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EVOLUTION OF THE 4f ELECTRON LOCALIZATION FROMYbRh2Si2 to YbRh2Pb STUDIED BY ELECTRON SPIN RESONANCEV. A. Ivanshin a;*, T. O. Litvinova a, N. A. Ivanshin b,A. Pöppl , D. A. Sokolov d, M. C. Aronson e;faMRS Laboratory, Kazan Federal (Volga Region) University420008, Kazan, RussiabKazan State University of Arhiteture and Engineering420043, Kazan, RussiaFaulty of Physis and Earth Sienes, University of LeipzigD-04103, Leipzig, GermanydShool on Physis and CSEC, University of EdinburghEH 3JZ, Edinburgh, UKeDepartment of Physis and Astronomy, Stony Brook University11794-3800, Stony Brook, NY, USAfCondensed Matter Physis and Materials Department, Brookhaven National Laboratory11973-5000, Upton, NY, USAReeived November 4, 2013We report eletron spin resonane (ESR) experiments on the Heusler alloy YbRh2Pb and ompare its spindynamis with that of several other Yb-based intermetallis. A detailed analysis of the derived ESR parametersindiates the extremely weak hybridization, more loalized distribution of the 4f states, and a smaller RKKYinteration in YbRh2Pb. These �ndings reveal the important interplay between hybridization e�ets, hemialsubstitution, and rystalline eletri �eld interations that determines the ground state properties of stronglyorrelated eletron systems.DOI: 10.7868/S00444510140500971. INTRODUCTIONOne interesting aspet of the heavy-fermion (HF)ompounds is the evolution from high-temperature un-sreened loalized f eletrons to itinerant heavy quasi-partiles with e�etive masses hunderds of times thatof bare eletrons at low temperature [1℄. Reent ex-perimental and theoretial studies on the HF Yb-basedmaterials have revealed a rih physis of transport andmagneti properties of these systems (see, e. g., Ref. [2℄for a review). In priniple, the Yb systems are the4f -hole analogue of the Ce-based ompounds [3℄ andtheir ground state properties strongly depend on theYb valene and the strength of hybridization betweenthe 4f eletrons (holes) and the ondution d-, p-, or*E-mail: Vladimir.Ivanshin�kpfu.ru

s-eletrons. The most essential role belongs here, onthe one hand, to the Kondo oupling that sreens theYb or Ce magneti moment and reates a paramag-neti ground state with enhaned masses of quasiparti-les and, on the other hand, to the Ruderman�Kittel�Kasuya�Yoshida (RKKY) exhange interation, whihauses a magneti ordering [4℄. A key for understand-ing the behavior of HF ompounds is the interplay be-tween both these phenomena. At a low value of Kondoexhange, the ondution eletrons are arriers of long-range magneti interations, and the loal moments off shells are ordered in the weak Kondo oupling limit.With an inrease in the Kondo e�et, the ordered stateis suppressed, reating a sreening of moments in thestrong Kondo oupling regime. As presented on theDoniah phase diagram [5℄, a quantum phase transi-tion ours between these two regimes.866



ÆÝÒÔ, òîì 145, âûï. 5, 2014 Evolution of the 4f eletron loalization : : :The ESR tehnique ould diretly probe the loalmoments of f eletrons and their interation with on-dution eletrons [6℄. However, as a rule, no onen-trated HF systems (inluding Kondo latties) an bestudied using ESR beause of a very fast relaxationof the resonating spin, whih leads to a huge ESRlinewidth, too broad to be observable and proportionalto the Kondo temperature. One expets the ESR tobe washed out by the Kondo e�et beause the lat-tie of loal moments is strongly oupled to ondu-tion eletrons. Therefore, it is neessary to dope smallamounts of ions with loalized magneti moments, suhas Ce3+ or Gd3+, into the ompound under investiga-tion. Surprisingly, during the last two deades, thelow-temperature ESR signals have been deteted insome undoped Yb-based intermetallis, e. g., mixed-valene ompound YbCuAl [7℄, quantum ritial sys-tem YbRh2Si2 [8℄, its parent ompounds YbIr2Si2 [9℄and YbCo2Si2 [10℄, and in several other Ce- and Eu-based alloys [11℄.Di�erent theoretial