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X-SHAPED AND Y -SHAPED ANDREEV RESONANCE PROFILESIN A SUPERCONDUCTING QUANTUM DOTShuo Mi, D. I. Pikulin, M. Mar
iani, C. W. J. Beenakker *Instituut-Lorentz, Universiteit Leiden, P.O. Box 95062300, RA Leiden, The NetherlandsRe
eived May 20, 2014The quasi-bound states of a super
ondu
ting quantum dot that is weakly 
oupled to a normal metal appearas resonan
es in the Andreev re�e
tion probability, measured via the di�erential 
ondu
tan
e. We study theevolution of these Andreev resonan
es when an external parameter (su
h as the magneti
 �eld or gate voltage)is varied, using a random-matrix model for the N �N s
attering matrix. We 
ontrast the two ensembles withbroken time-reversal symmetry, in the presen
e or absen
e of spinrotation symmetry (
lass C or D). The polesof the s
attering matrix in the 
omplex plane, en
oding the 
enter and width of the resonan
e, are repelledfrom the imaginary axis in 
lass C. In 
lass D, in 
ontrast, a number / pN of the poles has zero real part. The
orresponding Andreev resonan
es are pinned to the middle of the gap and produ
e a zero-bias 
ondu
tan
epeak that does not split over a range of parameter values (Y -shaped pro�le), unlike the usual 
ondu
tan
epeaks that merge and then immediately split (X-shaped pro�le).Contribution for the JETP spe
ial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141200251. INTRODUCTIONHalf a 
entury has passed sin
e Alexander Andreevreported the 
urious retro-re�e
tion of ele
trons at theinterfa
e between a normal metal and a super
ondu
-tor [1℄. One reason why Andreev re�e
tion is still verymu
h a topi
 of a
tive resear
h is the re
ent interest inMajorana zero modes [2℄: nondegenerate bound statesat the Fermi level (E = 0) 
onsisting of a 
oherent su-perposition of ele
trons and holes, 
oupled via Andreevre�e
tion. These are observed in the di�erential 
on-du
tan
e as a resonant peak around zero bias voltage Vthat does not split upon variation of a magneti
 �eldB [3�6℄. In the (B; V ) plane, the 
ondu
tan
e peakstra
e out an unusual Y -shaped pro�le, distin
t fromthe more 
ommon X-shaped pro�le of peaks that meetand immediately split again (see Fig. 1).It is tempting to think that the absen
e of a split-ting of the zero-bias 
ondu
tan
e peak demonstratesthat the quasi-bound state is nondegenerate, and hen
eMajorana. This is mistaken. As shown in a 
om-puter simulation [7℄, the Y -shaped 
ondu
tan
e pro-*E-mail: beenakker�lorentz.leidenuniv.nl

�le is generi
 for super
ondu
tors with broken spin-rotation and broken time-reversal symmetry, irrespe
-tive of the presen
e or absen
e of Majorana zero modes.The theoreti
al analysis in Ref. [7℄ fo
used on theensemble-averaged 
ondu
tan
e peak, in the 
ontext ofthe weak antilo
alization e�e
t [8�11℄. Here, we ana-lyze the sample-spe
i�
 
