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We consider Andreev—Majorana (AM) bound states with zero energy on surfaces, interfaces, and vortices in
different phases of the p-wave superfluids. We discuss the chiral superfluid >He-A and time reversal invariant
phases: superfluid He-B, planar and polar phases. The AM zero modes are determined by topology in the
bulk and disappear at the quantum phase transition from the topological to nontopological state of the super-
fluid. The topology demonstrates the interplay of dimensions. In particular, the zero-dimensional Weyl points
in chiral superfluids (the Berry phase monopoles in momentum space) give rise to the one-dimensional Fermi
arc of AM bound states on the surface and to the one-dimensional flat band of AM modes in the vortex core.
The one-dimensional nodal line in the polar phase produces a two-dimensional flat band of AM modes on the
surface. The interplay of dimensions also connects the AM states in superfluids with different dimensions. For
example, the topological properties of the spectrum of bound states in three-dimensional *He-B are connected
to the properties of the spectrum in the two-dimensional planar phase (thin film).

Contribution for the JETP special issue in honor of A. F. Andreev’s 75th birthday

DOI: 10.7868,/S0044451014120050
1. INTRODUCTION

Majorana fermions are ubiquitous in supercon-
ductors and fermionic superfluids. The Bogoliubov—
de Gennes equation for fermionic Bogoliubov—Nambu
quasiparticles can be brought to a real form by a uni-
tary transformation. This implies a linear relation
between the particle and antiparticle field operators,
which is the hallmark of a Majorana fermion. The
fermionic statistics and Cooper pair correlations give
rise to Majorana fermions, irrespective of geometry, di-
mensionality, symmetry, and topology [1-3]. The role
of topology is to protect gapless Majorana fermions,
which play a major role at low temperatures, when the
gapped degrees of freedom are frozen out. For some
combinations of geometry, dimensionality, and symme-
try, these Majorana fermions behave as emergent mass-
less relativistic particles. This suggests that Majorana
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fermions may serve as building blocks for constructing
the Weyl particles of the Standard Model [4].

Here, we consider gapless Majorana fermions, which
appear as Andreev bound states on the surfaces of
superfluids and on topological objects in superfluids:
quantized vortices, solitons, and domain walls. In all
cases, the bound states are formed due to the subse-
quent Andreev reflections of particles and holes. The
key factor for the formation of Andreev bound states on
a small defect with the size of the order of the coherence
length is a nontrivial phase difference of the order pa-
rameter at the opposite ends of the particle trajectory.
In general, it depends on the structure of the order pa-
rameter in real and momentum space, which can be
rather complicated. The possibilities for the formation
of Andreev bound states are rather diverse, several of
them are shown in Fig. 1. Particularly interesting is
the case where Andreev bound states are topologically
stable, which means that they have stable zero-energy
Majorana modes that cannot be eliminated by a small
perturbation of the system parameters.
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Fig.1. Schematic picture of the formation of Andreev bound states localized (a) on domain wall, (b) on the edge, and (c)
inside the vortex core. In all cases, the mechanism is the subsequent particle—hole conversions via Andreev reflections at the
opposite ends of the trajectory s. The reflected particle (hole) picks up the phase of the order parameter pr (—¢r) and
flips the group velocity direction v, (v;,) as shown in panel a. In general, the wave vectors of the particle and the hole in
the bulk are slightly different, &k, , = kr = E/vr, where kr and vy are Fermi momentum and velocity, and E is the energy.
If the order parameter phase difference is ¢r — ¢, = m, a closed loop can be formed even for k. = kj,, that is, for the zero
energy E = 0. In cases (b, c), the phase difference occurs due to the momentum dependence of the gap function and the
phase winding around the vortex core correspondingly

General properties of the fermionic spectrum in
condensed-matter and particle physics are determined
by topology of the ground state (vacuum). The classi-
fication schemes based on topology [5-11] suggest the
classes of topological insulators, fully gapped topolog-
ical superfluids/superconductors, and gapless topolog-
ical media. In Refs. [9-11], the classification is based
on topological properties of the matrix Green’s func-
tion, while other schemes explore the properties of a
single-particle Hamiltonian and are therefore applica-
ble only to systems of free (noninteracting) fermions.
Among the fully gapped topological superfluids, there
is time-reversal invariant superfluid *He-B, thin films
of chiral superfluid *He-A, and thin films of the time-

reversal invariant planar phase of superfluid *He. The
main signature of topologically nontrivial vacua with
the energy gap in the bulk is the existence of zero-
energy edge states on the boundary, at the interface
between topologically distinct domains [12, 13] and
in the vortex cores [14]. For superfluids and super-
conductors, these are Andreev—Majorana (AM) bound
states. These are mainly propagating fermionic quasi-
particles, which have a relativistic spectrum at low en-
ergy [15-20]. However, for special geometries and di-
mensions, the AM bound state represents an isolated
nonpropagating midgap state, called the Majorana zero
mode (or Majorino [21]). It is not a fermion, because
it obeys a non-Abelian exchange statistics [22]. This in
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particular occurs for the AM bound states in the vortex
core of chiral p-wave superfluid-superconductor in 2+1
dimensions [23].

A gapless AM bound state also occurs on the sur-
faces, interfaces, and in the vortex cores of gapless topo-
logical media. Among them, there are chiral superfluid
3He-A with Weyl points, the time-reversal invariant
planar phase with Dirac points, and the time-reversal
invariant polar phase with a line of zeroes. The spec-
trum of AM bound states is nonrelativistic and exotic:
the zeroes of the AM bound-state spectrum form Fermi
arcs [24-27] and flat bands [28-35].

2. ANDREEV-MAJORANA EDGE STATES IN
2+1 GAPPED TOPOLOGICAL
SUPERFLUIDS

The p-wave superfluid *He was discovered in 1972.
But until now, there is little understanding of super-
fluid He films. The information on recent experiments
in confined geometry can be found in review [36]. In
thin films, a competition is expected between the chiral
superfluid 3He-A and the time-reversal invariant pla-
nar phase, both acquiring a gap in the spectrum in the
quasi-two-dimensional case due to transverse quantiza-
tion.

The fermionic spectra in both the 2D A phase and
the planar phase have nontrivial topological properties.
These topological states provide examples of systems
featuring generic topological phenomena. In particu-
lar, an analog of the integer quantum Hall effect exists
in the 2D A phase, where the internal orbital momen-
tum of Cooper pairs plays the role of the time reversal
symmetry breaking magnetic field. In the time rever-
sal invariant planar phase, the quantum spin Hall effect
can be realized. In a close analogy with 2d electronic
systems, a topological invariant is determined by the
number of fermionic edge modes with zero energy. In
the superfluid systems, the edge zero modes are the An-
dreev bound states localized at the superfluid /vacuum
boundary or at the interfaces and domain walls sepa-
rating superfluid states with different topological prop-
erties. Below, we discuss the topological properties and
Andreev bound states for the 2D A phase and the pla-
nar phase in detail.

