
ÆÝÒÔ, 2014, òîì 146, âûï. 6 (12), ñòð. 1192�1209 

 2014
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rostru
tures, Russian A
ademy of S
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es603950, Nizhny Novgorod, Russia
Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiaRe
eived May 5, 2014We 
onsider Andreev�Majorana (AM) bound states with zero energy on surfa
es, interfa
es, and vorti
es indi�erent phases of the p-wave super�uids. We dis
uss the 
hiral super�uid 3He-A and time reversal invariantphases: super�uid 3He-B, planar and polar phases. The AM zero modes are determined by topology in thebulk and disappear at the quantum phase transition from the topologi
al to nontopologi
al state of the super-�uid. The topology demonstrates the interplay of dimensions. In parti
ular, the zero-dimensional Weyl pointsin 
hiral super�uids (the Berry phase monopoles in momentum spa
e) give rise to the one-dimensional Fermiar
 of AM bound states on the surfa
e and to the one-dimensional �at band of AM modes in the vortex 
ore.The one-dimensional nodal line in the polar phase produ
es a two-dimensional �at band of AM modes on thesurfa
e. The interplay of dimensions also 
onne
ts the AM states in super�uids with di�erent dimensions. Forexample, the topologi
al properties of the spe
trum of bound states in three-dimensional 3He-B are 
onne
tedto the properties of the spe
trum in the two-dimensional planar phase (thin �lm).Contribution for the JETP spe
ial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141200501. INTRODUCTIONMajorana fermions are ubiquitous in super
on-du
tors and fermioni
 super�uids. The Bogoliubov�de Gennes equation for fermioni
 Bogoliubov�Nambuquasiparti
les 
an be brought to a real form by a uni-tary transformation. This implies a linear relationbetween the parti
le and antiparti
le �eld operators,whi
h is the hallmark of a Majorana fermion. Thefermioni
 statisti
s and Cooper pair 
orrelations giverise to Majorana fermions, irrespe
tive of geometry, di-mensionality, symmetry, and topology [1�3℄. The roleof topology is to prote
t gapless Majorana fermions,whi
h play a major role at low temperatures, when thegapped degrees of freedom are frozen out. For some
ombinations of geometry, dimensionality, and symme-try, these Majorana fermions behave as emergent mass-less relativisti
 parti
les. This suggests that Majorana*E-mail: msilaev�ipm.s
i-nnov.ru**E-mail: volovik�boojum.hut.�

fermions may serve as building blo
ks for 
onstru
tingthe Weyl parti
les of the Standard Model [4℄.Here, we 
onsider gapless Majorana fermions, whi
happear as Andreev bound states on the surfa
es ofsuper�uids and on topologi
al obje
ts in super�uids:quantized vorti
es, solitons, and domain walls. In all
ases, the bound states are formed due to the subse-quent Andreev re�e
tions of parti
les and holes. Thekey fa
tor for the formation of Andreev bound states ona small defe
t with the size of the order of the 
oheren
elength is a nontrivial phase di�eren
e of the order pa-rameter at the opposite ends of the parti
le traje
tory.In general, it depends on the stru
ture of the order pa-rameter in real and momentum spa
e, whi
h 
an berather 
ompli
ated. The possibilities for the formationof Andreev bound states are rather diverse, several ofthem are shown in Fig. 1. Parti
ularly interesting isthe 
ase where Andreev bound states are topologi
allystable, whi
h means that they have stable zero-energyMajorana modes that 
annot be eliminated by a smallperturbation of the system parameters.1192
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Fig. 1. S
hemati
 pi
ture of the formation of Andreev bound states lo
alized (a) on domain wall, (b ) on the edge, and (
)inside the vortex 
ore. In all 
ases, the me
hanism is the subsequent parti
le�hole 
onversions via Andreev re�e
tions at theopposite ends of the traje
tory s. The re�e
ted parti
le (hole) pi
ks up the phase of the order parameter 'R (�'L) and�ips the group velo
ity dire
tion vp (vh) as shown in panel a. In general, the wave ve
tors of the parti
le and the hole inthe bulk are slightly di�erent, kp;h = kF �E=vF , where kF and vF are Fermi momentum and velo
ity, and E is the energy.If the order parameter phase di�eren
e is �R � �L = �, a 
losed loop 
an be formed even for ke = kh, that is, for the zeroenergy E = 0. In 
ases (b, 
), the phase di�eren
e o

urs due to the momentum dependen
e of the gap fun
tion and thephase winding around the vortex 
ore 
orrespondinglyGeneral properties of the fermioni
 spe
trum in
ondensed-matter and parti
le physi
s are determinedby topology of the ground state (va
uum). The 
lassi-�
ation s
hemes based on topology [5�11℄ suggest the
lasses of topologi
al insulators, fully gapped topolog-i
al super�uids/super
ondu
tors, and gapless topolog-i
al media. In Refs. [9�11℄, the 
lassi�
ation is basedon topologi
al properties of the matrix Green's fun
-tion, while other s
hemes explore the properties of asingle-parti
le Hamiltonian and are therefore appli
a-ble only to systems of free (nonintera
ting) fermions.Among the fully gapped topologi
al super�uids, thereis time-reversal invariant super�uid 3He-B, thin �lmsof 
hiral super�uid 3He-A, and thin �lms of the time-

reversal invariant planar phase of super�uid 3He. Themain signature of topologi
ally nontrivial va
ua withthe energy gap in the bulk is the existen
e of zero-energy edge states on the boundary, at the interfa
ebetween topologi
ally distin
t domains [12, 13℄ andin the vortex 
ores [14℄. For super�uids and super-
ondu
tors, these are Andreev�Majorana (AM) boundstates. These are mainly propagating fermioni
 quasi-parti
les, whi
h have a relativisti
 spe
trum at low en-ergy [15�20℄. However, for spe
ial geometries and di-mensions, the AM bound state represents an isolatednonpropagating midgap state, 
alled the Majorana zeromode (or Majorino [21℄). It is not a fermion, be
auseit obeys a non-Abelian ex
hange statisti
s [22℄. This in1193
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ular o

urs for the AM bound states in the vortex
ore of 
hiral p-wave super�uid-super
ondu
tor in 2+1dimensions [23℄.A gapless AM bound state also o

urs on the sur-fa
es, interfa
es, and in the vortex 
ores of gapless topo-logi
al media. Among them, there are 
hiral super�uid3He-A with Weyl points, the time-reversal invariantplanar phase with Dira
 points, and the time-reversalinvariant polar phase with a line of zeroes. The spe
-trum of AM bound states is nonrelativisti
 and exoti
:the zeroes of the AM bound-state spe
trum form Fermiar
s [24�27℄ and �at bands [28�35℄.2. ANDREEV�MAJORANA EDGE STATES IN2+1 GAPPED TOPOLOGICALSUPERFLUIDSThe p-wave super�uid 3He was dis
overed in 1972.But until now, there is little understanding of super-�uid 3He �lms. The information on re
ent experimentsin 
on�ned geometry 
an be found in review [36℄. Inthin �lms, a 
ompetition is expe
ted between the 
hiralsuper�uid 3He-A and the time-reversal invariant pla-nar phase, both a
quiring a gap in the spe
trum in thequasi-two-dimensional 
ase due to transverse quantiza-tion.The fermioni
 spe
tra in both the 2D A phase andthe planar phase have nontrivial topologi
al properties.These topologi
al states provide examples of systemsfeaturing generi
 topologi
al phenomena. In parti
u-lar, an analog of the integer quantum Hall e�e
t existsin the 2D A phase, where the internal orbital momen-tum of Cooper pairs plays the role of the time reversalsymmetry breaking magneti
 �eld. In the time rever-sal invariant planar phase, the quantum spin Hall e�e
t
an be realized. In a 
lose analogy with 2d ele
troni
systems, a topologi
al invariant is determined by thenumber of fermioni
 edge modes with zero energy. Inthe super�uid systems, the edge zero modes are the An-dreev bound states lo
alized at the super�uid/va
uumboundary or at the interfa
es and domain walls sepa-rating super�uid states with di�erent topologi
al prop-erties. Below, we dis
uss the topologi
al properties andAndreev bound states for the 2D A phase and the pla-nar phase in detail.2.1. Chiral 3He-A �lmThe order parameter in a spatially homogeneoustime reversal symmetry breaking 3He-A phase is givenby �̂ = �x(px � ipy);