ondu
tan
e pro�le, by relatingthe X-shape and Y -shape to di�erent 
on�gurations ofpoles of the s
attering matrix in the 
omplex energyplane [12℄. 2. ANDREEV BILLIARD2.1. S
attering resonan
esWe study the Andreev billiard geometry shown inFig. 2: a semi
ondu
tor quantum dot strongly 
oupledto a super
ondu
tor and weakly 
oupled to a normalmetal. In the presen
e of time-reversal symmetry, anex
itation gap is indu
ed in the quantum dot by theproximity e�e
t [13℄. We assume that the gap is 
losedby a su�
iently strong magneti
 �eld. Quasi-boundstates 
an then appear near the Fermi level (E = 0),des
ribed by the HamiltonianH =X�;� j�iH��h�j+X�;a �j�iW�ahaj+jaiW ��ah�j�: (1)1165
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Fig. 1. Left panel: Magneti
 �eld B-dependen
e of peaks in the di�erential 
ondu
tan
e G = dI=dV . The peak positionstra
e out an X-shaped or Y -shaped pro�le in the (B; V ) plane. Right panel: Lo
ation of the poles of the s
attering matrixS(") in the 
omplex energy plane " = E � i
. The arrows indi
ate how the poles move with in
reasing magneti
 �eldThe bound states in the 
losed quantum dot are eigen-values of the M �M Hermitian matrix H = Hy. TheM � N matrix W 
ouples the basis states j�i in thequantum dot to the normal metal, via N propagatingmodes jai through a point 
onta
t. In prin
iple, weshould take the limit M !1, but in pra
ti
e M � Nsu�
es.The amplitudes of in
oming and outgoing modes inthe point 
onta
t at an energy E (relative to the Fermilevel) are related by theN�N s
attering matrix [14, 15℄S(E) = 1 + 2�iW y �H � i�WW y �E��1W: (2)This is a unitary matrix, S(E)Sy(E) = 1.A s
attering resonan
e 
orresponds to a pole" = E � i
 of the s
attering matrix in the 
omplex en-ergy plane, whi
h is an eigenvalue of the non-Hermitianmatrix Heff = H � i�WW y: (3)The positive de�niteness of WW y ensures that thepoles all lie in the lower half of the 
omplex plane,
 � 0, as required by 
ausality. Parti
le�hole sym-metry implies that " and �"� are both eigenvalues ofHeff , and hen
e the poles are symmetri
ally arrangedaround the imaginary axis.The di�erential 
ondu
tan
e G(V ) = dI=dV of thequantum dot, measured by grounding the super
ondu
-
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tormetalNormalFig. 2. S
hemati
 illustration of an Andreev billiardtor and applying a bias voltage to the normal metal, isobtained from the s
attering matrix via [7℄G(V ) = e2h �N2 � 12 TrS(eV )�zSy(eV )�z� ; (4)in the ele
tron�hole basis, and viaG(V ) = e2h �N2 � 12 TrS(eV )�ySy(eV )�y� ; (5)in the Majorana basis. The Pauli matri
es �y and �za
t on the ele
tron�hole degree of freedom. The twobases are related by the unitary transformationS 7! USUy; U =r12  1 1i �i! : (6)1166



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 X-shaped and Y -shaped Andreev resonan
e pro�les : : :2.2. Gaussian ensemblesFor a random-matrix des
ription, we assume thatthe s
attering in the quantum dot is 
haoti
, and thatthis applies to normal s
attering from the ele
trostati
potential as well as to Andreev s
attering from the pairpotential. In the large-M limit, we 
an then take aGaussian distribution for H ,P (H) / exp�� 
M TrH2� : (7)By taking the matrix elements of H to be real, 
om-plex, or quaternion numbers (in an appropriate basis),one obtains the Wigner�Dyson ensembles of nonsuper-
ondu
ting 
haoti
 billiards [16�19℄. Parti
le�hole sym-metry then plays no role, be
ause normal s
atteringdoes not 
ouple ele
trons and holes.Altland and Zirnbauer introdu
ed the parti
le�holesymmetri
 ensembles appropriate for an Andreev bil-liard [20℄. The two ensembles without time-reversalsymmetry are obtained by taking the matrix elementsof i�H (instead of H itself) to be real or quaternion.When iH is real, there is only parti
le�hole symme-try (
lass D), while when iH is quaternion, there isparti
le�hole and spin-rotation symmetry (
lass C).Both the Wigner�Dyson (WD) and the Altland�Zirnbauer (AZ) ensembles are 
hara
terized by a pa-rameter � 2 f1; 2; 4g that des
ribes the strength of thelevel repulsion fa
tor in the probability distribution ofdistin
t eigenvalues Ei ofH : a fa
torQi<j jEi�Ej j� inthe WD ensembles and a fa
torQ0i<j jE2i �E2j j� in theAZ ensembles. (The prime indi
ates that the produ
tin
ludes only the positive eigenvalues.)In the WD ensembles, the parameter � also 
ountsthe number of degrees of freedom of the matrix ele-ments of H : � = 1, 2, 4 when H is real, 
omplex,or quaternion, respe
tively. In the AZ ensembles, this
onne
tion is lost: � = 2 in the 
lass C ensemble (iHreal) as well as in the 
lass D ensemble (iH quaternion).The 
oe�
ient 
 
an be related to the average spa
-ing Æ0 of distin
t eigenvalues of H in the bulk of thespe
trum,
 = ��28Æ20 �(2 in the WD ensembles;1 in the AZ ensembles. (8)The 
oe�
ient in Eq. (8) for the AZ ensembles is twi
eas small as it is in the WD ensembles with the same �,on a

ount of the �E symmetry of the spe
trum (seeAppendix A).Be
ause the distribution of H is basis independent,we 
an without loss of generality 
hoose a basis su
hthat the 
oupling matrix W is diagonal,