2.1. Chiral *He-A film

The order parameter in a spatially homogeneous
time reversal symmetry breaking *He-A phase is given
by

~

where o, is the spin Pauli matrix and the p, , are mo-
mentum projections onto the anisotropy plane. Such
an order parameter describes spin triplet Cooper pairs
with zero spin S, = 0 and a nonzero oribital momen-
tum projections L, = +1 onto the anisotropy axis. A
nonzero L, plays the role of the internal magnetic field
breaking the time-reversal symmetry of the systems.
Confined in the zy plane, the 2D state of the A phase
is a fully gapped system. By the analogy with the 2D
electronic gas in a quantized magnetic field, the gapped
ground states (vacua) in 2+1 or quasi 2+1 thin films
of 3He-A are characterized by the topological invari-
ant [37—41]
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Here, G = G(pz,py,w = ipo) is the Green’s function
matrix, which depends on the Matsubara frequency
po; the integration is over the whole (2-+1)-dimensional
momentum—frequency space p; = (pz,Py,Po), O Over
the Brillouin zone and pg in crystals. Expression (1)
is an extension of the TKNN invariant invented by
Thouless, Kohomoto, Nightingale, and den Nijs to
describe topological quantization of the Hall conduc-
tance [42, 43].

The advantage of the topological approach is that
we can choose to work with the simplest form of the
Green’s function, which has the same topological prop-
erties and can be obtained from the complicated one
by a continuous deformation. For a single layer of a
3He-A film, we can choose

2
G ' =ipy+ 73 <5_m — u) +co, (Tipy + Topy), (2)
where p? = p2 +p;. The Pauli matrices 71 23 and o, -
respectively correspond to the Bogoliubov-Nambu spin
and the ordinary spin of a 3He atom; the parameter
¢ characterizes the amplitude of the superconducting
order parameter. The weak-coupling BCS limit corre-
sponds to mc?> < p. In this limit, ¢ = A/pp, where
A is the gap in the spectrum and pp is the Fermi mo-
mentum, p%/2m = p.
It is also instructive to consider the simplified case
where there is only a single spin component, which cor-
responds to the fully spin-polarized p, + ip, superfluid:

2

_ . p
G ' = 1po + T3 <% _H> +C(Tlpx +T2py) . (3)

We call this case the spinless fermions. Topological in-
variant (1) for the state in Eq. (3) with u > 0is N =1,
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Fig.2. Schematic picture of the interface between two
films of a chiral p, + ip, superfluid with values N;
and N of topological invariant (1). The interface con-
tains chiral AMBSs with the spectrum E = E(py),
which move with the group velocity v, = dE(py)/dpy.
In general, the algebraic sum of branches (the num-
ber of left-moving minus the number of right-moving
fermions) is N> — Ni. On the lower panel, the chi-
ral branch of spinless AMBSs is given by Eq. (3) with
Ny =1 and Ny = 0. For the spinful case in Eq. (2),
there are two anomalous branches of the spectrum of
edge states E(p,), which are degenerate with respect
to spin. The chiral branches produce an equilibrium
mass current flowing along the interface

while for the state with u < 0, we have N = 0. Accord-
ing to the bulk—surface correspondence, there must be
a branch of the AM edge states at the interface between
these two phases, which crosses zero energy level [15, 44]
(Fig. 2).

In the spin case in Eq. (2), both spin components
contribute to the topological invariant equally, and we
have N =2 for y > 0 and N = 0 for g < 0. There-
fore, there must be two branches of AM edge states,
which cross zero energy level. In the general case,
the algebraic sum of anomalous branches (the num-
ber of left-moving minus the number of right-moving
fermions) satisfies the index theorem, ny — np =
=N(x >0)— N(x <0).

2.2. Time-reversal invariant planar phase

In addition to the 2D chiral A phase in thin films
of superfluid He, the time-reversal invariant planar
phase [45] can become stable. While this phase has not
yet been identified experimentally, a strong suppres-

y y
mass current
Ne=0 ’ Ny=2 /NK:o

_V//%Z %/ v }
spin current
/

Ep,) right moving Ep,) left moving
spin down ‘\’ /" spin down
\s o" V/2 o; AN
4 P
K s |
left moving right moving
spin up spin up
Fig.3. An illustration of the intrinsic spin—current

quantum Hall effect due to AM edge states in the stripe
of a planar phase film with the topological invariant
Nx =2 in Eq. (6). As distinct from *He-A in Fig. 2,
the anomalous branches with different spin projections
have opposite slopes. This gives rise to the quantized
spin Hall effect without a magnetic field, instead of the
quantized Hall effect in ®He-A film [41, 50]

sion of the transverse gap in *He-B has been observed
in recent experiments [36,46-49].

The order parameter that describes the spatially
homogeneous time reversal invariant planar phase has
the form A = Dy + t0.p,. In this phase, the order
parameter is anisotropic and vanishes for the p || e, di-
rection, transverse to the film. Nevertheless, confined
in 2D when p, = 0, this system is gapful.

Being time-reversal invariant, the planar phase has
a zero topological invariant of the type given by Eq. (1).
But it has an extra discrete symmetry, namely, a com-
bination of a 7 spin rotation around the z axis followed
by a 7/2 phase rotation. This modifies the topological
classification, adding an extra 7Z topological invariant
obtained by Volovik and Yakovenko in Ref. [41]. This
invariant gives rise to the intrinsic spin Hall effect il-
lustrated in Fig. 3.

An extra motivation to study this particular case
of the planar phase is that it can be considered a cor-
nerstone of the dimensional reduction scheme that can
be applied to general class-DIII topological supercon-
ductors. In the next section, we show that the topo-
logical properties of a 3D system and an embedded
(2+1)D system, which exists in any time-reversal in-
variant cross section of the momentum space, are con-
nected. As an application of such a reduction, we derive
a generalized index theorem for 3D topological super-
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conductors, which provides an example of the bulk—
boundary correspondence in odd spatial dimensions.

In the single-layer case, the simplest expression for
the planar phase Green’s function G(po, ps,py) is

2
_ . p
G ' =ipo+7s <% - M) + e (02pe + oypy).  (4)
This phase is symmetric under time reversal. The
two spin components have opposite chiralities, as can
be seen from the identity

1 . .
OxPz + Oypy = 5(‘796 +ioy) (D — ipy) +
1 . .
+ 5(0'95 - wy)(px +ipy). (5)

That is why the contributions of the two spin com-
ponents to topological invariant (1) cancel each other,
N = 0. But the planar phase is still topologically non-
trivial because of the discrete Z, symmetry between the
two spin components in Eq. (5). Due to this symmetry,
the matrix K = 130. commutes with the Green'’s func-
tion, which allows introducing the symmetry-protected
topological invariant [41, 50]

€ijk
Ny =
K= 94n2

xD{K/ﬁ%G@%?%mmG*G%Jfl.(Q

This invariant is robust to deformations, if the defor-
mations are K-symmetric. For state (4) with p > 0,
we have Nx = 2. For the general case of a quasi 2D
film with multiple layers of the planar phase, the invari-
ant N belongs to the group Z. The magnetic solid-
state analog of the planar phase is the 2D time reversal
invariant topological insulator, which experiences the
quantum spin Hall effect without an external magnetic
field [12].

