesting to 
ompute the 
orre
-tion to the ground-state energy that 
orresponds to our
orre
tion to the phase shift. We do this by solving theTBA numeri
ally by iterations. The result is shownin Fig. 15. The left panel shows that the ground-statedata is in good agreement with our predi
tion. Theright panel shows that the leading 
orre
tion to theGGRT ground state energy is well des
ribed by an R�7term down to R > 1:5`s and be
omes as steep as R�11for the shortest strings studied in [6℄.
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ond ex
ited two-parti
le state, only data for sixlongest strings is in
luded in the �t be
ause the phononmomenta be
ome too large478
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tion with the tension derived from a �t to the data as before. The dashed lines show the energy for the state with thesame 
harge under the 
enter group 
onsisting of nonintera
ting fundamental strings (
olor online [37℄)4.6. k-strings in D = 3 Yang�MillsIn addition to the data for Wilson loops in the fun-damental representation presented in [6℄, ni
e data forSU(6) gauge group at � = 171 has re
ently been pre- sented for bound states of su
h strings with k = 2 andk = 3 units of 
harge under the 
enter symmetry [7℄.The left panel of Fig. 16 shows the data for the groundstates with k = 2 in the antisymmetri
 and symmet-ri
 representation together with the GGRT predi
tion.479
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ted from the data (
olor online [37℄)
∆E ,s

2

R/,s

543

5

4

2

0
1 6 7 8

3

1

δ

p,s

3.5

0.2 1.6

3.0

2.5

2.0

1.5

1.0

0.5

0.4 0.6 0.8 1.0 1.2 1.4Fig. 18. The left panel shows the energy as a fun
tion of the string length for the lowest-lying ex
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 representation with k = 2 with an even number of phonons and zero total momentum. The solid lines are thetheory predi
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le states, the dashed lines represent 4-parti
le states. The right panel shows the phaseshift extra
ted from the data (
olor online [37℄)The right panel of Fig. 16 shows the ground-state datafor the antisymmetri
, mixed, and symmetri
 represen-tations with k = 3. Higher representations are relatedto these by 
harge 
onjugation. For 
omparison, wealso show the energies 
orresponding to two and threenonintera
ting fundamental strings as dashed lines. Ananalyti
 
al
ulation of the tension of these obje
ts thatis in remarkable agreement with the numeri
al data 
an
be found in [32℄. The antisymmetri
 representationsare bound for both k = 2 and k = 3. The symmetri
representations are unbound for both k = 2 and k == 3, while the mixed representation for k = 3 is atbest marginally bound. This motivates us to study theantisymmetri
 representations in more detail and leavethe others for a future study. To illustrate that ourmethods also work for k-strings, we show the energy480



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spe
tra from approximate integrability : : :levels and phase shift for the states with equal num-bers of left- and right-movers and zero total momentumin Figs. 17 and 18, extra
ting phase shifts for 2- and4-parti
le states using Eqs. (41)�(43) and (49)�(51).The data shows 
lear eviden
e for a resonan
e and thetheory predi
tions are obtained with the resonan
e withm = 1:88=`2As and � = 0:29=`2As ; (56)m = 1:74=`3As and � = 0:16=`3As ; (57)where the supers
ript denotes the representation of thestring. It was perhaps natural to expe
t the presen
eof resonan
es for k-strings, given that these 
an bethought of as bound states of two fundamental �uxtubes. It is intriguing that the values for the mass andthe width are 
lose when measured in the 
orrespond-ing string units (and 
lose to the mass and width of theworldsheet axion in 4D).These states ni
ely illustrate that the energy plots
an be rather 
omplex be
ause of level 
rossing evenwith a very simple phase shift. The solid lines rep-resent the theory predi
tions for 2-parti
le states, thedashed lines those for 4-parti
le states. We 
learly seeavoided level 
rossing for the 2-parti
le states as wellas between the 4-parti
le states. However, the 2- and4-parti
le states, shown in red and purple, 
ross. In theintegrable theory, these states have di�erent quantumnumbers and do not mix. In QCD, the integrability isnot exa
t and a 
ertain amount of mixing between 2-and 4-parti
le states is expe
ted, whi
h would lead toavoided level 
rossing.The theory predi
tions also show that the extra
-tion of these energy levels is very subtle be
ause severalenergy levels have 
omparable energies and the 
orre-lation fun
tion may not be dominated by a single ex-ponential. Also, the phase shift extra
tion from the en-ergy levels in the region of level 
rossing is not 
omp-letely straightforward due to ambiguities of quantumnumber assignments. The identi�
ation of two- andfour-parti
le states employed here appears to produ
ethe most meaningful results on the phase shift plot,but we 
annot ex
lude at the moment that some of thedata points might have been misidenti�ed, espe
iallyfor k = 2 strings. This motivates further high-pre
isionlatti
e measurements of these states. Hopefully, te
h-niques presented here might be helpful in guiding thesemeasurements.We note an interesting feature exhibited by the k == 2 data: a very pronoun
ed break in the resonan
eplateau on the energy plot for the lowest (orange) levelat R=`2As . 3. The 
orresponding points also show