Wmn = wnÆmn; 1 � m �M; 1 � n � N: (9)The 
oupling strength wn is related to the tunnel prob-ability �n 2 (0; 1) of mode n into the quantum dotby [14, 15℄jwnj2 = MÆ0�2�n �2� �n � 2p1� �n � : (10)2.3. Class C and D ensemblesWe summarize the properties of the � = 2 AZ en-sembles, symmetry 
lass C and D, that we need for ourstudy of the Andreev resonan
es. (See Appendix Bfor the 
orresponding � = 1; 4 formulas in symmetry
lasses CI and DIII.) Similar formulas 
an be found inRef. [21℄.When Andreev s
attering operates together withspin-orbit 
oupling, we 
an 
ombine ele
tron and holedegrees of freedom from the same spin band into areal basis of Majorana fermions. (This 
hange of ba-sis amounts to the unitary transformation in Eq. (6).)In the Majorana basis, the 
onstraint of parti
le�holesymmetry is given simply byH = �H�; (11)and we 
an therefore take H = iA with A a real an-tisymmetri
 matrix. In the Gaussian ensemble, theupper-diagonal matrix elements Anm (n < m) all haveidenti
al and independent distributions,P (fAnmg) / MY1=n<m exp���2A2nm2MÆ20 � (12)(see Eqs. (7) and (8)). This is the � = 2 
lass-D en-semble, without spin-rotation symmetry.The � = 2 
lass-C ensemble applies in the absen
eof spin-orbit 
oupling, when spin-rotation symmetry ispreserved. Andreev re�e
tion from a spin-singlet super-
ondu
tor 
ouples only ele
trons and holes from di�er-ent spin bands, whi
h 
annot be 
ombined into a realbasis state. It is then more 
onvenient to stay in theele
tron�hole basis and to eliminate the spin degreeof freedom by 
onsidering a single spin band for theele
tron and the opposite spin band for the hole. (Thematrix dimensionalityM and the mean level spa
ing Æ0then refer to a single spin.) In this basis, the parti
le�hole symmetry requires thatH = ��yH��y; (13)where the Pauli matrix �y operates on the ele
tron andhole degrees of freedom.1167
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iani, C. W. J. Beenakker ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014Constraint (13) implies that H = iQ with Q aquaternion anti-Hermitian matrix. Its matrix elementsare of the formQnm = anm�0 + ibnm�x + i
nm�y + idnm�z ;n;m = 1; 2; : : : ;M=2; (14)with real 
oe�
ients a; b; 
; d (to ensure that Qnm == �yQ�nm�y). The anti-Hermiti
ity of Q requires theo�-diagonal elements to be related by anm = �amnand xnm = xmn for x 2 fb; 
; dg. On the diagonal,ann = 0. In the Gaussian ensemble, the independentmatrix elements have the distributionP (fQnmg) / M=2Yn=1 exp�� �22MÆ20 (b2nn+
2nn+d2nn)��� M=2Y1=n<m exp�� �2MÆ20 (a2nm+b2nm+
2nm+d2nm)� : (15)3. ANDREEV RESONANCES3.1. A

umulation on the imaginary axisIn Fig. 3, we show the lo
ation of the poles of thes
attering matrix in the 
omplex energy plane, for the� = 2 AZ ensembles with and without spin-rotationsymmetry (
lass C and D, respe
tively). The � == 2 WD ensemble (
lass A, 
omplex H) is in
ludedfor 
omparison. The poles are eigenvalues " of thenon-Hermitian e�e
tive Hamiltonian (1), with H dis-tributed a

ording to the Gaussian distribution (7), (8),� = 2, and the 
oupling matrix W given by Eqs. (9),(10). For simpli
ity, we took identi
al tunnel probabil-ities �n � � for ea
h of the N modes 
onne
ting thequantum dot to the normal metal.The numberM of basis states in the quantum dot istaken mu
h larger than N , to rea
h the random-matrixregime. In 
lass C, this number is ne
essarily even,as demanded by the parti
le�hole symmetry relation(13). The symmetry relation (11) in 
lass D imposesno su
h 
onstraint, and when M is odd, there is an un-paired Majorana zero mode in the spe
trum [21℄1). The
lass-D super
ondu
tor with a Majorana zero mode is1) Sin
e Majorana zero modes always appear in pairs, the
hange from M even to M odd ne
essarily involves some exter-nal system that 
an absorb one of the two modes. For example,this 
ould be a nanowire 
oupled at one end to the quantum dot,su
h that the Majorana zero mode inside the quantum dot ispaired with the zero mode at the other end of the wire. At thetransition from M odd to even, the two Majorana modes mergebe
ause the gap in the nanowire 
loses.