Figure 3 demonstrates AM edge states on two
boundaries of the stripe of a single layer of a planar
phase film. As distinct from 3He-A in Fig. 2, the
anomalous branches with different spin projections are
not degenerate: they have opposite slopes, which cor-
responds to the zero value of the invariant N = 0 in
Eq. (1). In the case of a superconductor with planar
phase symmetry, the invariant N determines quanti-
zation of the spin Hall effect. In an applied voltage V,
the spectra on two boundaries shift in opposite direc-
tions, changing the population of branches. This pro-
duces an imbalance in the spin currents carried by edge
states on two boundaries, giving rise to a nonzero total
spin current JZ (the current of the z-projection of spin

along the z axis). This underlies the quantized spin
Hall effect in the absence of a magnetic field [41, 50, 51]:

J: = a;’;i”Ey, ajzm = % (7)
In this time reversal invariant system, the electric cur-
rent quantum Hall effect is absent. The topological
charge N in Eq. (1), which determines quantization
of the Hall conductance in the absence of a magnetic
field [40], is N = 0, and the currents of different spin
populations cancel each other.

The mass and spin currents carried by an AM edge
state in p-wave superfluids have been considered in
Refs. [52, 53].

3. AM BOUND STATES ON THE SURFACE OF
A 3+1 GAPPED TOPOLOGICAL
SUPERFLUID

Fully gapped 3+ 1 fermionic systems — topological
insulators and topological superconductors — are now
under extensive investigation. The interest in such sys-
tems was revived after the identification of topological
insulators in several compounds [12].

These systems are characterized by gapless
fermionic states on the boundary of the bulk insulator
or at the interface between different states of the
insulator. Historically, the topological insulators with
fermionic zero modes at the interface were introduced
in [54]. An example of fully gapped topological super-
fluids is the B phase of superfluid 3He. Much attention
has been devoted to the investigation of bound fermion
states on the surface of 3He-B. The presence of
AM surface states in *He-B can be probed through
anomalous transverse sound attenuation [55-58] and
surface specific heat measurements [59, 60]. These
AM bound states are supported by the nonzero
value of the topological invariant in 3He-B [20] and
have a two-dimensional relativistic massless Dirac
spectrum [16-19, 24].

3.1. *He-B edge states from bulk topology

A topological superfluid /superconductor of the
3He-B type is described by the topological invariant
N, which is protected by symmetry:

€ijk
2472
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N =
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Here, H(p) is the Hamiltonian, or in the case of an in-
teracting system, the inverse Green’s function at zero
frequency H(p) = G~ !'(w = 0,p), and K is a matrix
that commutes or anticommutes with H (p).

The proper model Hamiltonian that has the same
topological properties as superfluids/superconductors
of the 3He-B class is the following:

pz
H=<%—M>T3—CTU7'P, (9)

where 7; and o; are again the respective Pauli matrices
of the Bogolyubov—Nambu spin and the nuclear spin.
The symmetry K, which enters the topological invari-
ant Ng in Eq. (8), is represented by the 7 matrix,
which anticommutes with the Hamiltonian: it is the
combination of time reversal and particle-hole symme-
tries of *He-B. In the limit 1/m = 0, Eq. (9) trans-
forms to the Dirac Hamiltonian, where the parameter ¢
serves as the speed of light, while *He-B lives in the op-
posite limit mec? < pu. The topological phase diagram
in the plane (u, 1/m) is shown in Fig. 4.

The mechanism of the Andreev—Majorana bound
state formation at the edge of *He-B is clear from
Hamiltonian (9). We consider the boundary plane at
r = 0 as shown schematically in Fig. 5. Then under
normal reflection of particles and holes from the bound-
ary, some components of the gap function in Hamilto-
nian (9) change sign. Therefore, we obtain a nonzero
phase of the gap along the effective trajectory, as shown
in Fig. 1. In particular, for the trajectories normal to
the boundary p. , = 0, the overall gap function changes
sign, leading to the formation of a zero-energy state lo-
calized at the boundary.

However, this is not the whole story. Indeed, if we
formally assume that the Hamiltonian may have either
negative effective mass m < 0 or a negative chemical
potential 1 < 0, the exact solution of the spectral prob-
lem yields no zero-energy states, as is discussed below.
The hint to the topological origin of the AM bound
states in *He-B can be obtained from the topological
phase diagram in Fig. 4, which demonstrates that the
system undergoes a topological quantum phase tran-
sitions (QPTs) as we change the sign of the chemical
potential i or the effective mass m.

The domain wall that separates the states with dif-
ferent values of Ny should contain the zero-energy
states — the AM zero modes.

1/m

Fig.4. Phase diagram of topological states of a triplet
superfluid of the *He-B type in Eq. (9) in the plane
(11,1/m). States on the line 1/m = 0 correspond to
the Dirac vacua, whose Hamiltonian is noncompact.
The topological charge of Dirac fermions is intermedi-
ate between charges of compact *He-B states. The
line ;1 = 0 marks a topological QPT, which occurs be-
tween the weakly coupled *He-B (with > 0, m > 0,
and the topological charge Nx = 2) and the strong
coupled *He-B (with ¢ < 0, m > 0, and Nx = 0).
This transition is topologically equivalent to the QPT
between Dirac vacua with opposite mass parameters
M = %|p|. The gap in the spectrum vanishes at this
transition. The line 1/m = 0 separates the states with
different asymptotic behavior of the Hamiltonian at in-
finity: H(p) — +73p°/2m. The transition across this
line occurs without closing the gap

3.2. *He-B edge states from topology of the
planar phase

To prove the existence of the AM bound states on
the surface of 3He-B or at the interface, we can use a
dimensional reduction. We assume that the boundary
plane is at x = 0, and hence the conserved longitudinal
momentum projections are p. ,. To find the complete
spectrum of bound states Ej, = Ej(py,ps), it is enough
to consider a set of 2D spectral problems for the cross
sections of the momentum space,

pycosf + p.sinh =0, (10)
where 27 > 6 > 0.