up very far from the theory 
urve on the 
orrespondingphase shift plot. The natural explanation for the originof this break is that it o

urs when the physi
al size ofthe 
ompa
t dimension be
omes 
omparable to the sizeof the massive resonant state. Our phase shift extra
-tion be
omes unreliable at these short radii, be
ausethe winding 
orre
tions due to the resonan
e be
omelarge. This interpretation is supported by observingthat a very similar break at the same values of R alsoappears in the lightest glueball energy plot [7℄, sugges-ting that the size of the resonan
e is roughly equal tothe size of the lightest glueball.The k = 3 data does not exhibit su
h a break. Per-haps only the shortest point in Fig. 17 (with R=`3As �� 2) 
an be 
onsidered an indi
ation for the beginningof the break. This is in agreement with the k = 3string being mu
h more strongly bound than the k = 2strings. The k = 3 tension is equal to �3A � 0:6 � 3�f ,while the k = 2 tension is �2A � 0:8 � 2�f , where �f isthe fundamental �ux tube tension.5. FUTURE DIRECTIONS ANDCONCLUSIONSWe feel that the most important 
on
lusion to bedrawn from this paper is that there is strong motivationfor further high-pre
ision latti
e studies of the proper-ties of �ux tubes. The TBAmethod provides a solid an-alyti
 framework for theoreti
al interpretation of latti
eresults for the �ux tube lengths that are a

essible withthe existing 
omputer power. This opens the possibilityfor a 
omprehensive des
ription of the worldsheet dy-nami
s of the 
on�ning strings in the near future, whi
hmight be an important step towards understanding thephysi
s of 
on�nement.The results presented here pose a number of int-riguing questions, whi
h may be answered with a newdata. Many of them 
on
ern the nature of the observedpseudos
alar resonan
e in the D = 4 data. In parti
u-lar, the phase shift plots in Figs. 11 and 12 show asystemati
 disagreement between the theory 
urve andthe data at the momenta above the resonan
e in thepseudos
alar 
hannel. By itself, this disagreement isnot very dramati
, given that the 
orresponding mo-menta are already quite large. But an intriguing pro-perty of the observed phase shift in the pseudos
alar
hannel is a pronoun
ed plateau at Æ � �, whi
h 
or-responds to the absen
e of s
attering. Together witha systemati
ally better agreement between theory anddata in other 
hannels, this suggests that some interes-ting pie
es of physi
s may still be missing.7 ÆÝÒÔ, âûï. 3 481
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0.1940Fig. 19. The left panel shows the ground-state energy in the absen
e and presen
e of additional massive states in lighterand darker green, respe
tively. The data points shift be
ause we simultaneously �t for the mass and the string tension. Theright panel shows the one- and two-sigma 
ontours in the mass�tension plane. The shortest point was not in
luded in the�t, but nevertheless �ts well (
olor online [37℄)The experien
e with D = 3 k-string data suggeststhat (at least partially) the plateau may be an arti-fa
t resulting from misidenti�
ation of the ex
ited-statedata points. The phase shift plot was 
onstru
ted as-suming that these 
orrespond to the two-parti
le state.It appears very likely that some of these points (in par-ti
ular, those with p`s & 2) represent a four-parti
lestate instead. With this interpretation, the dedu
edvalues of the momenta will be roughly halved, bringingthese points into the resonan
e region and signi�
antlyde
reasing the tension between theory and data. Re-solving this question will require both more a

uratedata for ex
ited states in this region and further theo-reti
al work. Indeed, in
luding four-parti
le states inthe analysis is not as straightforward for D = 4 dataas it was in D = 3 due to a larger number of 
hannelsin D = 4. There is no problem of prin
iple here, andwe plan to implement this in future work.The plateau may be indi
ative of even more interes-ting physi
s. Indeed, the axion model in (38) representsonly a minimal e�e
tive �eld theory explaining the ob-served resonan
e in the pseudos
alar 
hannel. More
ompli
ated s
enarios are possible. In parti
ular, wenote that as a 
onsequen
e of two-dimensional kine-mati
s, a two-parti
le threshold generi
ally appears asa resonant pole. This opens an interesting possibilitythat the axion may in fa
t be a threshold bound state

