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The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic
medium layers are investigated. The problem is solved by a modification of Ambartsumian’s layer addition
method. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this
system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types
differ from each other. Besides, in contrast to the single CLC layer case, these systems have multiple photonic
band gaps. There are two types of such gaps: those selective with respect to polarization of the incident light
and nonselective ones. It is shown that the system eigenpolarizations mainly coincide with the quasi-orthogonal,
quasi-circular polarizations for normally incident light, except the regions of diffraction reflection selective with
respect to the polarization of incident light. The influence of the CLC sublayer thicknesses, the incidence angle,
the local dielectric (magnetic) anisotropy of the CLC layers, and the refractive indices and thicknesses of the
isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.
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1. INTRODUCTION

Material science was energetically developing re-
cently, and its part concerning the optical materials
was developing even more energetically. In particular,
metamaterials are of great interest. Metamaterials are
artificial composites containing sublongwave structures
and exhibiting new linear and nonlinear optical proper-
ties such as negative refraction, reverse Doppler effect,
electromagnetic energy propagation in the direction op-
posite to the wave vector, and so on [1-9]. They have
surprising applications to perfect lenses [10], invisible
cloaks [11-16], perfect absorbers [17], etc.

Investigations of photonic crystals (PCs) are still of
great interest both for their wide application in sci-
ence and techniques and for developing the modern
technology of creating new media. They have a pho-
tonic band gap (PBG) in their transmittance spectrum
that can be changed either by external fields or by
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the changes in the crystal internal structure [18-20].
The optical devices based on PCs have such proper-
ties as multifunctionality and tunability, compactness
and low energetic losses, high reliability and good com-
patibility with other optical devices. Cholesteric liquid
crystals (CLCs) are known as PCs with easily tunable
parameters (their parameters can be tuned by exter-
nal electric, magnetic, and strong light fields, thermal
gradients, or UV radiation, etc.) A CLC is a self-
assembled PC formed by rod-like molecules, including
chiral molecules that arrange themselves in a helical
fashion. The CLC has a single PBG and an associated
one-color reflection band for circularly polarized light
with the same handedness as the CLC helix (at normal
light incidence). On the other hand, PCs with multiple
(polychromatic) PBGs are attracting much attention
recently. They find wide application, in particular, in
display industry.

Multiple PBGs of one-dimensional structures con-
taining CLC and isotropic layers were reported in some
theoretical and experimental works [21-23]. Analoguos
investigations of one-dimensional multilayer structures
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containing CLC and anisotropic layers were carried out
in [24]. In [25], quasi-periodic systems described by the
Fibonacci sequence and containing CLC layers were in-
vestigated. The multiple PBGs are also formed in a
stack containing right- and left-hand CLC layers [26—
30]. In [31], the reflection and polarization peculiarities
of stacks of CLC and isotropic media layers were inves-
tigated.

Recently, the chiral nihility media have become in-
teresting. The concept of chiral nihility in electromag-
netism was introduced by Lakhtakia [32], as a medium
in which both dielectric and magnetic permittivities are
zero. The nihility concept was then applied to isotropic
chiral metamaterials in [33], whose peculiarities have
recently been energetically investigated in [34-37] (also
see the references in them).

In this paper the concept of nihility is generalized to
structurally chiral media (such as CLC) and, using it,
the peculiarities of a stack formed by CLC layers with
nihility and isotropic media layers are investigated.

2. THE METHOD OF ANALYSIS

The problem is solved by a modification of Ambart-
sumian’s layer addition method [26, 38]. According to
[26, 38], if there is a system containing two layers, A
and B, stacked up “from left to right”, then the re-
flection and transmission matrices of the system A+B,
denoted by R A+p and TA+ B, are defined by the anal-
ogous matrices of the separate layers as follows:

RA+B ZRA—FTARB [f—RARB] TA,
X L (1)
Tarn =T [l - Raky| Ta,
where I is the unit matrix and the tilde denotes the re-
flection and transmission matrices of the reverse light
propagation. The same matrices for the reverse propa-

gation of light are defined by the matrix equations
~ -1 ~

RA+B ZRB—FTBRA [f—RBRA] Tg,
< b ~ Loz 11 (2)
Tasp=Ta [I - RBRA] Ts.