where �x is the spin Pauli matrix and the px;y are mo-mentum proje
tions onto the anisotropy plane. Su
han order parameter des
ribes spin triplet Cooper pairswith zero spin Sz = 0 and a nonzero oribital momen-tum proje
tions Lz = �1 onto the anisotropy axis. Anonzero Lz plays the role of the internal magneti
 �eldbreaking the time-reversal symmetry of the systems.Con�ned in the xy plane, the 2D state of the A phaseis a fully gapped system. By the analogy with the 2Dele
troni
 gas in a quantized magneti
 �eld, the gappedground states (va
ua) in 2+1 or quasi 2+1 thin �lmsof 3He-A are 
hara
terized by the topologi
al invari-ant [37�41℄N = eijk24�2 �� Tr�Z d3pG�piG�1G�pjG�1G�pkG�1� : (1)Here, G = G(px; py; ! = ip0) is the Green's fun
tionmatrix, whi
h depends on the Matsubara frequen
yp0; the integration is over the whole (2+1)-dimensionalmomentum�frequen
y spa
e pi = (px; py; p0), or overthe Brillouin zone and p0 in 
rystals. Expression (1)is an extension of the TKNN invariant invented byThouless, Kohomoto, Nightingale, and den Nijs todes
ribe topologi
al quantization of the Hall 
ondu
-tan
e [42, 43℄.The advantage of the topologi
al approa
h is thatwe 
an 
hoose to work with the simplest form of theGreen's fun
tion, whi
h has the same topologi
al prop-erties and 
an be obtained from the 
ompli
ated oneby a 
ontinuous deformation. For a single layer of a3He-A �lm, we 
an 
hooseG�1 = ip0 + �3� p22m � ��+ 
�z (�1px + �2py) ; (2)where p2 = p2x+p2y. The Pauli matri
es �1;2;3 and �x;y;zrespe
tively 
orrespond to the Bogoliubov�Nambu spinand the ordinary spin of a 3He atom; the parameter
 
hara
terizes the amplitude of the super
ondu
tingorder parameter. The weak-
oupling BCS limit 
orre-sponds to m
2 � �. In this limit, 
 = �=pF , where� is the gap in the spe
trum and pF is the Fermi mo-mentum, p2F =2m = �.It is also instru
tive to 
onsider the simpli�ed 
asewhere there is only a single spin 
omponent, whi
h 
or-responds to the fully spin-polarized px+ ipy super�uid:G�1 = ip0 + �3� p22m � ��+ 
 (�1px + �2py) : (3)We 
all this 
ase the spinless fermions. Topologi
al in-variant (1) for the state in Eq. (3) with � > 0 is N = 1,1194
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Fig. 2. S
hemati
 pi
ture of the interfa
e between two�lms of a 
hiral px + ipy super�uid with values N1and N2 of topologi
al invariant (1). The interfa
e 
on-tains 
hiral AMBSs with the spe
trum E = E(py),whi
h move with the group velo
ity vg = dE(py)=dpy.In general, the algebrai
 sum of bran
hes (the num-ber of left-moving minus the number of right-movingfermions) is N2 � N1. On the lower panel, the 
hi-ral bran
h of spinless AMBSs is given by Eq. (3) withN2 = 1 and N1 = 0. For the spinful 
ase in Eq. (2),there are two anomalous bran
hes of the spe
trum ofedge states E(py), whi
h are degenerate with respe
tto spin. The 
hiral bran
hes produ
e an equilibriummass 
urrent �owing along the interfa
ewhile for the state with � < 0, we have N = 0. A

ord-ing to the bulk�surfa
e 
orresponden
e, there must bea bran
h of the AM edge states at the interfa
e betweenthese two phases, whi
h 
rosses zero energy level [15; 44℄(Fig. 2).In the spin 
ase in Eq. (2), both spin 
omponents
ontribute to the topologi
al invariant equally, and wehave N = 2 for � > 0 and N = 0 for � < 0. There-fore, there must be two bran
hes of AM edge states,whi
h 
ross zero energy level. In the general 
ase,the algebrai
 sum of anomalous bran
hes (the num-ber of left-moving minus the number of right-movingfermions) satis�es the index theorem, nL � nR == N(x > 0)�N(x < 0).2.2. Time-reversal invariant planar phaseIn addition to the 2D 
hiral A phase in thin �lmsof super�uid 3He, the time-reversal invariant planarphase [45℄ 
an be
ome stable. While this phase has notyet been identi�ed experimentally, a strong suppres-
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 spin�
urrentquantum Hall e�e
t due to AM edge states in the stripeof a planar phase �lm with the topologi
al invariantNK = 2 in Eq. (6). As distin
t from 3He-A in Fig. 2,the anomalous bran
hes with di�erent spin proje
tionshave opposite slopes. This gives rise to the quantizedspin Hall e�e
t without a magneti
 �eld, instead of thequantized Hall e�e
t in 3He-A �lm [41, 50℄sion of the transverse gap in 3He-B has been observedin re
ent experiments [36; 46�49℄.The order parameter that des
ribes the spatiallyhomogeneous time reversal invariant planar phase hasthe form �̂ = py + i�zpx. In this phase, the orderparameter is anisotropi
 and vanishes for the p k ez di-re
tion, transverse to the �lm. Nevertheless, 
on�nedin 2D when pz = 0, this system is gapful.Being time-reversal invariant, the planar phase hasa zero topologi
al invariant of the type given by Eq. (1).But it has an extra dis
rete symmetry, namely, a 
om-bination of a � spin rotation around the z axis followedby a �=2 phase rotation. This modi�es the topologi
al
lassi�
ation, adding an extra Z topologi
al invariantobtained by Volovik and Yakovenko in Ref. [41℄. Thisinvariant gives rise to the intrinsi
 spin Hall e�e
t il-lustrated in Fig. 3.An extra motivation to study this parti
ular 
aseof the planar phase is that it 
an be 
onsidered a 
or-nerstone of the dimensional redu
tion s
heme that 
anbe applied to general 
lass-DIII topologi
al super
on-du
tors. In the next se
tion, we show that the topo-logi
al properties of a 3D system and an embedded(2+1)D system, whi
h exists in any time-reversal in-variant 
ross se
tion of the momentum spa
e, are 
on-ne
ted. As an appli
ation of su
h a redu
tion, we derivea generalized index theorem for 3D topologi
al super-1195
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ondu
tors, whi
h provides an example of the bulk�boundary 
orresponden
e in odd spatial dimensions.In the single-layer 
ase, the simplest expression forthe planar phase Green's fun
tion G(p0; px; py) isG�1 = ip0 + �3� p22m � ��+ 
�1(�xpx + �ypy): (4)This phase is symmetri
 under time reversal. Thetwo spin 
omponents have opposite 
hiralities, as 
anbe seen from the identity�xpx + �ypy = 12(�x + i�y)(px � ipy) ++ 12(�x � i�y)(px + ipy): (5)That is why the 
ontributions of the two spin 
om-ponents to topologi
al invariant (1) 
an
el ea
h other,N = 0. But the planar phase is still topologi
ally non-trivial be
ause of the dis
rete Z2 symmetry between thetwo spin 
omponents in Eq. (5). Due to this symmetry,the matrix K = �3�z 
ommutes with the Green's fun
-tion, whi
h allows introdu
ing the symmetry-prote
tedtopologi
al invariant [41, 50℄NK = eijk24�2 �� Tr �K Z d3pG�piG�1G�pjG�1G�pkG�1� : (6)This invariant is robust to deformations, if the defor-mations are K-symmetri
. For state (4) with � > 0,we have NK = 2. For the general 
ase of a quasi 2D�lm with multiple layers of the planar phase, the invari-ant NK belongs to the group Z. The magneti
 solid-state analog of the planar phase is the 2D time reversalinvariant topologi
al insulator, whi
h experien
es thequantum spin Hall e�e
t without an external magneti
�eld [12℄.Figure 3 demonstrates AM edge states on twoboundaries of the stripe of a single layer of a planarphase �lm. As distin
t from 3He-A in Fig. 2, theanomalous bran
hes with di�erent spin proje
tions arenot degenerate: they have opposite slopes, whi
h 
or-responds to the zero value of the invariant N = 0 inEq. (1). In the 
ase of a super
ondu
tor with planarphase symmetry, the invariant NK determines quanti-zation of the spin Hall e�e
t. In an applied voltage V ,the spe
tra on two boundaries shift in opposite dire
-tions, 
hanging the population of bran
hes. This pro-du
es an imbalan
e in the spin 
urrents 
arried by edgestates on two boundaries, giving rise to a nonzero totalspin 
urrent Jzx (the 
urrent of the z-proje
tion of spin