alled topologi
ally nontrivial, while a 
lass-C or 
lass-D super
ondu
tor without a zero mode is 
alled topo-logi
ally trivial [22�24℄. For a more dire
t 
omparisonof 
lass C and 
lass D, we take M even in both 
ases,and hen
e both super
ondu
tors are topologi
ally tri-vial.In the absen
e of parti
le�hole symmetry (
lass A),the poles " = E � i
 of the s
attering matrix have thedensity [25℄�(E; 
) = N4�
2 ; 
min < 
 < 
max; (16)
min = N�Æ0=4�; 
max = 
min=(1� �); (17)for jEj � MÆ0 and asymptoti
ally in the limitN;M=N !1. For jEj & Æ0, all three � = 2 ensemblesA, C, D have a similar density of poles, but for smallerjEj, the densities are strikingly di�erent, see Fig. 2. In
lass C, the poles are repelled from the imaginary axis,but in 
lass D, they a

umulate on that axis.As pointed out in Ref. [12℄, a nondegenerate pole" = �i
 on the imaginary axis has a 
ertain stability:it 
annot a
quire a nonzero real part E without break-ing the " $ �"� symmetry imposed by parti
le�hole
onjugation. To see why this stability is not operativein 
lass C, we note that on the imaginary axis, 
 is areal eigenvalue of the matrix
 = �Q+ �WW y in 
lass C; (18)
 = �A+ �WW y in 
lass D: (19)In both 
lasses, the matrix 
 
ommutes with an anti-unitary operator, C
 = 
C, with C = i�yK in 
lass Cand C = K in 
lass D. (The operator K performs a 
om-plex 
onjugation.) In 
lass C, this operator C squaresto �1, so a real eigenvalue 
 of 
 has a Kramers degen-era
y2) and hen
e nondegenerate poles " = �i
 on theimaginary axis are forbidden. In 
lass D, in 
ontrast,the operator C squares to +1, Kramers degenera
y isinoperative, and nondegenerate poles are allowed andin fa
t generi
. 3.2. Square-root lawAs we explain in Appendix C, for ballisti
 
oupling(� = 1), the statisti
s of poles on the imaginary axis 
anbe mapped onto the statisti
s of the real eigenvalues ofanM�M random orthogonal matrix with N rows and2) The usual Kramers degenera
y refers to the eigenvalues ofa Hermitian matrix that 
ommutes with an anti-unitary opera-tor squaring to �1. Here the matrix is not Hermitian, but thedegenera
y still applies to real eigenvalues.1168
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Fig. 3. S
atter plot of the poles " = E � i� of 5000 s
attering matri
es S("), in the Gaussian ensembles of 
lass D, C,and A (�rst, se
ond, and third 
olumn), for ballisti
 
oupling (� = 1, �rst row) and for tunnel 
oupling (� = 0:2, se
ondrow). In ea
h 
ase, the Hamiltonian has dimension M �M = 500 � 500 and the s
attering matrix, N � N = 50 � 50.Only a narrow energy range near E = 0 is shown, to 
ontrast the a

umulation of poles on the imaginary axis in 
lass Dand the repulsion in 
lass C. The horizontal lines indi
ate the expe
ted boundaries (17) of the 
lass-A s
atter plot in thelimit N;M=N !1
olumns deleted; this is a solved problem [26; 27℄. Thelinear density pro�le �0(
) on the imaginary axis is�0(
) =rN�8� 1
 ; 
min < 
 < 
max; (20)for 1 � N� � M and 
min, 
max given by Eq. (17).We 
onje
ture that this density pro�le, derived [26℄ for� = 1, holds also for � < 1. In Fig. 4, we give numeri
aleviden
e in support of this 
onje
ture.In Fig. 5, we show how the average number hNY iof 
lass-D poles on the imaginary axis depends on thedimensionality N of the s
attering matrix and on thetunnel probability �. We 
ompare with the square-rootlaw3) hNY i = �rN�8� ln(1� �) (21)implied by integration of our 
onje
tured density pro-�le (20). This pN s
aling is generi
 for random-matrixensembles that exhibit a

umulation of eigenvalues onthe real or imaginary axis, su
h as the Ginibre ensem-ble [28�30℄ (real Gaussian matri
es without any sym-3) The logarithmi
 divergen
e in Eq. (21) for � = 1 is 
ut-o�by the �nite dimensionM of the Hamiltonian, su
h that hNY i �� N1=2 ln(M=N) for ballisti
 