In the case where the subject layer borders the same
medium on its both sides, the reflection and transmis-
sion matrices for the incidence “from right to left” are
related by

T=F'TF, R=F'RF, 3)
0

where [ = ( > for linear base polariza-

1

0
. - 01 . .
tions and F = Lo for circular base polariza-

tions. The exact reflection and transmission matri-
ces for a finite CLC layer (for normal light incidence)
and an isotropic layer of a finite thickness are well
known [39, 40].

Transmission /reflection through a stack of CLC lay-
ers and isotropic medium layers is calculated using ma-
trix equations (1) by successively applying them to the
new layers added to the stack; the stack was considered
as layer A and the added layer as layer B. Hence, to
organize the calculations more conveniently, system (1)
is presented in the form of difference matrix equations

N PS

N A~ A -1,
R; =7; +t;Rj_ (I - ijjfl) tj,

with Ro = 6 and TO = f Here, R]', Tj, R]'_l, and Tj_l
are the reflection and transmission matrices for the sys-
tems with j and j —1 sublayers respectively, and 7; and
t; are the reflection and transmission matrices for the
jth sublayer and 0 is the zero matrix.

It is to be noted that in [41,42], a new method for
solving the problem of light propagation through a one-
dimensional layer system was described.

We now pass to the eigenpolarizations (EPs) and
eigenvalues of the amplitude. As is known, EPs are
the two polarizations of the incident wave that do not
change when passed through the system, and the eigen-
values are the amplitude coefficients of reflection and
transmission for the incident light with the EPs [38, 40].
The EPs and eigenvalues deliver much information
about the interaction of light with the system; there-
fore, their calculation is important for every optical sys-
tem. It follows from the definition of EPs that they
must be connected with the polarizations of the inter-
nal waves (eigenmodes) excited in the medium (they
mainly coincide with the polarizations of eigenmodes).
Our investigations show, in particular, that in homo-
geneous media and CLC (for the normal incidence) for
which the exact solution is known and hence the po-
larizations of the eigenmodes are known, the EPs prac-
tically coincide with the polarizations of eigenmodes.
As is known (in particular, for normal incidence), the
EPs of CLCs or gyrotropic media practically coincide
with the orthogonal circular polarizations, whereas for
nongyrotropic media, they coincide with the orthogo-
nal linear polarizations. It follows from the foregoing
that the investigation of the EP peculiarities is espe-
cially important in the case of nonhomogeneous media,
for which, in general, the exact solution of the problem
is not known.
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We let the ratio of the field complex amplitude com-
ponents at the entrance of the system be denoted by
xi (xi = E{/E?) and that at the exit of the system by

xt (xt = Ef/E?F), and take into account that
E? Ty, Ti» E?
E; Ty Tho E?
to obtain their relation:
Tooxi + T
= 22 21 (5)
Tiax: +T11

The function, x: = f(xi), is called the polarization
transfer function [40]; it carries information about the
transformation of the polarization ellipse as light passes
through the system. Every optical system has two EPs
obtained from the definition of EPs: y; = x;. Hence,
according to (5), the y1 and x» EPs are given by

Tos — Ti1 £/ (Tor — T11)? + 4T12To

The ellipticity e; » and the azimuth ¢4 » of the EPs
are expressed in terms of i » as

1 2
Y1 = = arctg —— 02 5
2 1 —|x1.2] )
¢ 1 . 2Imy
e = —arcsin ———x .
A CE N VE

3. RESULTS AND DISCUSSION

Now we analyze the spectra peculiarities of the mul-
tilayer structure that is a stack of CLC layers with
nihility and an isotropic medium layers (Fig. 1). We
first discuss some properties of a single CLC layer and
the possibility of generalizing the chiral nihility con-
cept for CLCs. We assume that the electromagnetic
wavelength is longer than the characteristic lengths of
the subject metamaterial structure elements (of which
the medium is composed), which allows considering the
medium continuous and characterizing it in terms of
the dielectric and magnetic permittivity matrices of the
form

A
= sin(2az) 0
2
Em — 75 cos(2az) 0 |>
0 5]
Ap (8)
—— sin(2az2) 0
2
A
o, — TM cos(2az) 0 |-
0 M2

= 6
X1,2 5T (6)
J
A
Em + 75 cos(2az)
£(z) = 76 sin(2az)
0
A
o, + Tﬂ cos(2az)
PR A
fu(z) = 7’“ sin(2az)
0
where
S ) e
m= T HMm = T
g1 — &9 M1 — U2
A = A =
6 2 ) l"L 2 )

€1 and g5 are the principal values of the dielectric ten-
sor, 1 and ps are those of the magnetic tensor, and
a = 27 /p, where p is the helix pitch.