An example of such a dimensional reduction to the
plane p, = 0 is shown in Fig. 5. The 2+ 1 Hamiltonian
in this cross section reduced from the 341 phase exactly
coincides with the Hamiltonian of the planar phase.
Therefore, it is classified by the integer-valued topo-
logical invariant Ng in Eq. (6), which can be shown
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Fig.5. Dimensional reduction of the surface-state spec-

tral problem in 3D to that in the time-reversal invariant

cross section of momentum space p. = 0. Reduction

from the Z topological superfluid *He-B results in the
7 topological planar phase at p, =0

to coincide with the topological invariant N of the
parent 3D *He-B phase in Eq. (8). The topologically
protected AM states in *He-B are thus related to the
topologically protected edge states in the 2 + 1 planar
phase (see details in Ref. [61]).

3.3. Evolution of the edge state at a
nontopological quantum phase transition

We consider the spectrum of AM fermions using the
simplest model of the interface between the superfluid
and the vacuum, in which Hamiltonian (9) changes
abruptly at the boundary, with the boundary condi-
tion ¢(z =0) =0.

At low energies |E| < A, their spectrum is a he-
lical spectrum, being described by the Hamiltonian
Ham = cloyps — 0zpy) [16]. Interestingly an exact
solution of the spectral problem demonstrates [62] that
the linear spectrum of AM bound states exist up to the
merging point with the continuous spectrum of delocal-
ized states.

For m > 0, the exact spectrum of AM fermions
E = +p, is shown by the solid line in Fig. 6 for
E > 0. The bound states are confined to the region
[pL| < v2mpu. They disappear when their spectrum
merges with the continuous spectrum in bulk. The edge

€ € v
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Fig.6. Spectrum of AM fermions, localized states on
the surface of a topological superfluid/superconductor
of the ®He-B class (solid lines) for (a) 1 > m > 0 and
(b) m > p. The spectrum of bound states terminates
when it merges with the continuous spectrum in the
bulk (gray region), whose border is shown by a dashed
line. The AM bound states exist for p& < 2mp

of the continuous spectrum is shown by the dashed line
in Fig. 6. If mc® > p, the minimum of the bulk energy
spectrum increases monotonically with the momentum
p1, and therefore the bulk gap is

A=p, me>p. (11)

If 4 > mc?, the minimum of the bulk energy is a
nonmonotonic function of p,, having a minimum at
p™it = \/2m(u — me?), where the bulk gap is

A =+/mec2(2u — me?),

The line me? = p marks the nontopological QPT —
a momentum-space analog of the Higgs transition [10],
when the Mexican hat potential as a function of p

emerges for p > mc?.

0 < mc® < p. (12)

3.4. Evolution of the edge state at a
topological quantum phase transition

We first consider the behavior of the spectrum
of Majorana fermions at the topological transition at
which m crosses zero. As m approaches zero, m — 0,
the region of momenta where bound states exist shrinks
and finally, for m < 0, i.e., in the topologically triv-
ial superfluid, no bound states exist any more. Simul-
taneously the gap in the bulk, which at small m is
A =~ \/2mc?p according to Eq. (12), decreases with de-
creasing m and vanishes at m = 0. This corresponds to
the conventional scenario of a topological QPT, when
at the phase boundary between the two gapped states
with different topological numbers, the gap is closed.
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The same happens at the topological QPT occurring
when p crosses zero (see the phase diagram in Fig. 4).

We now consider what happens with bound states in
the case where the topological QPT occurs in the oppo-
site limit, when m changes sign via infinity, i.e., when
1/m crosses zero. This topological transition occurs
without closing the gap. In this case, the bound states
formally exist for all p, even in the limit 1/m — 0.
But in this limit, the ultraviolet divergence occurs: the
characteristic length scale of the wave function of the
bound state L o« i/mec — 0. Hence, if the topologi-
cal QPT from a topologically nontrivial to the trivial
insulator (or superconductor) occurs without closing
the gap, the gapless spectrum of surface states disap-
pears by escaping via the ultraviolet. This limit corre-
sponds to the formation of a zero of the Green’s func-
tion, G = 1/(iw — H) — 0. Such a scenario is impossi-
ble in the models with a bounded Hamiltonian [63, 64],
as in the approximation of a finite number of crystal
bands.

On the other hand, the Green’s function zeroes can
occur due to particle interactions. As was found in
Ref. [65], classifications of interacting and noninteract-
ing fermionic systems do not necessarily coincide. This
is related to zeroes of the Green’s function, which ac-
cording to Ref. [10] contribute to topology alongside
with the poles. Due to zeroes, the integer topologi-
cal charge of an interacting system can change without
closing the energy gap, and it is suggested that this may
lead to the occurrence of topological insulators with no
fermion zero modes on the interface [63, 64].

That is why we expect that the same scenario with
an escape to the ultraviolet occurs for interacting sys-
tems: if due to zeros in the Green’s function, the topo-
logical QPT in the bulk occurs without closing the gap,
the spectrum of edge states does nevertheless change at
the topological QPT, and this change occurs via the ul-
traviolet.

We finally mention that the magnetic field violates
time reversal symmetry, which generically leads to a
finite gap (mass) in the spectrum of AM fermions on
the surface. At a particular orientation of the magnetic
field, there is still the Z5 dsicrete symmetry, which sup-
ports gapless AM bound states [66, 67]. This symme-
try is spontaneously broken at some critical value of
the magnetic feild, above which the AM fermions be-
come massive. The surface of He-B with massive AM
bound states represents a 2 + 1 topological “insulator”
it is described by the topological invariant in Eq. (1).
The line on the surface that separates the surface do-
mains with different values of this topological invariant
contains 1 4+ 1 gapless AM fermions [68].

4. ANDREEV-MAJORANA BOUND STATES
ON THE SURFACE OF A 3+1 WEYL
SUPERFLUID. FERMI ARC

We now move to the AM bound states that ap-
pear as edge and vortex states in gapless topological
systems. Here, the zeroes in the bulk lead to extended
zeroes on the surfaces, interfaces, and vortex cores. We
start with point zeroes — Weyl points — in chiral su-
perfluids, which produce the lines of zeroes (Fermi arcs)
on the surface, and the flat band in the vortex core.

4.1. Andreev—Majorana Fermi arc on the
boundary of a Weyl superfluid

The topological origin of AM bound states in 3 + 1
chiral superfluids can be viewed by extending the topol-
ogy of the 2+ 1 chiral system in Sec. 2 to the 3+ 1 case.
For simplicity, we consider spinless fermions, or, which
is the same, the fermions with a given spin polariza-
tion. Then the Green’s function in Eq. (2) extended to
the 3 4+ 1 case is

2

- . p
Glmm=%+h6—ﬂ0+

m

+ c(mipe + T2py), (13)

where p = (pg, py, p.). We regard p, as a parameter of
the 2 4+ 1 system. Then for each p., except p. = £pp,
this Green’s function describes the fully gapped 2 4 1
system — an “insulator” characterized by the topolog-
ical invariant in Eq. (1):

1
N(p.) = HTI" {/ dpzdpydpo %
x G, GG, G GonGt| . (14)

This insulator is topological for |p.| < pr, where
N(|p:| < pr) =1, and is topologically trivial for |p.| >
> pr, where N(|p,| > pr) = 0.