approahes [12�15℄ show thatthe narrow anisotropi ESR an be observed in somedense HF ompounds in a broad range of magneti�elds as a result of hybridization between 4f and on-dution eletrons in onjuntion with ferromagneti(FM) �utuations [16℄, whih an signi�antly reduethe ESR linewidth and make it observable. Finally,very reent results of inelasti neutron sattering ex-periments [17℄ explain the ESR mode in YbRh2Si2 asa mesosopi spin resonane of loalized droplets ofYb3+ spins and ondution eletrons due to a oherentpreession of the spin density, extending the distane6 � 2Å beyond the Yb site. Suh ESR absorption isnot aused by the purely loalized Yb3+ ions and isnot assoiated with orrelated e�ets over long lengthsales. In this work, the spin dynamis in YbRh2Pbprobed by ESR is ompared to that of some relativeYb materials.2. EXPERIMENTAL PROCEDURESamples of YbRh2Pb were obtained from Pb �uxas desribed previously in [18℄. They rystallizein a distorted Heusler alloy struture with dimen-sions a = 4:5235(4)Å and  = 6:9864(6)Å, anda probable spae group I4=mmm. The ESR spe-tra (ESR linewidth �H = 600�2300 Oe) were takenin the Bruker ESM/plus X-band (9.4 GHz) [19℄ andin the EMX 10�40 Q-band (34.1 GHz) spetrome-ters. In both ases, we used the Oxford ontinuous-�ow liquid-helium ryostats in the temperature range
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4 6 8 10 12H; êÎåFig. 1. Derivative of the absorption ESR signal atT = 5 K at the Q-band frequeny (34:1 GHz) inYbRh2Pb. Inset: The X-band (9:45 GHz) ESR spe-trum at T = 4:2 K. The arrow indiates the parasitisignal from the mirowave avity4:2 K � T � 25 K. Above 25 K, no ESR signal wasobserved. A multiply twinned rystal struture of theinvestigated small grains (1�2 mm2 surfae area), whihwas established with a Bruker Smart harged-oupleddevie X-ray di�ratometer, has prevented an orienta-tion of samples and an aurate determination of theloal symmetry of paramagneti enters.The X- and Q-band ESR spetra of YbRh2Pb areshown in Fig. 1 for 5 K. The intensity of the X-bandESR spetrum was omparable with that of the avi-ty bakground signal, whih is indiated by arrow onthe inset in Fig. 1. Its intensity was approximately20�30 times smaller than that for YbRh2Si2 as mea-sured by idential experimental onditions on the sam-ples of very similar size and weight [8; 20℄. The mea-surements at the Q-band frequeny allowed us to obtaina higher resolution of the ESR line with a muh bettersignal-to-noise ratio.No signi�ant deviation from the linear behaviorwas observed below 15 K for the temperature depen-dene of the ESR linewidth �H at the Q-band fre-queny (Fig. 2). On a further inrease in tempera-ture, the ESR lineshape was essentially distorted, andthis was aompanied by an even faster inrease in itslinewidth. The temperature dependenes of the ESRg-fator are given in Fig. 3 for both frequenies.867 7*
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Fig. 2. Temperature evolution of the ESR linewidth at34:1 GHz in YbRh2Pb. The dashed line is the theo-retial urve obtained from Eq. (1)
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Fig. 3. Temperature e�etive ESR g-fator dependenefor X-band at 9:45 GHz (triangles) [19℄ and Q-band at34:1 GHz (squares) in YbRh2Pb. Solid lines representthe best �ts using Eq. (2)3. DISCUSSIONWe suppose that the ESR signal in YbRh2Pb orig-inates from the hybridization of 4f Yb eletrons withondution eletrons in the presene of FM �utua-tions, as was also proposed for YbRh2Si2 and YbIr2Si2[8; 9℄. In aordane to Refs. [8℄ and [20℄, the tempe-rature dependene of �H of ESR spetra in YbRh2Pbat 34.1 GHz an be well �tted (see the dashed line inFig. 2) by the formula�H = A+BT + C exp(��=T ); (1)