It is known (see, e.g., [43,44]) that the solutions of
Maxwell’s equations (for normal light incidence) for the
CLC with the dielectric and magnetic tensors given by
(8) have the form
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4
Z E n; exp( zk z)+E; n_exp(ik; BIES
j=1

x exp(—iwt). (9)
Here, ny = (e, +ie,)//2 are the circular polarization
unit vectors, w is the light frequency in the vacuum, and
k;L and k]_ are the z components of the wave vectors
(kj+ — k; = 2a) that are defined from the dispersion
equation and have following form
k>

k;r = a:l:I(LQ, i = _ai1‘71727 J=12,3,4, (10)

where
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2

Ki»= w_2 St E2n +a® +
c 2
, ) , 172 1/2
W™ g1u2—E241 w
+ <c_2 f) +4a2c—25mum] . (11)
The amplitudes E]'" and E7 are related as
E- 1 —ir
R B 12
& EF  1+imy’ (12)
where
taly p(p1 + p2)
71,2

K ope 4 a?pn — (W) papoes”

In the investigations of optical properties of CLCs,
two coordinate frames are commonly used: the labora-
tory frame (x,y, z), with the 2 axis parallel to the axis
of the CLC helix, and the rotating frame (2',y’,2’),
with the z' axis coinciding with the z axis, and the
2’ and y' axes being parallel to the primary direc-
tion of the dielectric permittivity (magnetic permeabil-
ity) tensor. Two approaches are possible when solving
Maxwell’s equations [45].

1) Leaving the vectors of the electric and magnetic
fields as well as the two corresponding inductions in-
variable, we can transform the tensor of the dielectric
permittivity to the form

é(z) = R(az)é0R ' (az),

where
&1 0 0
éo = 0 S 0
0 0 5]

is the dielectric permittivity local tensor, and the rota-
tion matrix is

cos(az) —sin(az) 0
R(az) = sin(az)  cos(az) 0
0 0 1

(and the same for the magnetic permeability).

2) Leaving the dielectric permittivity tensor (and
the magnetic permeability tensor) invariable in the lo-
cal rotating frame, we can transform the vectors of elec-
tric/magnetic fields and the corresponding inductions
according to the equation E(z) = R~1(a2)&(2).

Both methods are equivalent and ultimately give
the same result. Formula (9) is the solution of
Maxwell’s equation in the laboratory frame. We only

note that the solution of Maxwell’s equations in the
rotating frame has the form

4
E(z,t) =Y Eojexp(iK;z) exp(—iwt),  (13)

j=1

i.e., K; are the wave vectors of the fields in the rotating
frame. Thus, (9) is the solution of Maxwell’s equations
in the laboratory frame and (13) is that in the rotating
frame and, accordingly, k]jc (j =1,2,3,4) are the wave
numbers in the laboratory frame and +K; » are those
in the rotating frame.

Figure 2 presents the dependences of Kj > on the
wavelength for the CLC with low dielectric and mag-
netic anisotropies. From the four roots only those two
are selected that have positive imaginary parts. It
follows from (9) that for light propagation along the
medium axis, only four eigenmodes are present, each
of which is a superposition of two circularly polarized
plane waves. According to the signs of k;' and k; in
formula (9), they can be either two waves with opposite
circular polarizations traveling in the same direction (in
the case of the same signs of kj and k;) or two waves
with the same circular polarization traveling in the op-
posite directions (in the case of the opposite signs of
kf and k;). As can be seen from the figure, there is
a wavelength region where I{; » are purely imaginary.
This wavelength region corresponds to the PBG, that
is, the propagating waves polarized circularly and hav-
ing the same handedness as the media helix are absent
in this region. We have |{>| = 1 in the PBG. The PBG
borders are defined from the condition K5 = 0 and have
the forms

At =DpyVEn, A2 =py/Esps . (14)

We note again that only the eigenmode with the cir-
cular polarization coincident with the CLC helix hand-
edness undergoes diffraction reflection, in the case of
light propagation along the CLC axis and for low lo-
cal anisotropy. Substantially, the diffraction reflection
takes place only in the first order and it is completely
absent in all higher orders, which is illustrated by the
dispersion curves in Fig. 2.