along the x axis). This underlies the quantized spinHall e�e
t in the absen
e of a magneti
 �eld [41; 50; 51℄:Jzx = �spinxy Ey; �spinxy = NK4� : (7)In this time reversal invariant system, the ele
tri
 
ur-rent quantum Hall e�e
t is absent. The topologi
al
harge N in Eq. (1), whi
h determines quantizationof the Hall 
ondu
tan
e in the absen
e of a magneti
�eld [40℄, is N = 0, and the 
urrents of di�erent spinpopulations 
an
el ea
h other.The mass and spin 
urrents 
arried by an AM edgestate in p-wave super�uids have been 
onsidered inRefs. [52, 53℄.3. AM BOUND STATES ON THE SURFACE OFA 3+1 GAPPED TOPOLOGICALSUPERFLUIDFully gapped 3+1 fermioni
 systems � topologi
alinsulators and topologi
al super
ondu
tors � are nowunder extensive investigation. The interest in su
h sys-tems was revived after the identi�
ation of topologi
alinsulators in several 
ompounds [12℄.These systems are 
hara
terized by gaplessfermioni
 states on the boundary of the bulk insulatoror at the interfa
e between di�erent states of theinsulator. Histori
ally, the topologi
al insulators withfermioni
 zero modes at the interfa
e were introdu
edin [54℄. An example of fully gapped topologi
al super-�uids is the B phase of super�uid 3He. Mu
h attentionhas been devoted to the investigation of bound fermionstates on the surfa
e of 3He-B. The presen
e ofAM surfa
e states in 3He-B 
an be probed throughanomalous transverse sound attenuation [55�58℄ andsurfa
e spe
i�
 heat measurements [59, 60℄. TheseAM bound states are supported by the nonzerovalue of the topologi
al invariant in 3He-B [20℄ andhave a two-dimensional relativisti
 massless Dira
spe
trum [16�19; 24℄.3.1. 3He-B edge states from bulk topologyA topologi
al super�uid/super
ondu
tor of the3He-B type is des
ribed by the topologi
al invariantNK , whi
h is prote
ted by symmetry:NK = eijk24�2 �� Tr�K Z d3pH�1�piHH�1�pjHH�1�pkH� : (8)1196
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ase of an in-tera
ting system, the inverse Green's fun
tion at zerofrequen
y H(p) = G�1(! = 0;p), and K is a matrixthat 
ommutes or anti
ommutes with H(p).The proper model Hamiltonian that has the sametopologi
al properties as super�uids/super
ondu
torsof the 3He-B 
lass is the following:H = � p22m � �� �3 � 
�1� � p; (9)where �i and �i are again the respe
tive Pauli matri
esof the Bogolyubov�Nambu spin and the nu
lear spin.The symmetry K, whi
h enters the topologi
al invari-ant NK in Eq. (8), is represented by the �2 matrix,whi
h anti
ommutes with the Hamiltonian: it is the
ombination of time reversal and parti
le�hole symme-tries of 3He-B. In the limit 1=m = 0, Eq. (9) trans-forms to the Dira
 Hamiltonian, where the parameter 
serves as the speed of light, while 3He-B lives in the op-posite limit m
2 � �. The topologi
al phase diagramin the plane (�; 1=m) is shown in Fig. 4.The me
hanism of the Andreev�Majorana boundstate formation at the edge of 3He-B is 
lear fromHamiltonian (9). We 
onsider the boundary plane atx = 0 as shown s
hemati
ally in Fig. 5. Then undernormal re�e
tion of parti
les and holes from the bound-ary, some 
omponents of the gap fun
tion in Hamilto-nian (9) 
hange sign. Therefore, we obtain a nonzerophase of the gap along the e�e
tive traje
tory, as shownin Fig. 1. In parti
ular, for the traje
tories normal tothe boundary pz;y = 0, the overall gap fun
tion 
hangessign, leading to the formation of a zero-energy state lo-
alized at the boundary.However, this is not the whole story. Indeed, if weformally assume that the Hamiltonian may have eithernegative e�e
tive mass m < 0 or a negative 
hemi
alpotential � < 0, the exa
t solution of the spe
tral prob-lem yields no zero-energy states, as is dis
ussed below.The hint to the topologi
al origin of the AM boundstates in 3He-B 
an be obtained from the topologi
alphase diagram in Fig. 4, whi
h demonstrates that thesystem undergoes a topologi
al quantum phase tran-sitions (QPTs) as we 
hange the sign of the 
hemi
alpotential � or the e�e
tive mass m.The domain wall that separates the states with dif-ferent values of NK should 
ontain the zero-energystates � the AM zero modes.

NK = +2

NK = 0NK = −2

NK = 0

Dirac Dirac

NK = +1NK = −1
0

1/m

µ

Fig. 4. Phase diagram of topologi
al states of a tripletsuper�uid of the 3He-B type in Eq. (9) in the plane(�; 1=m). States on the line 1=m = 0 
orrespond tothe Dira
 va
ua, whose Hamiltonian is non
ompa
t.The topologi
al 
harge of Dira
 fermions is intermedi-ate between 
harges of 
ompa
t 3He-B states. Theline � = 0 marks a topologi
al QPT, whi
h o

urs be-tween the weakly 
oupled 3He-B (with � > 0, m > 0,and the topologi
al 
harge NK = 2) and the strong
oupled 3He-B (with � < 0, m > 0, and NK = 0).This transition is topologi
ally equivalent to the QPTbetween Dira
 va
ua with opposite mass parametersM = �j�j. The gap in the spe
trum vanishes at thistransition. The line 1=m = 0 separates the states withdi�erent asymptoti
 behavior of the Hamiltonian at in-�nity: H(p)! ��3p2=2m. The transition a
ross thisline o

urs without 
losing the gap3.2. 3He-B edge states from topology of theplanar phaseTo prove the existen
e of the AM bound states onthe surfa
e of 3He-B or at the interfa
e, we 
an use adimensional redu
tion. We assume that the boundaryplane is at x = 0, and hen
e the 
onserved longitudinalmomentum proje
tions are pz;y. To �nd the 
ompletespe
trum of bound states Eb = Eb(py; pz), it is enoughto 
onsider a set of 2D spe
tral problems for the 
rossse
tions of the momentum spa
e,py 
os � + pz sin � = 0; (10)where 2� > � � 0.An example of su
h a dimensional redu
tion to theplane pz = 0 is shown in Fig. 5. The 2+1 Hamiltonianin this 
ross se
tion redu
ed from the 3+1 phase exa
tly
oin
ides with the Hamiltonian of the planar phase.Therefore, it is 
lassi�ed by the integer-valued topo-logi
al invariant NK in Eq. (6), whi
h 
an be shown1197