of even lighter massive worldsheet ex
itations.Even if this possibility is not realized, it is awell-motivated question whether the axion is indeed thelightest massive mode, or there might be lighter mas-sive states missed by the latti
e sear
hes. For an insightinto how light these states might be, we 
an use theavailable high pre
ision data for the ground-state en-ergy. A free parti
le of a mass m on the worldsheet re-sults in an additional 
ontribution to the ground-stateCasimir energy of the form�E(R) = �m� Xn 1nK1(mnR):Given that the latti
e data shows no sign of a reso-nan
e in the s
alar 
hannel, we 
onsider the e�e
t ofadding a pair of su
h parti
les on the ground-state en-ergy (having a massive O(2) ve
tor in mind). The re-sult is presented in Fig. 19. We ex
lude the data point
orresponding to the shortest string from the �t to be
onservative. We see that the best-�t value for themass is m � 1:3`s. Taking the error bars at fa
e value,we �nd an improvement in the �t 
orresponding to al-most 4� (and mu
h larger if the data for the shorteststring had been in
luded) in favor of the existen
e ofadditional light parti
les.A 
omparable improvement of the �t may bea
hieved by adding an R�7 
orre
tion to the gro-482



ÆÝÒÔ, òîì 147, âûï. 3, 2015 Flux tube spe
tra from approximate integrability : : :und-state energy, but the required value for the 
or-responding 
oe�
ient is about a fa
tor of �ve largerthan the typi
al size of the loop 
orre
tions (estimatedfrom the expansion of the GGRT ground-state energy).Of 
ourse, these 
onsiderations do not take possiblelatti
e systemati
s into a

ount. Most of the improve-ment in the �t is driven by the data points 
orrespond-ing to the shortest strings, whi
h might su�er from pos-sible dis
retization e�e
ts and from their proximity tothe de
on�nement transition. Nevertheless, this ob-servation provides an additional strong motivation forthe systemati
 sear
h for �exoti
� light states on theworldsheet with quantum numbers for whi
h the 
or-responding NG state is expe
ted to be heavy.The natural 
andidate operators for 
reating newmassive states on the worldsheet are Polyakov loopswith additional lo
al insertions, su
h asW�� = TrP 0�F�� exp ZC A1A : (58)It is intriguing that the basis of operators used in [5℄ in-
ludes su
h an operator with (��) indi
es in the trans-verse plane (i. e., a pseudos
alar), but not with otherorientations. Related to this, to understand the ori-gin of the worldsheet axion better it will be interestingto study whi
h operator provides the best overlap forthe 
orresponding state, with (58) providing the mostnatural 
andidate.It would be very interesting to understand the mi
-ros
opi
 origin of the worldsheet axion, i. e., to deriveit from the 4D QCD des
ription. We note in this re-spe
t that a pseudos
alar state with the same mass (instring units) is also present in the available SU(5) datafrom [5℄, and hen
e the axion appears to be present inthe large N limit. Unfortunately, however, it appearsimpossible to use holographi
 gravitational AdS/QCDmodels to look for the axion quantitatively. For thegravitational des
ription to be appli
able, the stringlength should be short 
ompared to the AdS 
urva-ture length. This implies that the mass of the lightglueballs (gravitational KK modes) is parametri
allysmaller than the 
on�ning string tension, whi
h is notthe appropriate regime to des
ribe the pure glue theory.A less ambitious goal would be to look for foot-prints of the worldsheet axion in the spe
trum of 4Dstates. This should be possible, given that there is nofundamental obsta
le for extending the TBA te
hniqueto open strings. First steps in this dire
tion have al-ready been taken in [33℄ (see also [34℄, where the e�e
tof the PS intera
tion on the open string spe
trumwas dis
ussed using the 
onformal gauge approa
h).

Assuming that the worldsheet axion survives in thepresen
e of quarks, this opens an ex
iting possibilityto see its presen
e in the physi
al spe
trum of mesons.In parti
ular, we may expe
t mesons with a su�
ientlyhigh spin (su
h that the 
orresponding �ux tube islong enough) to exhibit universal ex
itations withenergy of the order of the axion mass 750 MeV and ofthe opposite parity, 
orresponding to an addition ofthe axion to the 
on�ning �ux tube. This expe
tationappears to be supported by the available latti
e datafor open strings in SU(3) gluodynami
s [35℄, whi
hshows an anomalous ��u ex
itation with the energythat mat
hes the worldsheet axion mass well, as waspreviously pointed out in [36℄.We are espe
ially grateful to Mike Teper for manyuseful dis
ussions and for providing us with the lat-ti
e data in ele
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