oupling. This spurious M-depen-den
e does not exist for � < 1.
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Fig. 4. Double-logarithmi
 plot of the probability distri-bution �(
), normalized to unity, of the imaginary part
 of the poles of the s
attering matrix. The 
urvesare 
al
ulated by averaging over some 2000 realiza-tions of the 
lass-D ensemble, with N = 10, M = 500,� = 0:9. The dashed 
urve in
ludes all poles, while theblue solid 
urve in
ludes only the poles on the imaginaryaxis (E = 0). The bla
k dotted lines are the predi
tedslopes from Eq. (16) and (20)metry) and the Hamilton ensemble [31℄4) (matri
es of4) The supplement to this paper (an appendix in arXiv:1305.2924) 
ontains an overview of the square-root law in a va-riety of random-matrix ensembles.3 ÆÝÒÔ, âûï. 6 (12) 1169
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−(NΓ/8π)1/2 ln(1 − Γ)Fig. 5. Average of the number NY of poles on theimaginary axis for an N �N s
attering matrix S(") insymmetry 
lass D. Degree of grey distinguishes di�erenttunnel 
ouplings � < 1, and N is in
reased togetherwith M = 80N . The slope of the dashed line is thelarge-N asymptote (21)the form M = HJ with H a symmetri
 real Gaus-sian matrix and J =  0 1�1 0! a �xed anti-symmetri
matrix). Figure 5 shows that the Andreev resonan
esfollow the same square-root law.4. X-SHAPED AND Y -SHAPEDCONDUCTANCE PROFILESIn Ref. [7℄, it was found in a 
omputer simulationof a super
ondu
ting InSb nanowire that the 
ondu
-tan
e resonan
es tra
e out two distin
t pro�les in thevoltage�magneti
-�eld plane: an X-shape or a Y -sha-pe. In the X-shaped pro�le, a pair of 
ondu
tan
eresonan
es merges and immediately splits again uponvariation of the voltage V or magneti
 �eld B. In theY -shaped pro�le, a pair of peaks merges at V = 0 andthen stays pinned to zero voltage over a range of mag-neti
 �eld values. Here, we wish to relate this phe-nomenology to the parametri
 evolution of poles of thes
attering matrix in the 
omplex energy plane [12℄.For that purpose, we introdu
e a parameter depen-

0.3 0.9 1.5 2.1 2.7

G, e2/h

1

0
1 0 −1

Y3

Y2

Y1

X

E, δ0

α

Fig. 6. Parametri
 evolution of the di�erential 
ondu
-tan
e G(V; �) (grey s
ale) and the real part E of thepoles of the s
attering matrix S�("). These are resultsfor a single realization of the 
lass D ensemble withM = 120, N = 6, and � = 0:3den
e in the Hamiltonian H of the Andreev billiard,H� = (1� �)H0 + �H1; (22)and 
al
ulate the di�erential 
ondu
tan
e as a fun
-tion of V and �. We work in symmetry 
lass D (brokentime-reversal and broken spin-rotation symmetry), andhen
e H0 and H1 are purely imaginary antisymmetri
matri
es (in the Majorana basis). We draw them fromthe Gaussian distribution (12). The s
attering matrixS�, obtained from H� via Eq. (2), gives the di�erential
ondu
tan
e G(V; �) via Eq. (5). For ea
h �, we also
ompute the poles " = E � i
 of S(") in the 
omplexenergy plane.Figure 6 shows a typi
al realization where the num-1170
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Fig. 7. Four 
uts through the parametri
 evolutionin Fig. 6, showing the di�erential 
ondu
tan
e G == dI=dV (top row) and s
attering matrix poles" = E � i
 (bottom row)ber NY of 
ondu
tan
e poles on the imaginary axisswit
hes between zero and two as � varies in the in-terval [0; 1℄. The 
olor-s
ale plot shows G(V; �), whilethe dots tra
e out the proje
tion of the poles of S�(")on the real axis. Labels X and Y indi
ate the twotypes of pro�les, and Fig. 7 shows the 
orresponding
ondu
tan
e peaks and s
attering matrix poles.Inspe
tion of the �gures shows that the X-shapedpro�le appears when two s
attering matrix poles 
rosswhen proje
ted onto the real axis. (They do not 
rossin the 
omplex energy plane.) The Y -shaped pro�leappears when NY jumps by two.5. CONCLUSIONFor a 
losed super
ondu
ting quantum dot, the dis-tin
tion between topologi
ally trivial and nontrivial isthe absen
e or presen
e of a level pinned to the mid-dle of the gap (a Majorana zero mode). When thequantum dot is 
onne
ted to a metalli
 reservoir, thebound states be
ome quasi-bound, E 7! E� i
, with a�nite lifetime ~=2
. The distin
tion between topologi-
ally trivial and nontrivial then redu
es to whether thenumber NY of quasi-bound states with E = 0 is evenor odd.Two types of transitions 
an be distinguished [12℄:At a topologi
al phase transition, NY 
hanges by �1(see footnote 1)). At a �pole transition�, NY 
hangesby �2. Both types of transitions produ
e the same