At p. = £pr, invariant (14) is not determined, since
the corresponding 2 + 1 system is gapless. The bulk
3 + 1 superfluid *He-A has two points in the spectrum
p+ = (0,0, £pr) where the energy is zero, see Fig. 7.
These nodes in the spectrum are topologically pro-
tected, because they represent monopoles in the Berry
phase in the momentum space and are characterized
by the topological invariant in Eq. (1), where the in-
tegration is now over the 3D sphere around the Weyl
point in the 3+ 1 space (po, Pz, Py, P=) [9]- In the vicin-
ity of these points, the fermionic quasiparticles behave
as chiral (left-handed and right-handed) Weyl fermions
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Fig.7. Line of AM bound states on the surface of a
chiral superfluid with Weyl points. This line represents
a 1D Fermi surface that separates the edge states with
positive and negative energies (see also Fig. 9). How-
ever, as distinct from conventional Fermi surfaces, this
Fermi surface has end points. The end points of the
Fermi arc are determined by projections of the bulk
Weyl points to the surface

in particle physics. That is why such nodes are called
the Weyl points. Arrows in Fig. 7 show the direction
of the effective spin of the Weyl fermion. This spin is
parallel to p — p4 in the vicinity of py, which means
that the fermions living there are right-handed. For
the left-handed fermions near p_, their effective spin is
antiparallel to p — p_.

According to the bulk—surface correspondence, at
each p, for which N(p,) = 1, there should be one
branch of AM edge states that crosses the zero energy
level (see Fig. 2). As a result, we have a line of ze-
ro-energy states in the range —pr < p, < pr. This line
represents the Fermi surface (Fermi line) in the two-di-
mensional momentum space of bound states. As the
conventional Fermi surface, it separates the positive-
and negative-energy levels, but in contrast to the con-
ventional Fermi surface, this Fermi surface is not closed.
It has two end points, and this is why this line is called
the Fermi arc.

The end points of the Fermi arc coincide with the
projection of the Weyl points to the surface. This is
a consequence of the bulk—surface correspondence in
Weyl systems [25]. For an arbitrary direction of the
surface with an angle A between the normal to the sur-
face and the z axis, the Fermi arc is concentrated in the

range of momenta —pp sin A < p, < pgsin A. We note
that in He-A, the boundary conditions require \ = 0.

In crystals, the Weyl points can be moved to the
boundaries of the Brillouin zone, where they annihi-
late each other. As a result, we obtain a chiral 3 + 1
topological insulator or a fully gapped chiral topolog-
ical superconductor. Since N(p,) = 1 for all p,, the
topological Fermi arc on the boundaries transforms to
a closed topological Fermi surface.

4.2. Andreev—Majorana Fermi arcs on solitons
and domain walls

Similar Fermi arcs appear on the domain walls or
solitons separating the chiral phases with opposite chi-
ralities. We have N (|p.| < pr) = +1 on one side of the
soliton/wall and N (|p.| < pr) = —1 on the other side.
According to the index theorem [9,44], the difference
between these two values determines the number of zero
modes at the interface between the 241 topological in-
sulators for each |p.| < pp. As a result, the domain
wall and the soliton contain two Fermi arcs instead of
a single Fermi arc on the boundary (Fig. 8).

A Fermi arc on domain walls in *He-A [70] has been
considered in Refs. [27, 71].

Figure 9 also includes bound states with a nonzero
energy and demonstrates that the Fermi arc does rep-
resent a piece of the Fermi surface that separates the
positive- and negative-energy levels.

5. TOPOLOGICAL SUPERFLUIDS WITH
LINES OF ZEROES. THE
ANDREEV-MAJORANA SURFACE FLAT
BAND

The zero-dimensional point nodes in the bulk (Weyl
points) give rise to one-dimensional nodes (lines) in the
spectrum of AM bound states. In the same manner,
the 1D nodal lines in the bulk give rise to 2D mani-
folds of AM bound states with zero energy (Fig. 10).
We consider the topological origin of such dispersion-
less spectrum — a flat band — with the example of the
polar phase of a triplet superfluid /superconductor [32].

5.1. Flat band of Andreev—Majorana modes on
the surface of the polar phase

The Hamiltonian for the polar phase is

e
H = <% — ,u> T3 — CTIO2Px- (15)
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Topology of Andreev bound states on a 1 soliton [69]. The momentum space topology of Weyl points in bulk

3He-A on two sides of the soliton prescribes the existence of Fermi arcs in the spectrum of Andreev bound states in the

soliton or at the interface between the bulk states with different positions of Weyl points.

In the considered case, the

Weyl points on two sides of the interface have the same positions in momentum space, but the opposite chiralities. As a

result, the 2 + 1 topological insulators have opposite topological invariants, N(p. = 0) = £1. This leads to two Fermi

arcs terminating on the projections of the Weyl points on the soliton/interface plane in accordance with the index theorem
n(right) — n(left) = 2

This superconductor obeys the time reversal and space
inversion symmetry, and it has a line of zeroes in the
form of a ring.

For simplicity, we consider spinless fermions, or,
which is the same, the fully spin-polarized fermions,
whose Hamiltonain is

2
p
H=|—-
<2m
The spectrum of such fermions has a nodal line —
the ring p2 + pz = p%, p. = 0. The stability of this

nodal line is determined by the topological invariant
protected by symmetry,

) T3 — CT1P>. (16)

Ng = % Tr {K%dmlv,ff} . (17)

C

Here, the integral is along a loop C' around the nodal
line in the momentum space (Fig. 11), and the ma-
trix X = m» anticommutes with the Hamiltonian. The
winding number around the element of the nodal line
is NK =1.

We now consider the momentum p as a parameter
of the 141 system; then for |p | # pr, the system rep-
resents the fully gapped state, a 1+ 1 insulator. This
insulator can be described by the same invariant as in

5 ZKOT®, Bem. 6 (12)

Eq. (17) with the integration contour chosen parallel to
p.. Because the Hamiltonian tends to the same limit
as p, — +o0o, the points p, = £oo are equivalent, and
the line —0o < p., < oo forms a closed loop. That is
why the integral

oo
Nk(pL) = i Tr [K / dp, H'V,. H (18)
4i oo
is integer valued.