M. A. Silaev, G. E. Volovik ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014

NK = 0

py

pz

E

E

py

pz

NK = 2Z topological
superfluid
3He-B

Z topological
planar phase at pz = 0

z
y

x

hole

particle

Non-
topological
insulator

Fig. 5. Dimensional redu
tion of the surfa
e-state spe
-tral problem in 3D to that in the time-reversal invariant
ross se
tion of momentum spa
e pz = 0. Redu
tionfrom the Z topologi
al super�uid 3He-B results in theZ topologi
al planar phase at pz = 0to 
oin
ide with the topologi
al invariant NK of theparent 3D 3He-B phase in Eq. (8). The topologi
allyprote
ted AM states in 3He-B are thus related to thetopologi
ally prote
ted edge states in the 2 + 1 planarphase (see details in Ref. [61℄).3.3. Evolution of the edge state at anontopologi
al quantum phase transitionWe 
onsider the spe
trum of AM fermions using thesimplest model of the interfa
e between the super�uidand the va
uum, in whi
h Hamiltonian (9) 
hangesabruptly at the boundary, with the boundary 
ondi-tion  (z = 0) = 0.At low energies jEj � �, their spe
trum is a he-li
al spe
trum, being des
ribed by the HamiltonianHAM = 
(�ypx � �xpy) [16℄. Interestingly an exa
tsolution of the spe
tral problem demonstrates [62℄ thatthe linear spe
trum of AM bound states exist up to themerging point with the 
ontinuous spe
trum of delo
al-ized states.For m > 0, the exa
t spe
trum of AM fermionsE = �p? is shown by the solid line in Fig. 6 forE > 0. The bound states are 
on�ned to the regionjp?j < p2m�. They disappear when their spe
trummerges with the 
ontinuous spe
trum in bulk. The edge

ε

µ

∆

0 p⊥ 2µm

a
ε

∆ = µ

0 p⊥ 2µm

b

Fig. 6. Spe
trum of AM fermions, lo
alized states onthe surfa
e of a topologi
al super�uid/super
ondu
torof the 3He-B 
lass (solid lines) for (a) � > m > 0 and(b ) m > �. The spe
trum of bound states terminateswhen it merges with the 
ontinuous spe
trum in thebulk (gray region), whose border is shown by a dashedline. The AM bound states exist for p2? < 2m�of the 
ontinuous spe
trum is shown by the dashed linein Fig. 6. If m
2 > �, the minimum of the bulk energyspe
trum in
reases monotoni
ally with the momentump?, and therefore the bulk gap is� = �; m
2 > �: (11)If � > m
2, the minimum of the bulk energy is anonmonotoni
 fun
tion of p?, having a minimum atpmin? =p2m(��m
2), where the bulk gap is� =pm
2(2��m
2); 0 < m
2 < �: (12)The line m
2 = � marks the nontopologi
al QPT �a momentum-spa
e analog of the Higgs transition [10℄,when the Mexi
an hat potential as a fun
tion of p?emerges for � > m
2.3.4. Evolution of the edge state at atopologi
al quantum phase transitionWe �rst 
onsider the behavior of the spe
trumof Majorana fermions at the topologi
al transition atwhi
h m 
rosses zero. As m approa
hes zero, m ! 0,the region of momenta where bound states exist shrinksand �nally, for m < 0, i. e., in the topologi
ally triv-ial super�uid, no bound states exist any more. Simul-taneously the gap in the bulk, whi
h at small m is� �p2m
2� a

ording to Eq. (12), de
reases with de-
reasingm and vanishes at m = 0. This 
orresponds tothe 
onventional s
enario of a topologi
al QPT, whenat the phase boundary between the two gapped stateswith di�erent topologi
al numbers, the gap is 
losed.1198
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al QPT o

urringwhen � 
rosses zero (see the phase diagram in Fig. 4).We now 
onsider what happens with bound states inthe 
ase where the topologi
al QPT o

urs in the oppo-site limit, when m 
hanges sign via in�nity, i. e., when1=m 
rosses zero. This topologi
al transition o

urswithout 
losing the gap. In this 
ase, the bound statesformally exist for all px even in the limit 1=m ! 0.But in this limit, the ultraviolet divergen
e o

urs: the
hara
teristi
 length s
ale of the wave fun
tion of thebound state L / ~=m
 ! 0. Hen
e, if the topologi-
al QPT from a topologi
ally nontrivial to the trivialinsulator (or super
ondu
tor) o

urs without 
losingthe gap, the gapless spe
trum of surfa
e states disap-pears by es
aping via the ultraviolet. This limit 
orre-sponds to the formation of a zero of the Green's fun
-tion, G = 1=(i!�H)! 0. Su
h a s
enario is impossi-ble in the models with a bounded Hamiltonian [63, 64℄,as in the approximation of a �nite number of 
rystalbands.On the other hand, the Green's fun
tion zeroes 
ano

ur due to parti
le intera
tions. As was found inRef. [65℄, 
lassi�
ations of intera
ting and nonintera
t-ing fermioni
 systems do not ne
essarily 
oin
ide. Thisis related to zeroes of the Green's fun
tion, whi
h a
-
ording to Ref. [10℄ 
ontribute to topology alongsidewith the poles. Due to zeroes, the integer topologi-
al 
harge of an intera
ting system 
an 
hange without
losing the energy gap, and it is suggested that this maylead to the o

urren
e of topologi
al insulators with nofermion zero modes on the interfa
e [63, 64℄.That is why we expe
t that the same s
enario withan es
ape to the ultraviolet o

urs for intera
ting sys-tems: if due to zeros in the Green's fun
tion, the topo-logi
al QPT in the bulk o

urs without 
losing the gap,the spe
trum of edge states does nevertheless 
hange atthe topologi
al QPT, and this 
hange o

urs via the ul-traviolet.We �nally mention that the magneti
 �eld violatestime reversal symmetry, whi
h generi
ally leads to a�nite gap (mass) in the spe
trum of AM fermions onthe surfa
e. At a parti
ular orientation of the magneti
�eld, there is still the Z2 dsi
rete symmetry, whi
h sup-ports gapless AM bound states [66, 67℄. This symme-try is spontaneously broken at some 
riti
al value ofthe magneti
 feild, above whi
h the AM fermions be-
ome massive. The surfa
e of 3He-B with massive AMbound states represents a 2+ 1 topologi
al �insulator�:it is des
ribed by the topologi
al invariant in Eq. (1).The line on the surfa
e that separates the surfa
e do-mains with di�erent values of this topologi
al invariant
ontains 1 + 1 gapless AM fermions [68℄.