Y -shaped 
ondu
tan
e pro�le of two peaks that mergeand sti
k together for a range of parameter values �distin
t from the X-shaped pro�le that o

urs withouta 
hange in NY .There is a variety of methods to distinguish thepole transition from the topologi
al phase transi-tion [7℄: sin
e NY � �3=2pN for � � 1, one way tosuppress the pole transitions is to 
ouple the metalto the super
ondu
tor via a small number of modesN with a small transmission probability �. Thepole transitions are a sample-spe
i�
 e�e
t, while thetopologi
al phase transition is expe
ted to be lesssensitive to mi
ros
opi
 details of the disorder. We donot therefore expe
t the pole transitions to reprodu
ein the same sample upon thermal 
y
ling. If we 
anmeasure from both ends of a nanowire, we mightsear
h for 
orrelations between the 
ondu
tan
e peaksat the two ends. The Majorana zero modes 
ome inpairs, one at ea
h end, and hen
e there should be a
orrelation in the 
ondu
tan
e peaks measured at thetwo ends, whi
h we would not expe
t to be there forthe peaks due to the pole transition.This resear
h was supported by the Foundationfor Fundamental Resear
h on Matter (FOM), theNetherlands Organization for S
ienti�
 Resear
h(NWO/OCW), an ERC Synergy Grant, and the ChinaS
holarship Coun
il.APPENDIX AFa
tor-of-two di�eren
e in the 
onstru
tion ofGaussian ensembles with or withoutparti
le�hole symmetryAs we dis
ussed in Se
. 2.2, in the Gaussian ensem-bles of random-matrix theory, the Hermitian M �Mmatrix H has the distributionP (H) / exp�� 
M TrH2� ; (A.1a)
 = ��28Æ20 �8><>:2 in the WD ensembles;1 in the AZ ensembles;1 in the 
hiral ensembles: (A.1b)In ea
h ensemble, Æ0 refers to the average spa
ing ofdistin
t eigenvalues of H in the bulk of the spe
trum.For � = 4, the eigenvalues have a twofold Kramers de-genera
y, so there are only M0 = M=2 distin
t eigen-values, while for � = 1; 2, all the M0 = M eigenvaluesare distin
t (disregarding spin degenera
y).We have experien
ed that the fa
tor-of-two di�er-en
e in the 
oe�
ient between the WD and AZ ensem-1171 3*
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iani, C. W. J. Beenakker ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014bles is a sour
e of 
onfusion. Here, we hope to resolvethis 
onfusion by pointing to its origin, whi
h is the�E symmetry of the spe
trum in the AZ ensembles(and also in the 
hiral ensembles, whi
h we in
lude for
ompleteness). The 
al
ulation of the 
oe�
ient 
 is abit lengthy, with fa
tors of two appearing at di�erentpla
es before the �nal fa
tor remains, but we have notfound a mu
h shorter and 
onvin
ing argument for thedi�eren
e.The eigenvalue distribution in the WD ensemblesis [16�18℄P (E1; E2; : : : ; EM0) // M0Y1=i<j jEi �Ej j� M0Yk=1 e� 
M0E2k ; (A.2)where the indi
es i; j; k range over the M0 distin
teigenvalues.In the AZ ensembles, an eigenvalue at +E has apartner at �E, whi
h is a distin
t eigenvalue if E 6= 0.For the average level spa
ing in the bulk of the spe
-trum, the existen
e of a level pinned at E = 0 is irrel-evant, and we therefore assume that there are no su
hzero modes. (This requires M0 even.) The eigenvaluedistribution then has the form [20; 21℄P (E1; E2; : : : ; EM0=2) / M0=2Y1=i<j jE2i �E2j j� ��M0=2Yk=1 jEkj� exp�� 2
M0E2k� ; (A.3)where the indi
es i; j; k now range only over the M0=2distin
t positive eigenvalues. There is a new exponent� 2 f0; 1; 2g that governs the repulsion between eigen-values related by the �E symmetry. This fa
tor jEkj�only a�e
ts the �rst few levels around E = 0, and we
an therefore ignore it for a 
al
ulation of the averagelevel spa
ing in the bulk of the spe
trum, e�e
tivelysetting �! 0.The two distributions (A.2) and (A.3) 
an be writ-ten in the same form with the help of the mi
ros
opi
level density �(E) = M0Xn=1 Æ(E �En); (A.4)de�ned for ea
h set of M0 distin
t energy levels. Atthe mean-�eld level, su�
ient for a 
al
ulation of thedensity of states in the large-M limit, we 
an assumethat �(E) is a smooth fun
tion of E (Coulomb gasmodel [16℄).