The topological invariant N (p, ) in (18) determines
the properties of the surface bound states of the 1 + 1
system at each p;. Due to the bulk—edge correspon-
dence, the topological 1D insulator must have a surface
state with exactly the zero energy. Because such states
exist for any parameter within the circle |p | = pp, we
obtain a flat band of AM modes in Fig. 11a — the con-
tinuum of self-conjugate bound states with exactly the
zero energy, E(|p1| < pr) = 0, which are protected
by topology. Such modes do not exist for parameters
|pL| > pr, for which the 1+ 1 superfluid is nontopo-
logical.

In the spin polar phase with Hamiltonian (15), the
nodal ring in the bulk gives rise to two surface flat
bands with opposite chiralities for two directions of
spin. The tiny spin—orbit interaction leads to a small
splitting of the AM modes.
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Fig.9. The spectrum of bound states with two Fermi
arcs £(py,p-) = 0. The arrows show directions of the
Fermi velocity at these Fermi arcs. At p. = 0, the
velocity is in the same direction, v, > 0, which demon-
strates that both Fermi arcs have the same topological
charge N = +1, which together satisfy the index theo-
rem n(right) — n(left) = 2, in agreement with the mo-
mentum space topology of Weyl points in bulk 3He-A
on two sides of the soliton in Fig. 8. This leads to a dis-
continuity in the spectrum of bound states at p, = 0,
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Fig.11. Topologically nontrivial nodal lines gener-
ate topologically protected flat bands on the surface:
(a) closed equatorial line of zeros in the polar phase;
(b) spiral of zeros in the multilayered graphene is also
a closed line. Projection of the line on the surface de-
termines boundary of flat band. If for a fixed (p,py)
the energy E(ps,py,p-) is nonzero for any p., then
the Green’s function G(w,p-)p,p, describes a 1D fully
gapped system, an “insulator”. At each (pz,py) inside

where the spectrum merges with the bulk spectrum
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Fig.10. Spectrum of AM modes on the surface of the

polar phase. These modes form a 2D flat band: all

the states with p2 —I—pz < p% have zero energy. The
spectrum is shown for p, =0

the projection of the line to the surface, this insulator is
topological, since it is described by nonzero topological
invariant (18). Thus, for such (p.,p,), there is a gap-
less edge state on the surface. The manifold of these

zero-energy edge state inside the projection forms the
flat band

5.2. Flat band on the surface of model graphite

In the multilayered graphene, when the number of
graphene layers tends to infinity, and if some small ma-
trix elements are neglected, the resultant 3 + 1 system
has a line of zeroes, which also obeys an invariant sim-
ilar to that in Eq. (17). This nodal line has the shape
of a spiral [32, 33] (Fig. 11).

We again consider the momentum p as a parame-
ter of the 1+1 system; then for |p, | # ¢, where ¢ is the
dominating hopping element, the system represents the
fully gapped system, a 1+ 1 insulator. This insulator
can be described by the same invariant as in Eq. (17)
with the integration contour chosen parallel to p., i.e.,
along the 1D Brillouin zone at a fixed p_ . Due to peri-
odic boundary conditions, the points p. = +m/a, where
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a is the distance between the layers, are equivalent and
the contours of integration form a closed loop. As a
result, we obtain the integer-valued invariant

Nk(pi) = L

w/a
4m,Tr/ dp. oH 'V, H.  (19)

—m/a

For |pi| < t, the 1 4+ 1 insulator is topological be-
cause N(|p,| < t) = 1. This gives rise to a surface
flat band. Since there are no Cooper-pair correlations,
the fermionic bound states within the flat band are not
Majorana modes.

6. ANDREEV-MAJORANA MODES ON
VORTICES IN CHIRAL 2 +1 SUPERFLUIDS

The low-energy fermions bound to the vortex core
play the main role in the thermodynamics and dynam-
ics of the vortex state in superconductors and Fermi
superfluids. The spectrum of low-energy bound states
in the core of an axisymmetric vortex with the winding
number v = +1 was obtained by Caroli, de Gennes,
and Matricon for the isotropic model of an s-wave su-
perconductor in the weak-coupling limit A < p [72]:

Eulpe) = -van(p) (n+3). 0

This spectrum is two-fold degenerate due to spin de-
grees of freedom. The integer number n is a quan-
tum number related to the angular momentum of the
bound-state fermions. The minigap — the level spac-
ing wo(p,) — corresponds to the angular velocity of the
fermionic quasiparticle orbiting the vortex axis. The
direction of rotation is determined by the sign of the
winding number v of the vortex.

The level spacing is typically small compared to
the energy gap of the quasiparticles outside the core,
wo ~ A%/ < A. Hence, in many physical cases, the
discreteness of n can be neglected. In such cases, the
spectrum crosses zero energy as a function of the con-
tinuous angular momentum L., and we can consider
this as a spectrum of quasi zero modes. The fermions
in this 1D “Fermi liquid” are chiral: the positive-energy
fermions have a definite sign of the angular momentum
L,. The number of the branches crossing zero energy
as a function of continuous L, obeys the index theo-
rem [9].

Here, we are interested in the fine structure of the
spectrum, when its discrete nature is important. This
takes place, for example, in ultracold fermionic gases
near the Feshbach resonance, when A is not small.

We first consider the 2+1 space—time and start with
the weak-coupling limit. The Majorana nature of the
Bogoliubov particles requires that the spectrum must
be symmetric with respect to zero energy, i. e., for each
level with an energy E, there must be a level with the
energy —F. For fermions on vortices, such condition
is satisfied for two classes of systems. In systems of
the first class, the spectrum of Andreev bound states is
E, =wp(n +1/2). Vortices in s-wave superconductors
belong to this class. Vortices of the second class have
E,, = wgn. They contain an AM mode exactly with the
zero energy level at n = 0. In a 241 system, this mode
is not propagating and is self-conjugate. That is why
it is called the Majorana mode instead of a Majorana
particle (see Ref. [21]).

For simplicity, we consider the spinless (or fully spin
polarized) chiral p, + ip, superfluid in a 2 + 1 space—
time, which is described by Eq. (3). As was shown in
Ref. [23], the vortices with the winding number v =1
or v = —1 belong to the second class:

E, = —vwon, (21)

and hence contain a single Majorana mode at n = 0.
This mode is robust to perturbations, since it is
self-conjugate and must therefore obey the condition
E = —F (see also [73]).

For the spin fermions in Eq. (2), there are two
AM modes corresponding to the two spin projections.
The even number of Majorana modes is not robust to
perturbations. For example, the spin-orbit interaction
splits two modes with E; = —Fs. The splitting is ab-
sent if there is some discrete symmetry between the
AM modes, such as the mirror symmetry in Ref. [74].

In the spin p, + ip, superfluids, there is a topolog-
ical object that carries a single Majorana mode. It is
the half-quantum vortex [75]. In a simple model, the
half-quantum vortex is the vortex with vy = 1 in one
spin component, while the other spin component has
zero vorticity v, = 0. As a result, such vortex contains
a single Majorana mode, which is robust to perturba-
tions.