4. ANDREEV�MAJORANA BOUND STATESON THE SURFACE OF A 3+1 WEYLSUPERFLUID. FERMI ARCWe now move to the AM bound states that ap-pear as edge and vortex states in gapless topologi
alsystems. Here, the zeroes in the bulk lead to extendedzeroes on the surfa
es, interfa
es, and vortex 
ores. Westart with point zeroes � Weyl points � in 
hiral su-per�uids, whi
h produ
e the lines of zeroes (Fermi ar
s)on the surfa
e, and the �at band in the vortex 
ore.4.1. Andreev�Majorana Fermi ar
 on theboundary of a Weyl super�uidThe topologi
al origin of AM bound states in 3+ 1
hiral super�uids 
an be viewed by extending the topol-ogy of the 2+1 
hiral system in Se
. 2 to the 3+1 
ase.For simpli
ity, we 
onsider spinless fermions, or, whi
his the same, the fermions with a given spin polariza-tion. Then the Green's fun
tion in Eq. (2) extended tothe 3 + 1 
ase isG�1(p; p0) = ip0 + �3� p22m � ��++ 
 (�1px + �2py) ; (13)where p = (px; py; pz). We regard pz as a parameter ofthe 2 + 1 system. Then for ea
h pz, ex
ept pz = �pF ,this Green's fun
tion des
ribes the fully gapped 2 + 1system � an �insulator� 
hara
terized by the topolog-i
al invariant in Eq. (1):N(pz) = 14�2 Tr�Z dpxdpydp0 �� G�pxG�1G�pyG�1G�p0G�1� : (14)This insulator is topologi
al for jpzj < pF , whereN(jpzj < pF ) = 1, and is topologi
ally trivial for jpzj >> pF , where N(jpzj > pF ) = 0.At pz = �pF , invariant (14) is not determined, sin
ethe 
orresponding 2 + 1 system is gapless. The bulk3 + 1 super�uid 3He-A has two points in the spe
trump� = (0; 0;�pF ) where the energy is zero, see Fig. 7.These nodes in the spe
trum are topologi
ally pro-te
ted, be
ause they represent monopoles in the Berryphase in the momentum spa
e and are 
hara
terizedby the topologi
al invariant in Eq. (1), where the in-tegration is now over the 3D sphere around the Weylpoint in the 3+1 spa
e (p0; px; py; pz) [9℄. In the vi
in-ity of these points, the fermioni
 quasiparti
les behaveas 
hiral (left-handed and right-handed) Weyl fermions1199
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Fig. 7. Line of AM bound states on the surfa
e of a
hiral super�uid with Weyl points. This line representsa 1D Fermi surfa
e that separates the edge states withpositive and negative energies (see also Fig. 9). How-ever, as distin
t from 
onventional Fermi surfa
es, thisFermi surfa
e has end points. The end points of theFermi ar
 are determined by proje
tions of the bulkWeyl points to the surfa
ein parti
le physi
s. That is why su
h nodes are 
alledthe Weyl points. Arrows in Fig. 7 show the dire
tionof the e�e
tive spin of the Weyl fermion. This spin isparallel to p � p+ in the vi
inity of p+, whi
h meansthat the fermions living there are right-handed. Forthe left-handed fermions near p�, their e�e
tive spin isantiparallel to p� p�.A

ording to the bulk�surfa
e 
orresponden
e, atea
h pz for whi
h N(pz) = 1, there should be onebran
h of AM edge states that 
rosses the zero energylevel (see Fig. 2). As a result, we have a line of ze-ro-energy states in the range �pF < pz < pF . This linerepresents the Fermi surfa
e (Fermi line) in the two-di-mensional momentum spa
e of bound states. As the
onventional Fermi surfa
e, it separates the positive-and negative-energy levels, but in 
ontrast to the 
on-ventional Fermi surfa
e, this Fermi surfa
e is not 
losed.It has two end points, and this is why this line is 
alledthe Fermi ar
.The end points of the Fermi ar
 
oin
ide with theproje
tion of the Weyl points to the surfa
e. This isa 
onsequen
e of the bulk�surfa
e 
orresponden
e inWeyl systems [25℄. For an arbitrary dire
tion of thesurfa
e with an angle � between the normal to the sur-fa
e and the z axis, the Fermi ar
 is 
on
entrated in the

range of momenta �pF sin� < pz < pF sin�. We notethat in 3He-A, the boundary 
onditions require � = 0.In 
rystals, the Weyl points 
an be moved to theboundaries of the Brillouin zone, where they annihi-late ea
h other. As a result, we obtain a 
hiral 3 + 1topologi
al insulator or a fully gapped 
hiral topolog-i
al super
ondu
tor. Sin
e N(pz) = 1 for all pz, thetopologi
al Fermi ar
 on the boundaries transforms toa 
losed topologi
al Fermi surfa
e.4.2. Andreev�Majorana Fermi ar
s on solitonsand domain wallsSimilar Fermi ar
s appear on the domain walls orsolitons separating the 
hiral phases with opposite 
hi-ralities. We have N(jpzj < pF ) = +1 on one side of thesoliton/wall and N(jpzj < pF ) = �1 on the other side.A

ording to the index theorem [9; 44℄, the di�eren
ebetween these two values determines the number of zeromodes at the interfa
e between the 2+1 topologi
al in-sulators for ea
h jpzj < pF . As a result, the domainwall and the soliton 
ontain two Fermi ar
s instead ofa single Fermi ar
 on the boundary (Fig. 8).A Fermi ar
 on domain walls in 3He-A [70℄ has been
onsidered in Refs. [27; 71℄.Figure 9 also in
ludes bound states with a nonzeroenergy and demonstrates that the Fermi ar
 does rep-resent a pie
e of the Fermi surfa
e that separates thepositive- and negative-energy levels.5. TOPOLOGICAL SUPERFLUIDS WITHLINES OF ZEROES. THEANDREEV�MAJORANA SURFACE FLATBANDThe zero-dimensional point nodes in the bulk (Weylpoints) give rise to one-dimensional nodes (lines) in thespe
trum of AM bound states. In the same manner,the 1D nodal lines in the bulk give rise to 2D mani-folds of AM bound states with zero energy (Fig. 10).We 
onsider the topologi
al origin of su
h dispersion-less spe
trum � a �at band � with the example of thepolar phase of a triplet super�uid/super
ondu
tor [32℄.5.1. Flat band of Andreev�Majorana modes onthe surfa
e of the polar phaseThe Hamiltonian for the polar phase isH = � p22m � �� �3 � 
�1�zpz: (15)1200
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Fig. 8. Topology of Andreev bound states on a l̂ soliton [69℄. The momentum spa
e topology of Weyl points in bulk3He-A on two sides of the soliton pres
ribes the existen
e of Fermi ar
s in the spe
trum of Andreev bound states in thesoliton or at the interfa
e between the bulk states with di�erent positions of Weyl points. In the 
onsidered 
ase, theWeyl points on two sides of the interfa
e have the same positions in momentum spa
e, but the opposite 
hiralities. As aresult, the 2 + 1 topologi
al insulators have opposite topologi
al invariants, N(pz = 0) = �1. This leads to two Fermiar
s terminating on the proje
tions of the Weyl points on the soliton/interfa
e plane in a

ordan
e with the index theoremn(right)� n(left) = 2This super
ondu
tor obeys the time reversal and spa
einversion symmetry, and it has a line of zeroes in theform of a ring.For simpli
ity, we 
onsider spinless fermions, or,whi
h is the same, the fully spin-polarized fermions,whose Hamiltonain isH = � p22m � �� �3 � 
�1pz: (16)The spe
trum of su
h fermions has a nodal line �the ring p2x + p2y = p2F , pz = 0. The stability of thisnodal line is determined by the topologi
al invariantprote
ted by symmetry,NK = 14�i Tr24K IC dlH�1rlH35 : (17)Here, the integral is along a loop C around the nodalline in the momentum spa
e (Fig. 11), and the ma-trix K = �2 anti
ommutes with the Hamiltonian. Thewinding number around the element of the nodal lineis NK = 1.We now 
onsider the momentum p? as a parameterof the 1+1 system; then for jp?j 6= pF , the system rep-resents the fully gapped state, a 1 + 1 insulator. Thisinsulator 
an be des
ribed by the same invariant as in