The peculiarities of the eigensolutions of CLCs are
investigated in [46] and the possibilities of exciting new
types of PBGs are presented for large anisotropies of
the medium, namely, the direct and the indirect non-
selective PBGs (with respect to the incident light po-
larizations, in contrast to the usual PBGs, which are
selective with respect to the polarization of incident
light).
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Fig.1. Sketch of a stack of CLC layers and isotropic medium layers
Ki2 In the first case,
0.04 . . )
: § w? 12 + E2pi 2
0.03 3 S5 Ta>0
0.02 5 - and therefore K, are always real (of course, in the
0.01 Re K2 x5 ¢ § absence of absorption or amplification), whereas in the
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0 ; Im K x 10 the wavelengths
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| A< py | 222 15
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Fig.2. The dependences of K2 on the wavelength
A. The CLC parameters are ¢1 = 2.29, g5 = 2.143,
pu1 =11, u2 =1, and p = 420 nm

As is well known [33], the isotropic chiral nihility
metamaterials are the media with the parameters ¢ =
=0,u =0, and p # 0 (here, p is the chirality parameter
of the isotropic chiral metamaterial). Because a CLC
is locally anisotropic, we define the CLC with chiral
nihility as the CLC with £,, = p,, = 0 and p # 0.
There can be two types of helicoidal structures with
such parameters

1) e1/p1 = ea/pua < 0 (chiral nihility of the first
type);

2) e1/p1 = e2/p2 > 0 (chiral nihility of the second
type).

Both types differ from each other only by the phase
of the modulation of dielectric and magnetic permittiv-
ities; in the first case, these phases coincide, and in the
second case, the phase difference is 7/2.

For these conditions, we have

I

8 ZKIT®, Brin. 5

w? E1M2 — E2M1

2 ‘ w2
c2 2 ) + 4azc_2 Empm = 0,

2
Ki»= \/w— SiH2 21 oo

c? 2
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According to these formulas, in the first case, the CLC
layer is transparent, and in the second case, a PBG of
a new type appears in the spectrum region (15) defined
above, where the CLC completely reflects the incidence
light with any polarization.

In Fig. 3, the dependences of the wave numbers K7 5
on the wavelength for the CLCs of the above two types
of chiral nihility are presented.

We now pass to the investigation of the peculiarities
of the reflection spectra, polarization plane rotation,
and the azimuth and ellipticity of the EPs of a stack
composed of CLC layers and isotropic medium layers.

3.1. Reflection spectra. Spectra of the
polarization characteristics

We first note once again that the optical prop-
erty peculiarities of a stack composed of CLC and
isotropic medium layers at low dielectric and magnetic
anisotropies of CLC layers were discussed in [31]. In
Fig. 4, we show the reflection spectra, the polarization
plane rotation and the polarization ellipticity spectra,
and the spectra of the azimuth and the ellipticity of
the first EP for normal light incidence in cases when
the CLC layers in the stack have chiral nihility of the
first and second type. In Figs. 4a and 4b, the inci-
dent light has the right (solid curve) and left (dashed
curve) circular polarizations; in Fig. 4¢,d, it has lin-
ear polarization along the x axis. The CLC helices are
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Fig.3. The dependences of K12 on the wavelength . The CLC parameters are (a) 1 = —0.9, €2 = 0.9, 1 = 0.9, and

M2 = —0.9; (b) &1 —0.9, €2 = 0.9, M1

right-handed. The refractive indices of the isotropic
layers are n = 1.5. Here and below, the case ny = 1 is
considered, that is, we assume that the system is in the
vacuum and, unless specified otherwise, it is assumed
that the first sublayer of the system is isotropic. For
the azimuth and the ellipticity of the second EP, we
have es &~ —e; and Y2 &~ —;. In Fig. 5, for compar-
ison, we show the reflection spectra, the polarization
plane rotation and the polarization ellipticity spectra,
the spectra of the azimuth and the ellipticity of the
first and second EPs for normal light incidence in the
case of CLC layers with low dielectric and magnetic
anisotropies. The comparison of the reflection spectra
in Figs. 4 and 5 with the analogous spectra of the CLC
single layer shows the following.

~

1) In the stack case, polarization sensitivity ap-
pears, in the case of normal light incidence, in spite of
the polarization insensitivity of both the isotropic layer
and the single CLC layer with chiral nihility. This sen-
sitivity is conditioned by the difference of the EPs of
these two layers, and due to this difference the EPs of
the stacked structure differ from both the EPs of CLC
layers and those of the isotropic layers.