However, the perturbations should not be too large.
In the limit when p is negative and large, the BCS is
transformed to the BEC of molecules, where the Majo-
rana mode is absent. The Majorana mode disappears
when the chemical potential ;o crosses zero. At p =0,
there is a topological QPT, at which the topological
invariant in Eq. (1) changes from N =1 to N = 0.
The topological transition cannot occur adiabatically,
and in the intermediate state with u = 0, the spec-
trum in the bulk becomes gapless. At pu = 0, the
Majorana mode merges with the continuous spectrum
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of bulk quasiparticles and disappears at p < 0. This
demonstrates the topological origin of the AM mode,
which exists inside the vortex only if the vacuum in the
bulk is topologically nontrivial.

7. AN ANDREEV-MAJORANA FLAT BAND
IN A VORTEX IN WEYL SUPERFLUIDS

We can easily extend the consideration in Sec. 6 to
the 3 + 1 case in the weak-coupling limit. The levels
at p. # 0 remain equidistant according to the Caroli-
de Gennes—Matricon solution, and they must be sym-
metric with respect to £ = 0. This dictates the fol-
lowing modification of Eq. (20) for the most symmetric
vortices in *He-A and in the planar phase:

En(p.) = —vwo(pz)n. (22)

This equation suggests a flat band in the vortex core
for n = 0 (Fig. 12a). We now show how such a flat
band emerges purely from topological considerations,
which do not use the weak-coupling approximation.
Topology of bound states on vortices in 3 + 1 chiral
superfluids can be obtained by dimensional extension
of the topology in the 2 + 1 case. The AM mode in a
point vortex of a fully gapped 2 + 1 chiral superfluid

E,(py) E, ;)

N

¥
/-_

W

Z pz

W
/

JIIX

S-wave p-wave

Fig.12. (a) Schematic illustration of the spectrum
of fermionic bound states in the core of a v = 1
vortex in the s-wave superconductor. In the weak-
coupling limit, the lowest branches are equidistant:
E,(p:) = —wo(p:)(n+1/2). There are no zero-
energy states. The spectrum is doubly degenerate
with respect to spin. (b) The spectrum of bound
states in the most symmetric vortices in the p-wave
superfluids: the chiral Weyl superfluid *He-A and the
time reversal invariant planar phase. The spectrum is
E,(p:) = —wo(p:)n. The branch with n = 0 forms a
flat band of AM modes (solid line)

transforms into the flat band of AM modes inside the
vortex line in 3 + 1 chiral superfluids with Weyl points
in the bulk. We consider the p, + ip, state in Eq. (13)
again, and temporarily choose the direction of the vor-
tex line along the z axis. In this case, p, is the quantum
number of bound states in the vortex core. For each p,
in the range —pr < p. < pr, the Green’s function (13)
describes the 2 4 1 chiral superfluid with the topolog-
ical invariant N(|p.| < pr) = 1 in Eq. (14), and this
superfluid contains a point vortex. The point vortex in
the 2 + 1 topologically nontrivial chiral superfluid con-
tains the AM mode with zero energy. The continuum
of AM modes in the range —pp < p. < pp forms the
flat band.

This is demonstrated in Fig. 13, where the vortex
axis is rotated through an angle A with respect to the
direction to the Weyl points. In this case, invariant
(14) becomes

N(p:) =1, |p:] <pr|cos|, (23)

N(p.) =0, |p:| > pr|cosA|. (24)

Such a flat band of AM modes has been predicted
by Kopnin and Salomaa in Ref. [28] for the v = 1 vor-
tex in 3He-A. This flat band is doubly degenerate with
respect to spin and can therefore split, for example, due
to spin—orbit interaction (the nondegenerate flat band
of AM fermions occurs in the core of a half-quantum
vortex). In superfluid 3He, the spin—orbit interaction is
very small and can be neglected. However, there can be
another source of splitting: the symmetry of the vortex
core can be spontaneously broken [75].

The same doubly degenerate flat band should exist
in the v = 1 vortex in the 3 + 1 planar phase, where
the Green’s function is

2
_ . p
Gl =ipy+m3 <% — ,u> + 71 (0yps + oypy). (25)
Here, p* = p2 + p; + p2. For the 3 + 1 planar phase,
the topological invariant Nk in Eq. (6) is extended to

1 .
x G'GO,, G'GO,, G|, (26)

giving Ng (|pz| < prcos) = 2.

Both flat bands, in the A-phase and in the planar
phase, appear only for u > 0, when Ng(p, = 0) = 2.
For u < 0, the superfluids are topologically trivial,
Nk (p. =0) =0, and the flat band does not exist.
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Fig.13. Projections of Weyl points on the direction

of the vortex axis (the z axis) determine the bound-
aries of the flat band in the vortex core. A Weyl point
in a 3D system represents the hedgehog (Berry-phase
monopole) in momentum space [9]. For each plane
p. = const, we have the effective 2D system with
the fully gapped energy spectrum E,_(p,py), except
for the planes with p.+ = Zprcos )\, where the en-
ergy E,.(pz,py) has a node due to the presence of
the hedgehogs. The topological invariant N(p.) in
(14) is nonzero for |p.| < pr|cos )|, which means
that for any value of the parameter p, in this interval,
the system behaves as a 2D topological insulator or a
2D fully gapped topological superfluid. A point vor-
tex in such 2D superfluids has a fermionic state with
exactly the zero energy. For the vortex line in the orig-
inal 3D system with Fermi points, this corresponds to
the dispersionless spectrum of fermion zero modes in
the whole interval |p.| < pr|cosA| (thick line). The
flat band terminates at points, where the spectrum of
bond states merges with the spectrum of bulk excita-
tions (see Fig. 14)

8. ANDREEV-MAJORANA BOUND STATES
IN A 3He-B VORTEX

8.1. From the planar phase to the B-phase

Dimensional extension of the 2 4+ 1 planar phase
allows understanding the topological properties of the
vortex spectrum in *He-B. The Hamiltonian (9) for
fermions in the bulk *He-B represents the 2 + 1 planar
phase at p, = 0. That is why at p, = 0, the v = 1 vor-
tex in *He-B contains two AM bound states with zero
energy, if the tiny spin—orbit interaction is neglected

Ep,)

continuous spectrum

flat band | Weyl

7"

Weyl
point

point Ps

Fig.14. Schematic illustration of the spectrum of
bound states E(p.) in the vortex core of a Weyl su-
perfluid. The branches of bound states terminate at
points where their spectrum merges with the continu-
ous spectrum in the bulk. The flat band terminates at
points where the spectrum has zeros in the bulk, i.e.,
when it merges with Weyl points. This is a p-space
analog of a Dirac string terminating on a monopole;
another analog is given by the Fermi arc in Fig. 1¢

and the core symmetry is not spontaneously broken.
For p. # 0, the zero-energy modes are not supported
by topology. Hence, the two branches of AM modes
split, and we may expect the spectrum of AM bound
states in the most symmetric vortex to behave as illus-
trated in Fig. 15.