Eq. (17) with the integration 
ontour 
hosen parallel topz. Be
ause the Hamiltonian tends to the same limitas pz ! �1, the points pz = �1 are equivalent, andthe line �1 < pz < 1 forms a 
losed loop. That iswhy the integralNK(p?) = 14�i Tr�K Z 1�1 dpzH�1rpzH� (18)is integer valued.The topologi
al invariant N(p?) in (18) determinesthe properties of the surfa
e bound states of the 1 + 1system at ea
h p?. Due to the bulk�edge 
orrespon-den
e, the topologi
al 1D insulator must have a surfa
estate with exa
tly the zero energy. Be
ause su
h statesexist for any parameter within the 
ir
le jp?j = pF , weobtain a �at band of AM modes in Fig. 11a � the 
on-tinuum of self-
onjugate bound states with exa
tly thezero energy, E(jp?j < pF ) = 0, whi
h are prote
tedby topology. Su
h modes do not exist for parametersjp?j > pF , for whi
h the 1 + 1 super�uid is nontopo-logi
al.In the spin polar phase with Hamiltonian (15), thenodal ring in the bulk gives rise to two surfa
e �atbands with opposite 
hiralities for two dire
tions ofspin. The tiny spin�orbit intera
tion leads to a smallsplitting of the AM modes.5 ÆÝÒÔ, âûï. 6 (12) 1201
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Fig. 9. The spe
trum of bound states with two Fermiar
s "(py; pz) = 0. The arrows show dire
tions of theFermi velo
ity at these Fermi ar
s. At pz = 0, thevelo
ity is in the same dire
tion, vy > 0, whi
h demon-strates that both Fermi ar
s have the same topologi
al
harge N = +1, whi
h together satisfy the index theo-rem n(right)�n(left) = 2, in agreement with the mo-mentum spa
e topology of Weyl points in bulk 3He-Aon two sides of the soliton in Fig. 8. This leads to a dis-
ontinuity in the spe
trum of bound states at py = 0,where the spe
trum merges with the bulk spe
trum
E(px, py = 0) bulk

pxpF−pF

branches

surface flat band

Fig. 10. Spe
trum of AM modes on the surfa
e of thepolar phase. These modes form a 2D �at band: allthe states with p2x + p2y < p2F have zero energy. Thespe
trum is shown for py = 0
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Fig. 11. Topologi
ally nontrivial nodal lines gener-ate topologi
ally prote
ted �at bands on the surfa
e:(a) 
losed equatorial line of zeros in the polar phase;(b ) spiral of zeros in the multilayered graphene is alsoa 
losed line. Proje
tion of the line on the surfa
e de-termines boundary of �at band. If for a �xed (px; py)the energy E(px; py; pz) is nonzero for any pz, thenthe Green's fun
tion G(!; pz)px;py des
ribes a 1D fullygapped system, an �insulator�. At ea
h (px; py) insidethe proje
tion of the line to the surfa
e, this insulator istopologi
al, sin
e it is des
ribed by nonzero topologi
alinvariant (18). Thus, for su
h (px; py), there is a gap-less edge state on the surfa
e. The manifold of thesezero-energy edge state inside the proje
tion forms the�at band5.2. Flat band on the surfa
e of model graphiteIn the multilayered graphene, when the number ofgraphene layers tends to in�nity, and if some small ma-trix elements are negle
ted, the resultant 3 + 1 systemhas a line of zeroes, whi
h also obeys an invariant sim-ilar to that in Eq. (17). This nodal line has the shapeof a spiral [32, 33℄ (Fig. 11).We again 
onsider the momentum p? as a parame-ter of the 1+1 system; then for jp?j 6= t, where t is thedominating hopping element, the system represents thefully gapped system, a 1 + 1 insulator. This insulator
an be des
ribed by the same invariant as in Eq. (17)with the integration 
ontour 
hosen parallel to pz, i. e.,along the 1D Brillouin zone at a �xed p?. Due to peri-odi
 boundary 
onditions, the points pz = ��=a, where1202
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e between the layers, are equivalent andthe 
ontours of integration form a 
losed loop. As aresult, we obtain the integer-valued invariantNK(p?) = 14�i Tr Z �=a��=a dpz �2H�1rpzH: (19)For jp?j < t, the 1 + 1 insulator is topologi
al be-
ause N(jp?j < t) = 1. This gives rise to a surfa
e�at band. Sin
e there are no Cooper-pair 
orrelations,the fermioni
 bound states within the �at band are notMajorana modes.6. ANDREEV�MAJORANA MODES ONVORTICES IN CHIRAL 2+ 1 SUPERFLUIDSThe low-energy fermions bound to the vortex 
oreplay the main role in the thermodynami
s and dynam-i
s of the vortex state in super
ondu
tors and Fermisuper�uids. The spe
trum of low-energy bound statesin the 
ore of an axisymmetri
 vortex with the windingnumber � = �1 was obtained by Caroli, de Gennes,and Matri
on for the isotropi
 model of an s-wave su-per
ondu
tor in the weak-
oupling limit �� � [72℄:En(pz) = ��!0(pz)�n+ 12� : (20)This spe
trum is two-fold degenerate due to spin de-grees of freedom. The integer number n is a quan-tum number related to the angular momentum of thebound-state fermions. The minigap � the level spa
-ing !0(pz)� 
orresponds to the angular velo
ity of thefermioni
 quasiparti
le orbiting the vortex axis. Thedire
tion of rotation is determined by the sign of thewinding number � of the vortex.The level spa
ing is typi
ally small 
ompared tothe energy gap of the quasiparti
les outside the 
ore,!0 � �2=� � �. Hen
e, in many physi
al 
ases, thedis
reteness of n 
an be negle
ted. In su
h 
ases, thespe
trum 
rosses zero energy as a fun
tion of the 
on-tinuous angular momentum Lz, and we 
an 
onsiderthis as a spe
trum of quasi zero modes. The fermionsin this 1D �Fermi liquid� are 
hiral: the positive-energyfermions have a de�nite sign of the angular momentumLz. The number of the bran
hes 
rossing zero energyas a fun
tion of 
ontinuous Lz obeys the index theo-rem [9℄.Here, we are interested in the �ne stru
ture of thespe
trum, when its dis
rete nature is important. Thistakes pla
e, for example, in ultra
old fermioni
 gasesnear the Feshba
h resonan
e, when � is not small.

We �rst 
onsider the 2+1 spa
e�time and start withthe weak-
oupling limit. The Majorana nature of theBogoliubov parti
les requires that the spe
trum mustbe symmetri
 with respe
t to zero energy, i. e., for ea
hlevel with an energy E, there must be a level with theenergy �E. For fermions on vorti
es, su
h 
onditionis satis�ed for two 
lasses of systems. In systems ofthe �rst 
lass, the spe
trum of Andreev bound states isEn = !0(n+1=2). Vorti
es in s-wave super
ondu
torsbelong to this 
lass. Vorti
es of the se
ond 
lass haveEn = !0n. They 
ontain an AM mode exa
tly with thezero energy level at n = 0. In a 2+1 system, this modeis not propagating and is self-
onjugate. That is whyit is 
alled the Majorana mode instead of a Majoranaparti
le (see Ref. [21℄).For simpli
ity, we 
onsider the spinless (or fully spinpolarized) 
hiral px + ipy super�uid in a 2 + 1 spa
e�time, whi
h is des
ribed by Eq. (3). As was shown inRef. [23℄, the vorti
es with the winding number � = 1or � = �1 belong to the se
ond 
lass:En = ��!0n; (21)and hen
e 
ontain a single Majorana mode at n = 0.This mode is robust to perturbations, sin
e it isself-
onjugate and must therefore obey the 
onditionE = �E (see also [73℄).For the spin fermions in Eq. (2), there are twoAM modes 
orresponding to the two spin proje
tions.The even number of Majorana modes is not robust toperturbations. For example, the spin-orbit intera
tionsplits two modes with E1 = �E2. The splitting is ab-sent if there is some dis
rete symmetry between theAM modes, su
h as the mirror symmetry in Ref. [74℄.In the spin px + ipy super�uids, there is a topolog-i
al obje
t that 
arries a single Majorana mode. It isthe half-quantum vortex [75℄. In a simple model, thehalf-quantum vortex is the vortex with �" = 1 in onespin 
omponent, while the other spin 
omponent haszero vorti
ity �# = 0. As a result, su
h vortex 
ontainsa single Majorana mode, whi
h is robust to perturba-tions.However, the perturbations should not be too large.In the limit when � is negative and large, the BCS istransformed to the BEC of mole
ules, where the Majo-rana mode is absent. The Majorana mode disappearswhen the 
hemi
al potential � 
rosses zero. At � = 0,there is a topologi
al QPT, at whi
h the topologi
alinvariant in Eq. (1) 
hanges from N = 1 to N = 0.The topologi
al transition 
annot o