2) In contrast to a single CLC layer with chiral ni-
hility, this system has multiple PBGs, whereas for a
single CLC layer with chiral nihility of the first type,
as mentioned above, there is no PBG at all, while in the
second case there is only one. Moreover, a stack with
the CLC layers with chiral nihility of the second type
also has a shortwave PBG in the spectrum region (15),
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—0.9, and p2 = 0.9, and p = 420 nm

as a single CLC layer with the chiral nihility of the
same type. There are PBGs of two types: the PBGs
independent of the incident light polarization and those
dependent on the polarization. We note that the emer-
gence of these two types of PBGs (those selective with
respect to the incident light polarization and nonselec-
tive ones) has been observed for periodic chiral PCs
of very different types [47-50]. The complicated zone
structure is caused by light diffraction at the periodic
chiral structure and that for the achiral ones, as well
as by the coupling of waves of these two types.

As our numerical calculations show, in the case of
a stack of CLC layers with the first chiral nihility type,
for n = 1.0 (i. e., for the equidistant CLC layers, in the
vacuum) there is no reflection at all (R = 0) (as in the
case of a single CLC layer with the corresponding chi-
ral nihility type) for every polarization of the incident
light and in all the optical spectral range, although the
system is composed of isotropic layers and of CLC lay-
ers with significantly larger anisotropy. This peculiar-
ities of the subject system can find wide applications,
in particular, for creating nonreflecting coatings. Also,
in this case, the system possesses gyrotropy (i.e., rota-
tion of the polarization plane differs from zero and the
ellipticity differs from linearity, for incident light with
linear polarization.)

As our calculations show, the system EPs are
nonorthogonal, but are quasi-circular and, for the
odd sublayer number in the system, e; = —e; and
o —)1. If the sublayer number in the system is
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Fig.4. (aand b) The reflection spectra, (¢ and d) the spectra of the polarization plane rotation (solid line) and polarization
ellipticity (dashed line), and (e and f) the azimuth (dashed line) and the ellipticity (solid line) of the first EP in the cases

(a, ¢, and €) a stack with CLC layers with chiral nihility of

the first type, (b, d, and f) a stack with CLC layers with chiral

nihility of the second type for normal light incidence. (a,b) incident light has the right (solid curve) and left (dashed curve)
circular polarization, and (c,d) linear polarization along the z axis. The CLC layers helices are right handed, and d = 2p.

The refractive index of the isotropic layers is n = 1.5 and

their thicknesses are di = 200 nm, s = 50 (a, ¢, and ¢) and

s =10 (b, d, and f). The other parameters are the same as in Fig. 3

even, e can significantly differ from —e; and, accord-
ingly, 2 can significantly differ from —;. For n = 1.0,
the EPs are orthogonal, y;x3 = —1, for both even and
odd sublayer numbers in the system. As our calcu-
lations show in the case n = 1.0, the system EPs are
orthogonal elliptic polarizations for both types of nihili-
ties. For the first type, the EP ellipticity monotonously
increases with A (in modulus), and for the second type,
the EPs are orthogonal circular polarizations.

3.2. Influence of the thickness of CLC layers

We now pass to the investigation of the influence
of the CLC layers thickness changes on the reflection
spectra. As previously, we consider the case where the
first sublayer is isotropic. In Fig. 6, the evolution of re-
flection spectra with changing the CLC layers thickness

d is presented. The incident light has the left (left col-
umn) and right (right column) circular polarizations.
The first row is for the stack with CLC layers with chi-
ral nihility of the first type and the second row is for
the stack with CLC layers with chiral nihility of the sec-
ond type. Brighter regions present stronger reflection.
As can be seen from Fig. 6, the frequency locations
and frequency widths of the PBGs are functions of the
CLC layers thicknesses. When the CLC layers thick-
nesses increase, the PBG quantity and their frequency
widths change. The PBG frequency widths increase
periodically; then they decrease, and all this occurs in
significantly large intervals, especially in the longwave
region. Also, it is seen from this figure that the bright
lines are practically vertical in the longwave region for
the left circularly polarized incident light if the stack
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Fig.5.