The eigenvalue distribution has the form of a Gibbsdistribution P / exp(��U), with the energy fun
tionalUWD = �12 1Z�1 dE 1Z�1 dE0 �(E)�(E0) ln jE�E0j++ 
�M0 1Z�1 dE E2�(E) (A.5)for the WD ensembles andUAZ = �12 1Z0 dE 1Z0 dE0 �(E)�(E0) ln jE2�E02j++ 2
�M0 1Z0 dE E2�(E) == �14 1Z�1 dE 1Z1 dE0 �(E)�(E0) ln jE �E0j++ 
�M0 1Z�1 dE E2�(E); (A.6)for the AZ ensembles (at � = 0). In the se
ond equal-ity, we used the �E symmetry �(E) = �(�E).The mean-�eld density of states ��(E) minimizes Uwith the normalization 
onstraint1Z�1 dE ��(E) =M0: (A.7)The normalization 
onstraint is the same in the WDand AZ ensembles, but the minimization 
ondition isdi�erent:ÆUWDÆ�(E) = 0) � 1Z�1 dE0 ��WD(E0) ln jE �E0j++ 
�M0E2 = 
onst; (A.8)ÆUAZÆ�(E) = 0) �12 1Z�1 dE0 ��AZ(E0) ln jE �E0j++ 
�M0E2 = 
onst: (A.9)The �E symmetry does not introdu
e an additional
onstraint on ��AZ(E), sin
e Eq. (A.9) automati
allyprodu
es an even density.1172
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E=Æ0Fig. 8. Curves 1, 2: average density of states in the four AZ ensembles, 
al
ulated numeri
ally for Hamiltonians of dimensionM �M = 60 � 60 in 
lasses C, CI, and D and M �M = 120� 120 in 
lass DIII (when ea
h level has a twofold Kramersdegenera
y; � and Æ0 refer to distin
t levels). Curve 1 shows the full semi
ir
le, 
urve 2 shows the region around E = 0(horizontally enlarged by a fa
tor of 20). These are all results for a topologi
ally trivial super
ondu
tor, without a zero mode(� = 0). Curves 3 (labeled � = 1) show the e�e
t of a zero mode in 
lass D (M = 61) and 
lass DIII (M = 122). Thedelta-fun
tion peak from the zero mode itself is not plottedThe solution of this integral equation gives the fa-miliar semi-
ir
ular density of states [16℄��WD(E) = 2
��M0r�
M20 �E2; (A.10)��AZ(E) = 4
��M0r �2
M20 �E2: (A.11)The mean level spa
ing near E = 0 is Æ0 = 1=��(0),leading toÆ0 = 8>><>>: 12�p�=
 in the WD ensembles;12�p�=2
 in the AZ ensembles; (A.12)whi
h amounts to Eq. (A.1b). We note that the addi-tional fa
tor-of-two arises solely from the�E symmetryof the spe
trum, and it is therefore irrelevant whether