ur adiabati
ally,and in the intermediate state with � = 0, the spe
-trum in the bulk be
omes gapless. At � = 0, theMajorana mode merges with the 
ontinuous spe
trum1203 5*
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les and disappears at � < 0. Thisdemonstrates the topologi
al origin of the AM mode,whi
h exists inside the vortex only if the va
uum in thebulk is topologi
ally nontrivial.7. AN ANDREEV�MAJORANA FLAT BANDIN A VORTEX IN WEYL SUPERFLUIDSWe 
an easily extend the 
onsideration in Se
. 6 tothe 3 + 1 
ase in the weak-
oupling limit. The levelsat pz 6= 0 remain equidistant a

ording to the Caroli�de Gennes�Matri
on solution, and they must be sym-metri
 with respe
t to E = 0. This di
tates the fol-lowing modi�
ation of Eq. (20) for the most symmetri
vorti
es in 3He-A and in the planar phase:En(pz) = ��!0(pz)n: (22)This equation suggests a �at band in the vortex 
orefor n = 0 (Fig. 12a). We now show how su
h a �atband emerges purely from topologi
al 
onsiderations,whi
h do not use the weak-
oupling approximation.Topology of bound states on vorti
es in 3+1 
hiralsuper�uids 
an be obtained by dimensional extensionof the topology in the 2 + 1 
ase. The AM mode in apoint vortex of a fully gapped 2 + 1 
hiral super�uid
a b

En(pz)

pz0

s-wave

En(pz)

pz0

p-waveFig. 12. (a) S
hemati
 illustration of the spe
trumof fermioni
 bound states in the 
ore of a � = 1vortex in the s-wave super
ondu
tor. In the weak-
oupling limit, the lowest bran
hes are equidistant:En(pz) = �!0(pz) (n+ 1=2). There are no zero-energy states. The spe
trum is doubly degeneratewith respe
t to spin. (b ) The spe
trum of boundstates in the most symmetri
 vorti
es in the p-wavesuper�uids: the 
hiral Weyl super�uid 3He-A and thetime reversal invariant planar phase. The spe
trum isEn(pz) = �!0(pz)n. The bran
h with n = 0 forms a�at band of AM modes (solid line)

transforms into the �at band of AM modes inside thevortex line in 3+ 1 
hiral super�uids with Weyl pointsin the bulk. We 
onsider the px + ipy state in Eq. (13)again, and temporarily 
hoose the dire
tion of the vor-tex line along the z axis. In this 
ase, pz is the quantumnumber of bound states in the vortex 
ore. For ea
h pzin the range �pF < pz < pF , the Green's fun
tion (13)des
ribes the 2 + 1 
hiral super�uid with the topolog-i
al invariant N(jpzj < pF ) = 1 in Eq. (14), and thissuper�uid 
ontains a point vortex. The point vortex inthe 2+ 1 topologi
ally nontrivial 
hiral super�uid 
on-tains the AM mode with zero energy. The 
ontinuumof AM modes in the range �pF < pz < pF forms the�at band.This is demonstrated in Fig. 13, where the vortexaxis is rotated through an angle � with respe
t to thedire
tion to the Weyl points. In this 
ase, invariant(14) be
omesN(pz) = 1; jpzj < pF j 
os�j; (23)N(pz) = 0; jpzj > pF j 
os�j: (24)Su
h a �at band of AM modes has been predi
tedby Kopnin and Salomaa in Ref. [28℄ for the � = 1 vor-tex in 3He-A. This �at band is doubly degenerate withrespe
t to spin and 
an therefore split, for example, dueto spin�orbit intera
tion (the nondegenerate �at bandof AM fermions o

urs in the 
ore of a half-quantumvortex). In super�uid 3He, the spin�orbit intera
tion isvery small and 
an be negle
ted. However, there 
an beanother sour
e of splitting: the symmetry of the vortex
ore 
an be spontaneously broken [75℄.The same doubly degenerate �at band should existin the � = 1 vortex in the 3 + 1 planar phase, wherethe Green's fun
tion isG�1 = ip0 + �3 � p22m � ��+ �1(�xpx + �ypy): (25)Here, p2 = p2x + p2y + p2z. For the 3 + 1 planar phase,the topologi
al invariant NK in Eq. (6) is extended toNK(pz) = 14�2 Tr�K Z dpxdpydp0G�px �� G�1G�pyG�1G�p0G�1� ; (26)giving NK(jpzj < pF 
os�) = 2.Both �at bands, in the A-phase and in the planarphase, appear only for � > 0, when NK(pz = 0) = 2.For � < 0, the super�uids are topologi
ally trivial,NK(pz = 0) = 0, and the �at band does not exist.1204
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Weyl
point

N(pz) = 0
pz

Weyl
point

N(pz) = 1

N(pz) = 0

pF cosλ

−pF cosλ

flat
band

Fig. 13. Proje
tions of Weyl points on the dire
tionof the vortex axis (the z axis) determine the bound-aries of the �at band in the vortex 
ore. A Weyl pointin a 3D system represents the hedgehog (Berry-phasemonopole) in momentum spa
e [9℄. For ea
h planepz = 
onst, we have the e�e
tive 2D system withthe fully gapped energy spe
trum Epz (px; py), ex
eptfor the planes with pz� = �pF 
os �, where the en-ergy Epz(px; py) has a node due to the presen
e ofthe hedgehogs. The topologi
al invariant N(pz) in(14) is nonzero for jpzj < pF j 
os �j, whi
h meansthat for any value of the parameter pz in this interval,the system behaves as a 2D topologi
al insulator or a2D fully gapped topologi
al super�uid. A point vor-tex in su
h 2D super�uids has a fermioni
 state withexa
tly the zero energy. For the vortex line in the orig-inal 3D system with Fermi points, this 
orresponds tothe dispersionless spe
trum of fermion zero modes inthe whole interval jpzj < pF j 
os�j (thi
k line). The�at band terminates at points, where the spe
trum ofbond states merges with the spe
trum of bulk ex
ita-tions (see Fig. 14)8. ANDREEV�MAJORANA BOUND STATESIN A 3He-B VORTEX8.1. From the planar phase to the B-phaseDimensional extension of the 2 + 1 planar phaseallows understanding the topologi
al properties of thevortex spe
trum in 3He-B. The Hamiltonian (9) forfermions in the bulk 3He-B represents the 2+ 1 planarphase at pz = 0. That is why at pz = 0, the � = 1 vor-tex in 3He-B 
ontains two AM bound states with zeroenergy, if the tiny spin�orbit intera
tion is negle
ted