(a) The reflection spectra, the spectra of (b) the polarization plane rotation and polarization ellipticity, (¢ and

d) the azimuth and the ellipticity of the first and second EPs for low dielectric and magnetic anisotropies of CLC layers,
d = 1000 nm. The refractive index of the isotropic layers is n = 1.7 and their thicknesses are di = 100 nm. The other
parameters are the same as in Fig. 2

with the CLC has chiral nihility of the first type and
also for the right circularly polarized incident light and
for the second type chiral nihility. This means that
changing the thickness of CLC layers can either give
rise PBGs with a very large frequency width or lead to
their vanishing. Also, it is seen from the figure that the
PBGs are not formed near the wavelength A\ = 600 nm
for any values of the CLC layer thicknesses. In the
case of the stack with CLC layers with chiral nihility
of the first type, the same holds near the wavelength
A = 300 nm. We note that these wavelengths satisfy
the condition nd; =i\ (i =1,2,...).

If d increases, the slope of the PBG white stripes
changes (with respect to the wavelength axis), i.e., an
increase in d leads to a decrease or increase in the PBG
maximum frequency width. In the case of a stack of
CLC layers with chiral nihility of the second type, the
frequency width of the shortwave PBG is practically
unchanged if the thicknesses d increase (after their cer-
tain value). This shortwave PBG is observed in the
stack of the CLC with the second-type chiral nihility
and, as noted above, this PBG is also observed for a

884

single CLC layer.

3.3. Influence of the CLC local dielectric
anisotropy

The dielectric anisotropy A = (g1 — e2)/2 is of the
order of 0.5 or less for ordinary CLCs, but recently
some artificial crystals (metamaterials) have been cre-
ated with the dielectric anisotropy varying in a broad
range. It seems that they can be used to fabricate
CLC-like helical periodic media that have huge local
anisotropy. Such media with a comparatively weaker
anisotropy have been made long ago [51,52]. On the
other hand, there is considerable interest in the CLC
doped with nanoparticles (either ferroelectric or ferro-
magnetic particles; see [53] and the references therein).
The presence of these nanoparticles in the CLC struc-
ture leads to a significant increase in local (dielectric
and magnetic) anisotropy, a significant change of the
temperature of the phase transition from the isotropic
phase to the liquid crystalline phase, significant change
of the frequency width and frequency location of the
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Fig.6. Evolution of the reflection spectra as the CLC layers thicknesses d change. The incident light has (a and c) left and
(b and d) right circular polarizations: (a and ) for a stack with CLC layers with chiral nihility of the first type and (¢ and
d) for those of the second type. The other parameters are the same as in Fig. 3

PBG, a change of the CLC elasticity coefficients, and
a significant increase in the tunability of CLCs, etc.

It follows from the foregoing that the investigation
of the optical properties of stacks of CLC layers with
chiral nihility and isotropic medium layers that have
different, values of local dielectric anisotropy, can be of
great interest. Presenting the principal values of the
local dielectric and magnetic tensors of the CLC sub-

layers in the form €1 » = F(eo—2) and p1,2 = £(o—2)
for the first case (i.e., for ey, = pum = 0, p # 0,
and 61/”1 = 62/[12 < 0)7 and €12 = :F(é‘o — .TU)
and p1 > = F(po — x) for the second case (i.e., for

Em = tm =0, p#0, and 1 /11 = €2/ > 0), we next
investigate the influence of = on the reflection spectra.

In Fig. 7, we present the evolution of the reflection
spectra with 2 (which characterizes the local dielectric
and magnetic anisotropies). The incident light has the
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left (left column) and right (right column) circular po-
larizations. The first row pertains to the case of a stack
with CLC layers with chiral nihility of the first type,
and the second row, to that of the second type. As
can be seen from the figure, these two cases differ from
each other. Their common feature is that no PBG is
formed near the values, © = g9 = g (e = po = 2.5),
that is, at ¢ = €2 = ;3 = ps = 0, which is natural.
The number of PBGs and their frequency location and
frequency width change as = changes. In the case of the
stack with CLC layers with chiral nihility of the second
type, if |eo — | (or | — x|) increases, the frequency
width of the PBGs that are not selective to the inci-
dent light polarization is significantly increased and, for
larger values of this parameter, total reflection occurs
in virtually the entire wavelength range. This is also
natural because PBG is shortwave, with its longwave



A. H. Gevorgyan, G. K. Matinyan

MITD, Tom 145, BhIm. 5, 2014

1 2 3 4

Fig.7. Evolution of the reflection spectra as = (characterizing the anisotropy) changes: © = ¢o + 1,2 = po F p1,2 for a
stack with CLC layers with the first type chiral nihility, and = = o F ¢1,2 = po £ 1,2 for a stack with CLC layers with the
second type chiral nihility. The incident light has (a and ¢) left and (b and d) right circular polarizations: (a and b) for the

stack with CLC layers with chiral nihility of the first type; and (c and d) is for those of the second type. o = po = 2.