this is a 
onsequen
e of parti
le�hole symmetry or of
hiral symmetry.To 
he
k that we have not missed a fa
tor of two,in Fig. 8, we show the numeri
al result of averagingover a large number of random Hamiltonians in ea
hof the four AZ ensembles. The semi-
ir
ular density ofstates (A.11) applies away from the band 
enter, withthe expe
ted limit �� Æ0 ! 1 near E = 0.In Fig. 8, we also see the anomalies at band 
en-ter that we ignored in our 
al
ulation. Without a zeromode (� = 0), the density of states vanishes as jEj�with � = 2 in 
lass C and � = 1 in 
lass CI andDIII [20℄. In 
lass D, we have � = 0, whi
h meansthat the �E pairs of energy levels do not repel at theband 
enter. The density of states then has a quadrati
peak at E = 0. The delta-fun
tion peak of a zero modehas also an e�e
t on the smooth part of the density ofstates, whi
h for � = 1 vanishes as jEj�+� , as E2 in
lass D, and as jEj5 in 
lass DIII [21℄.1173
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iani, C. W. J. Beenakker ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014APPENDIX BAltland�Zirnbauer ensembles withtime-reversal symmetryFor 
ompleteness and referen
e, we re
ord the � == 1; 4 
ounterparts of the � = 2 formulas (12) and(15). These are the AZ symmetry 
lasses CI (� = 1,time-reversal with spin-rotation symmetry) and DIII(� = 4, time-reversal without spin-rotation symmetry)[20℄. The time-reversal symmetry 
onditions on theHamiltonian matrix areH = H� for � = 1;H = �yH��y for � = 4: (B.1)The Pauli matrix �y a
ts on the spin degree of freedom:the Pauli matri
es �i we used previously a
ted on theele
tron-hole degree of freedom.A 
ompa
t representation 
an be given if we use theele
tron�hole basis for � = 1 and the Majorana basisfor � = 4. The matrix elements of the Hamiltonian 
anthen be represented by Pauli matri
es:Hnm = anm�x + bnm�z for � = 1;Hnm = i
nm�x + idnm�z for � = 4; (B.2)with real 
oe�
ients a; b; 
; d. We note that iH for� = 1 is quaternion, and hen
e this 
lass CI ensembleis a subset of the 
lass C ensemble. Similarly, be
auseiH is real for � = 4, this 
lass DIII ensemble is a subsetof 
lass D.The Hermiti
ity of H requires that the o�-diagonalelements are related by anm = amn, bnm = bmn, 
nm == �
mn, and dnm = �dmn. On the diagonal, 
nn == dnn = 0. The indi
es n;m range from 1 to M=2,for an M �M matrix H . (The dimensionality is ne
-essarily even to a

omodate the Pauli matri
es.) For� = 4, there is a twofold Kramers degenera
y of theenergy levels, and therefore only M=2 eigenvalues of Hare distin
t. For � = 1, all M eigenvalues are distin
t(the spin degenera
y that exists in 
lass C, CI is notin
luded in M). The mean level spa
ing Æ0 refers tothe distin
t eigenvalues.Combining Eq. (B.2) with Eqs. (7) and (8) givesthe probability distribution of the independent matrixelements in the Gaussian ensemble:P (fHnmg) / M=2Yn=1 exp�� �24MÆ20 (a2nn + b2nn)��� M=2Y1=n<m exp�� �22MÆ20 (a2nm + b2nm)� (B.3)

for � = 1, 
lass CI, andP (fHnmg) / M=2Y1=n<m�� exp�� 2�2MÆ20 (
2nm + d2nm)� (B.4)for � = 4, 
lass DIII.APPENDIX CMapping of the pole statisti
s problem ontothe eigenvalue statisti
s problem of trun
atedorthogonal matri
esWe show how the result in Eq. (20) for the densitypro�le of imaginary poles of the s
attering matrix fol-lows from the known distribution of real eigenvalues oftrun
ated orthogonal matri
es [26℄, in the 
ase � = 1of ballisti
 
oupling.Following Refs. [32; 33℄, we 
onstru
t the N � Nenergy-dependent unitary s
attering matrix S(E) interms of anM�M energy-independent orthogonal ma-trix O,S(E) = PO(e�2�iE=MÆ0 +RO)�1PT : (C.1)The re
tangular N �M matrix P has elements Pnm == Ænm and R = 1 � PTP . The M � M Hermitianmatrix H is related to O via a Cayley transform,O = �H=MÆ0 + i�H=MÆ0 � i , H = iMÆ0� O + 1O � 1 : (C.2)Equation (C.2) with O uniformly distributed a

ordingto the Haar measure in SO(N) produ
es the Gaussiandistribution (7) for H , in the low-energy range jEj .. NÆ0 �MÆ0. Furthermore, in this low-energy range,s
attering matrix (C.1) is related to H by Eq. (2) withthe ballisti
 
oupling matrix W = PT (MÆ0=�2)1=2.A pole " = �i
 of S(") on the imaginary axis 
or-responds to a real eigenvaluex = e�2�
=MÆ0 (C.3)of the (M �N)� (M �N) matrix ~O = ROR obtainedfrom the orthogonal matrix O by deleting the �rst Nrows and 
olumns. For M � 1, the x-dependent den-sity ~�0(x) is given by [26℄~�0(x) = 1B(N=2; 1=2) 11� x2 ; x2 < 1�N=M; (C.4)with B(a; b) being the beta fun
tion.1174



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 X-shaped and Y -shaped Andreev resonan
e pro�les : : :Using Eq. (C.3), we thus arrive for N � M at the
-dependent density�0(
) = 1B(N=2; 1=2) 12
 ; 
 > NÆ0=4�: (C.5)Equation (20) with � = 1 results if we also assume thatN � 1, su
h that we 
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