For 3He-B, which lives in the range of parameters
where N # 0 in Fig. 154, the gapless fermions in the
core of the most symmetric vortex (the so-called o-vor-
tex [75]) were found in Ref. [76]. On the other hand, in
the Bose—Einstein condensate (BEC) limit, when pu is
negative and the Bose condensate of molecules occurs,
there are no gapless fermions (see Fig. 15b). Thus,
in the BCS-BEC crossover region, the spectrum of
fermions localized on vortices must be reconstructed.
The topological reconstruction of the fermionic spec-
trum in the vortex core cannot occur adiabatically. It
should occur only during a topological QPT in the bulk,
when the bulk gapless state is crossed. Such a topolog-
ical transition occurs at u = 0 (see Fig. 4). At u <0,
the topological charge N vanishes and simultaneously
the gap in the spectrum of core fermions arises (see
Fig. 150).

This again demonstrates that the existence of
fermion zero modes is closely related to the topological
properties of the vacuum state. The reconstruction of
the spectrum of fermion zero modes at the topologi-
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Fig.15. (a) Schematic illustration of the spectrum of
fermionic bound states in the core of the most symmet-
ric vortex (o-vortex) in *He-B. Two AM states with
zero energy exist at p. = 0. (b) The same vortex but
in the topologically trivial state of the liquid, Nx =0,
does not have fermion zero modes. The spectrum of
bound states is fully gapped. Fermion zero modes dis-
appear at the topological QPT, which occurs in bulk
liquid at © = 0. A similar situation may occur for
strings in color superconductors in quark matter [77]

cal QPT in the bulk can be also seen for vortices in
relativistic superconductors [77].

8.2. Andreev—Majorana bound states on
B-phase vortices with broken symmetry

The spectrum in Fig. 154 is valid only for a vortex
state that respects all the possible symmetries of the
vortex core. These symmetries are the spatial parity P
and the discrete symmetry T'Us. The latter is the sym-
metry under the time reversal 7' when it is accompa-
nied by the m-rotation Us about the axis perpendicular
to the vortex axis. In the cores of the experimentally
observed vortices in *He-B, both discrete symmetries
are spontaneously broken, while the combined symme-
try PTU, is preserved [75]. Such a vortex is called the
v-vortex. The broken parity in the v-vortex leads to
mixing between the two spin components in the core,
and as a result, the two AM modes at p, = 0 split.
This leads to the spectrum in Fig. 16 [78].

In the weak-coupling regime mc? < pu, a large num-
ber (of the order of \/u/mec?) of branches appear that
cross the zero energy. Each crossing point corresponds
to a one-dimensional Fermi surface. This demonstrates
that the topology in the bulk determines the spectrum
of the fermion zero modes on the B-phase vortices only

En (pz)

Fig.16. Spectrum of AM bound states in an ax-
isymmetric v-vortex with spontaneously broken discrete
symmetry in *He-B. The AM states with zero energy
at p. = 0, which were present in the most symmet-
ric o-vortex in Fig. 15, do not exist any more. They
split due to the matrix element between the spin com-
ponents, which appears due to symmetry breaking,
and move far away. There are many nontopological
branches of the spectrum, which cross zero energy as
functions of p. and form one-dimensional Fermi sur-
faces. The number of such branches is of the order

of \/u/me?

if the symmetry of the vortex core is not violated.
This is a consequence of the mod 2 rule for Majo-
rana modes: a topological zero-energy state survives
symmetry breaking only in the case of an odd number
of Majorana modes. Hence, for realistic vortices, the
AM mode can exist only in half-quantum vortices. For
other vortices, such as those in *He-B, a large num-
ber of energy levels is involved. That is why it is more
appropriate to use the quasiclassical approximation in
the analysis. It leads to other types of topological in-
variants describing fermion zero modes on vortices (see,
e.g., Refs. [9,79]).

9. CONCLUSION

We considered the AM bound states with zero en-
ergy on surfaces, interfaces, and vortices in different
phases of p-wave superfluids: 3He-A, *He-B, planar
and polar phases.
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These states are determined by topology in the
bulk, and they disappear at the QPT from the topo-
logical to nontopological state of the superfluid (see the
example in Fig. 15). This topology demonstrates the
interplay of dimensions. In particular, the 0D Weyl
point (the Berry-phase monopole in momentum space)
gives rise to a 1D Fermi arc on the surface (Sec. 6.1).
The 1D nodal line in the bulk produces the dispersional
2D band of AM modes on the surface (Sec. 5).

The interplay of dimensions also connects the AM
states in superfluids in different dimensions. For exam-
ple, the properties of the spectrum of bound states in
the 3D 3He-B are connected to the properties of the
spectrum in the 2D planar phase (see Sec. 3 for edge
states and Sec. 7.1 for bound states on vortices). The
0D AM mode on a point vortex in a 2D chiral super-
fluid (Sec. 6) gives rise to a 1D flat band of AM modes
on a vortex in the 3D chiral superfluid (Sec. 7).

The most robust zero-energy edge states occur on
the boundary of 3He-A, or in general on boundaries
and interfaces of chiral superfluids with the topological
invariant N in Eq. (1). In other phases, the existence of
zero-energy edge states is supported by symmetry, i.e.,
by the symmetry-protected topological invariants Ng
in Egs. (6) and (17). When the symmetry is violated in
the bulk or on the boundary/interface, the AM bound
states acquire a gap.

Concerning the AM states on vortices, only the
states on half-quantum vortices are fully robust to per-
turbations. In singly quantized vortices, the fate of
zero-energy states depends on symmetry and its possi-
ble violation in the bulk or spontaneous breaking inside
the vortex core. This is a consequence of the Z, classi-
fication of AM modes on vortices. On the other hand,
the spontaneously broken symmetry inside the vortex
core may give rise to many nontopological branches of
AM bound states, which cross the zero energy as a
function of p.. This is demonstrated in Sec. 8.2.

We also mention the application to relativistic theo-
ries. The fermion zero modes obtained in the Dirac sys-
tems, such as the modes localized on strings in Ref. [80],
are not properly supported by topology. The reason
for that is that the Dirac vacuum is marginal, and the
topological invariants depend on the regularization of
the Green’s function in the ultraviolet [81]. For ex-
ample, in Fig. 4, the Dirac vacuum is on the border
between the trivial vacuum with Nx = 0 and the topo-
logical vacuum with N = 2. That is why the existence
of the modes with exactly zero energy depends on the
behavior of the Green’s function at infinity.
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