Weyl
point

continuous spectrum

E(pz)

flat bandWeyl
point

bound states

pz

Fig. 14. S
hemati
 illustration of the spe
trum ofbound states E(pz) in the vortex 
ore of a Weyl su-per�uid. The bran
hes of bound states terminate atpoints where their spe
trum merges with the 
ontinu-ous spe
trum in the bulk. The �at band terminates atpoints where the spe
trum has zeros in the bulk, i. e.,when it merges with Weyl points. This is a p-spa
eanalog of a Dira
 string terminating on a monopole;another analog is given by the Fermi ar
 in Fig. 1
and the 
ore symmetry is not spontaneously broken.For pz 6= 0, the zero-energy modes are not supportedby topology. Hen
e, the two bran
hes of AM modessplit, and we may expe
t the spe
trum of AM boundstates in the most symmetri
 vortex to behave as illus-trated in Fig. 15.For 3He-B, whi
h lives in the range of parameterswhere NK 6= 0 in Fig. 15a, the gapless fermions in the
ore of the most symmetri
 vortex (the so-
alled o-vor-tex [75℄) were found in Ref. [76℄. On the other hand, inthe Bose�Einstein 
ondensate (BEC) limit, when � isnegative and the Bose 
ondensate of mole
ules o

urs,there are no gapless fermions (see Fig. 15b ). Thus,in the BCS�BEC 
rossover region, the spe
trum offermions lo
alized on vorti
es must be re
onstru
ted.The topologi
al re
onstru
tion of the fermioni
 spe
-trum in the vortex 
ore 
annot o

ur adiabati
ally. Itshould o

ur only during a topologi
al QPT in the bulk,when the bulk gapless state is 
rossed. Su
h a topolog-i
al transition o

urs at � = 0 (see Fig. 4). At � < 0,the topologi
al 
harge NK vanishes and simultaneouslythe gap in the spe
trum of 
ore fermions arises (seeFig. 15b ).This again demonstrates that the existen
e offermion zero modes is 
losely related to the topologi
alproperties of the va
uum state. The re
onstru
tion ofthe spe
trum of fermion zero modes at the topologi-1205
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Topological 3He-B:

En(pz) E(pz)

pz pz0 0

µ < 0µ > 0

NK = 2
a b

Non-topological 3He-B:
NK = 0

Fig. 15. (a) S
hemati
 illustration of the spe
trum offermioni
 bound states in the 
ore of the most symmet-ri
 vortex (o-vortex) in 3He-B. Two AM states withzero energy exist at pz = 0. (b ) The same vortex butin the topologi
ally trivial state of the liquid, NK = 0,does not have fermion zero modes. The spe
trum ofbound states is fully gapped. Fermion zero modes dis-appear at the topologi
al QPT, whi
h o

urs in bulkliquid at � = 0. A similar situation may o

ur forstrings in 
olor super
ondu
tors in quark matter [77℄
al QPT in the bulk 
an be also seen for vorti
es inrelativisti
 super
ondu
tors [77℄.8.2. Andreev�Majorana bound states onB-phase vorti
es with broken symmetryThe spe
trum in Fig. 15a is valid only for a vortexstate that respe
ts all the possible symmetries of thevortex 
ore. These symmetries are the spatial parity Pand the dis
rete symmetry TU2. The latter is the sym-metry under the time reversal T when it is a

ompa-nied by the �-rotation U2 about the axis perpendi
ularto the vortex axis. In the 
ores of the experimentallyobserved vorti
es in 3He-B, both dis
rete symmetriesare spontaneously broken, while the 
ombined symme-try PTU2 is preserved [75℄. Su
h a vortex is 
alled thev-vortex. The broken parity in the v-vortex leads tomixing between the two spin 
omponents in the 
ore,and as a result, the two AM modes at pz = 0 split.This leads to the spe
trum in Fig. 16 [78℄.In the weak-
oupling regimem
2 � �, a large num-ber (of the order of p�=m
2 ) of bran
hes appear that
ross the zero energy. Ea
h 
rossing point 
orrespondsto a one-dimensional Fermi surfa
e. This demonstratesthat the topology in the bulk determines the spe
trumof the fermion zero modes on the B-phase vorti
es only

En(pz)

n > 0

pz0

n < 0

Fig. 16. Spe
trum of AM bound states in an ax-isymmetri
 v-vortex with spontaneously broken dis
retesymmetry in 3He-B. The AM states with zero energyat pz = 0, whi
h were present in the most symmet-ri
 o-vortex in Fig. 15, do not exist any more. Theysplit due to the matrix element between the spin 
om-ponents, whi
h appears due to symmetry breaking,and move far away. There are many nontopologi
albran
hes of the spe
trum, whi
h 
ross zero energy asfun
tions of pz and form one-dimensional Fermi sur-fa
es. The number of su
h bran
hes is of the orderof p�=m
2if the symmetry of the vortex 
ore is not violated.This is a 
onsequen
e of the mod 2 rule for Majo-rana modes: a topologi
al zero-energy state survivessymmetry breaking only in the 
ase of an odd numberof Majorana modes. Hen
e, for realisti
 vorti
es, theAM mode 
an exist only in half-quantum vorti
es. Forother vorti
es, su
h as those in 3He-B, a large num-ber of energy levels is involved. That is why it is moreappropriate to use the quasi
lassi
al approximation inthe analysis. It leads to other types of topologi
al in-variants des
ribing fermion zero modes on vorti
es (see,e. g., Refs. [9; 79℄).9. CONCLUSIONWe 
onsidered the AM bound states with zero en-ergy on surfa
es, interfa
es, and vorti
es in di�erentphases of p-wave super�uids: 3He-A, 3He-B, planarand polar phases.1206



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev�Majorana bound states in super�uidsThese states are determined by topology in thebulk, and they disappear at the QPT from the topo-logi
al to nontopologi
al state of the super�uid (see theexample in Fig. 15). This topology demonstrates theinterplay of dimensions. In parti
ular, the 0D Weylpoint (the Berry-phase monopole in momentum spa
e)gives rise to a 1D Fermi ar
 on the surfa
e (Se
. 6.1).The 1D nodal line in the bulk produ
es the dispersional2D band of AM modes on the surfa
e (Se
. 5).The interplay of dimensions also 
onne
ts the AMstates in super�uids in di�erent dimensions. For exam-ple, the properties of the spe
trum of bound states inthe 3D 3He-B are 
onne
ted to the properties of thespe
trum in the 2D planar phase (see Se
. 3 for edgestates and Se
. 7.1 for bound states on vorti
es). The0D AM mode on a point vortex in a 2D 
hiral super-�uid (Se
. 6) gives rise to a 1D �at band of AM modeson a vortex in the 3D 
hiral super�uid (Se
. 7).The most robust zero-energy edge states o

ur onthe boundary of 3He-A, or in general on boundariesand interfa
es of 
hiral super�uids with the topologi
alinvariantN in Eq. (1). In other phases, the existen
e ofzero-energy edge states is supported by symmetry, i. e.,by the symmetry-prote
ted topologi
al invariants NKin Eqs. (6) and (17). When the symmetry is violated inthe bulk or on the boundary/interfa
e, the AM boundstates a
quire a gap.Con
erning the AM states on vorti
es, only thestates on half-quantum vorti
es are fully robust to per-turbations. In singly quantized vorti
es, the fate ofzero-energy states depends on symmetry and its possi-ble violation in the bulk or spontaneous breaking insidethe vortex 
ore. This is a 
onsequen
e of the Z2 
lassi-�
ation of AM modes on vorti
es. On the other hand,the spontaneously broken symmetry inside the vortex
ore may give rise to many nontopologi
al bran
hes ofAM bound states, whi
h 
ross the zero energy as afun
tion of pz. This is demonstrated in Se
. 8.2.We also mention the appli
ation to relativisti
 theo-ries. The fermion zero modes obtained in the Dira
 sys-tems, su
h as the modes lo
alized on strings in Ref. [80℄,are not properly supported by topology. The reasonfor that is that the Dira
 va
uum is marginal, and thetopologi
al invariants depend on the regularization ofthe Green's fun
tion in the ultraviolet [81℄. For ex-ample, in Fig. 4, the Dira
 va
uum is on the borderbetween the trivial va
uum with NK = 0 and the topo-logi
al va
uum with NK = 2. That is why the existen
eof the modes with exa
tly zero energy depends on thebehavior of the Green's fun
tion at in�nity.
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