5.

The other parameters are the same as in Fig. 3

border shifted closer to the longwave region as |gg — z|
(or |po — x|) increases. In the case of the stack with
CLC layers with chiral nihility of the first type, again,
no PBG is formed near the wavelengths A = 600 nm
and A\ = 300 nm, for all values of z.

Now, presenting the dielectric and magnetic ten-
sor principal values for the CLC sublayers in the form
€12 = F1.25 and pi1 o = £y for the first case, and
€1,2 = F1.25 and 11,5 = Fy for the second case, we in-
vestigate the influence of y on the reflection spectra. In
Fig. 8, we present the evolution of the reflection spectra
as y changes. The other parameters are the same as in
Fig. 7. As can be seen from Fig. 8, the reflection of the
system can also be tuned by changing y. Changes of
y either lead to the vanishing of PBGs or give rise to
PBGs with various values of frequency widths, polar-
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ization sensitively or insensitively, etc. That is, such a
system can be used as a narrow-band (or a wide-band)
filter or mirror.

3.4. Influence of the refractive indices of
isotropic layers

We consider the influence of changes in the refrac-
tive indices of isotropic layers on the reflection spec-
tra. In Fig. 9, evolution of the reflection spectra is
presented, when the refraction index n of the isotropic
layers is changed. The incident light has left (left col-
umn) and right (right column) circular polarizations.
The first row is for the stack with the CLC layers with
chiral nihility of the first type, and the second row is for
that of the second type. As can be seen from the figure,
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2.5
y

Fig.8. Evolution of the reflection spectra as y changes: 1,2 = F1.25 and y = 41,2 for a stack with CLC layers with the
first type chiral nihility, and y = F 1,2 for a stack with CLC layers with the second type chiral nihility. The parameters and
notations are the same as in Fig. 7

changing n also strongly influences the number of the
PBGs, their frequency width, and frequency location.
As n increases, the PBGs shift to the longer/shorter
waves (depending on the incident light polarization and
wavelength region), and the PBG frequency width os-
cillates and vanishes for certain values of n. As can
be seen from Figs. 9¢ and 94, in the case of the stack
of CLC layers with the second type chiral nihility, the
frequency width of the above shortwave PBG practi-
cally does not change if the index n increases, because
the frequency width of this PBG is determined by the
parameters of CLC sublayers.

3.4. Oblique incidence

We consider the oblique light incidence case. We
do the numerical calculations as follows. First, we find

the reflection and transmission matrices for each CLC
sublayer. For this, we divide each CLC sublayer (with
thickness d) into many thin layers with the thicknesses
l1,12,13,...,In. If the maximum of these is sufficiently
small, we can assume that each “subsublayer” is a lin-
ear birefringent plate, and the CLC sublayers with the
thicknesses d can be regarded as stacks of parallel and
very thin birefringent layers, and that the principal axis
of each subsublayer is turned through the small angle
27 /N with respect to the preceding one. We find the
reflection and transmission matrices of each CLC sub-
layer from the system of difference matrix equations
(4), where Rj, Tj, Rj,l, and Tj,l are the reflection
and transmission matrices of the CLC sublayers with
j and (j — 1) subsublayers, and #; and #; are the re-
flection and transmission matrices of the jth birefrin-
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Fig.9. Evolution of reflection spectra as the refractive index n of the isotropic layers changes. The incident light has (a
and c) left and (b and d) right circular polarizations: (a and b) for a stack with CLC layers with chiral nihility of the first
type; and (¢ and d) for those of the second type. The other parameters are the same as in Fig. 3

gent subsublayer. Then to calculate the reflection or
transmission of the whole system, we again apply the
system of difference matrix equations (4), but now Rj,
Tj, ]%j,l, and Tj,l are the reflection and transmission
matrices of the system with j and (j —1) sublayers, and
#; and £; are the reflection and transmission matrices
of the jth sublayer (of the isotropic media or CLC).
Thus, the problem is reduced to the calculation of the
reflection and transmission matrices of a birefringent
homogeneous layer. The analytic solution of this prob-
lem is well known (see, e.g., [54]). We pass to the
analysis of the obtained results.

In Figs. 10a and 100, the evolution of reflection
spectra with the angle # is presented. The incident light
has right and left circular polarizations. The stack is
composed of CLC layers with chiral nihility of the first
type. As the incidence angle increases, the PBGs shift
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to short waves, but this shift is quite small or absent.
Anyhow, this does not occur according to Bragg’s con-
dition

A = nA cosf

(Ap is the PBG central wavelength, 7 is the average
refractive index of the medium, A is the spatial period,
and # is the incidence angle). This can be explained
as follows. When the light incidence is oblique, for
small oblique angles, the influence of Fresnel’s reflection
on the transmittance/reflection is comparatively small,
but this influence significantly increases for larger an-
gles. If there are no dielectric borders, the angle 6 is
simultaneously the incidence angle and the angle be-
tween the incident ray and the medium axis (the z axis
in Fig. 1). If the dielectric borders are present, the in-
cidence angle and the angle between the incident ray
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Fig.10. Three-dimensional plots of the reflection coefficient R as a function of the wavelength A and the incidence angle 6
for a stack with CLC layers with chiral nihility of (a and b) the first and (¢ and d) the second type. The incident light has
(a) left and (b) right circular polarizations. The other parameters are the same as in Fig. 3

and the medium axis differ from each other. According
Snell’s law, the angle § must be replaced by the angle

),

where ng = /g is the refractive index of the medium
bordering the system on both sides [55]. For Brewster’s
angle, the PBG width vanishes. The further increase
in the incidence angle leads to an increase in the PBG
frequency width, and this region becomes insensitive to
the incident light polarization. We also note that as the
incidence angle increases, new type PBGs occur in the
short-wavelength region that are nonselective with re-
spect to the incidence light polarization. Moreover, in
contrast to the ordinary PBGs, the frequency width of
these PBGs first increases, and then, beginning with a
certain incidence angle, decreases. In contrast to usual
crystals, at Brewster’s angle, reflection vanishes only
for the PBGs selective with respect to the incident light
polarization.

Figures 100 and 10d show the same as Figs. 10a and

no .
—sinf
n

© = arcsin ( (16)
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10D, i. e., the evolution of the spectra for the stack com-
posed of the CLC layers with chiral nihility of the sec-
ond type. In this case also, some complicated changes
of the zone structure are observed as the incidence angle
increases. Here, for larger angles, PBGs occur (with a
significant frequency width) that are nonselective with
respect to the incident light polarization.

4. CONCLUSION

Concluding, we note that we investigated the pecu-
liarities of reflection spectra of a stack of CLC layers
with chiral nihility and isotropic medium layers. These
investigations give much information about new possi-
bilities of applying chiral PCs in optics and photonics.
Two types of CLCs with chiral nihilities were defined.

The main peculiarity of the reflection spectra of the
usual single CLC layer is their polarization sensitivity
(the reflection spectra are not identical for the two or-
thogonal circular polarizations of the incident wave).
In the case of a single CLC layer with the second type
chiral nihility, a new type of PBG appears that does not
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have polarization sensitivity. In the stack case, this new
type of PBGs appears in any type of isotropic layers.
Moreover, this system has multiple PBGs. This prop-
erty of the subject system can find wide applications,
in particular, in display manufacturing.

We have shown that changing the incidence angle
and the system parameters (the thickness of CLC lay-
ers, their dielectric anisotropy, the isotropic layer thick-
nesses, their refractive indices, etc.), we can change the
number of PBGs, their frequency width and frequency
distance, and (in an essentially wide range) their char-
acter (whether they are selective or nonselective with
respect to the incident light polarization), their gy-
rotropic properties, etc.

With the possibility of tuning of local parameters
by changes in the external fields (electric, magnetic,
mechanical, thermal, light, etc.), especially in the case
where the system structure is soft, or the possibility
of changing the internal structure of the system, the
subject system has great prospects, in the sense of its
applications in photonics.

In particular, the subject system can find applica-
tion as a tunable optical filter or mirror, a tunable band
asymmetric reflector, or as a system that allows obtain-
ing 100 % polarized radiation from a nonpolarized light
(without any loss), or as an antireflecting systems, etc.

The authors are grateful to the Referees for useful
remarks. This work was partially supported by the Ar-
menian National Science and Education Fund (ANSEF
Grant No. Opt-3517).
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