where the measured Korringa rate B � 27 � 2 Oe/Kis within the usual order of magnitude of ytterbium,and the ativation energy of the �rst exited Starksublevel of the Yb3+ ion is � � 73:5 K. This valueof � orresponds very well to the estimation of the�rst exited rystal eletri �eld level of this ion, �1 == 68� 5 K, whih has been derived after heat apaityand magneti suseptibility measurements in YbRh2Pb[18℄. The residual ESR linewidth A hanges approxi-mately from 420 to 470 Oe upon passing from the X-to the Q-band experiments. Finally, the parameterC = 69:5�2 kOe (X-band) [19℄ or 9:0�1 kOe (Q-band).The exponential term is aused by random transitionsfrom the ground sublevel of the Yb3+ ion to the �rstexited rystal eletri �eld level separated by the dis-tane � [8℄. This eletroni mehanism of thermal�utuations an niely explain the temperature depen-dene of the e�etive ESR g-fator in YbRh2Pb above10 K (see Fig. 3), also with the same value � � 73:5 K,using the expressiong(T ) = g0 +�g0 exp(��=T ); (2)where �g0 = gex � g0, g0 and gex are respetivelythe e�etive ESR g-fators of the ground and �rst ex-ited sublevels of the ytterbium ion. At the Q-bandfrequeny, �g0 = �2:23 and gex = 1:509 are foundto be more reasonable values than those reported af-ter the �tting proedure of the X-band ESR spetrain YbRh2Pb (�g0 = �18:5 and gex = �15:1) [19℄.A huge di�erene between both sets of the parametersis aused by errors during simulation of the extremelybroad and weak X-band ESR signals in the tempera-ture range between 13 and 20 K. Moreover, both theseQ-band values are in lose agreement with the orre-sponding �tting parameters obtained from the Q-bandESR experiments on YbRh2Si2 [8℄, �g0 = �2:58 andgex? = 1:0. Reently, Ramires and Coleman [15℄showed that a very similar ESR g-fator shift with tem-perature in the another HF metal �-YbAlB4 an be un-derstood as a result of the development of a oherentmany-body hybridization between ondution eletronsand the loalized f states. This approah is related tothe intermediate value of the rystal eletri �eld ex-itations, whih are omparable to the hybridizationstrength.Therefore, the ESR of YbRh2Pb an be assoiatedwith the �eld-split ground-state doublet of the Yb3+ions, as was also predited in YbRh2Si2 [8; 17℄, YbIr2Si2[9℄, and YbRh6P4 [21℄. The loalized droplets of theYb3+ spins, whih were indued by a magneti �eld,are resonantly exited through rystal eletri �eld in-tradoublet transitions. The spin dynamis in YbRh2Pb868



ÆÝÒÔ, òîì 145, âûï. 5, 2014 Evolution of the 4f eletron loalization : : :at T > 10 K an be attributed to the spin�lattie re-laxation via the hybridized �rst exited rystal eletri�eld state of the Yb3+ ion at � � 73:5 K. This on-lusion ontradits the �ndings of the high-frequenyESR studies at 360 GHz in YbRh2Si2 [22℄, where thestrong broadening of the ESR response above 15 K inYbRh2Si2 was explained by the breakdown of the HFstate only beause of a huge di�erene between thepositions of the Yb3+ � the �rst exited state mea-sured in YbRh2Si2 by ESR tehnique and inelasti neu-tron sattering (INS). However, an e�etive hybridiza-tion of the 4f eletrons with ondution eletrons inthe strongly hybridized HF materials YbRh2Si2 andYbIr2Si2 signi�antly broadens the otherwise atomi-ally sharp f states (in ontrast to the usual inter-metallis YbRh2Pb and YbRh6P4 with a muh weakerhybridization, for example). Therefore, the positionsof all exited states of Yb3+ in YbRh2Si2 and YbIr2Si2have been estimated from the INS studies as an ex-tremely small humps on a very broad (80�100 K) shoul-ders [23; 24℄. The lowest part of suh a shoulder onlyan be involved in the eletroni spin�lattie relaxationand an be measured from the ESR experiments di-retly with a signi�ant deviation from the entral po-sition of the shoulder [8; 19℄. By ontrast, a very weakextent of hybridization e�ets in YbRh2Pb leads to amore aurate determination of the �rst exited rystaleletri �eld level of Yb3+ during ESR studies.The hybridization strength strongly depends onhemial omposition. A omparison of the ESR datain YbRh2Pb, YbRh2Si2, and YbIr2Si2 allows estima-ting possible e�ets of the f�d�p hybridization on thespin dynamis. Apart from the hemially inative oreeletrons, Si ([Ne℄3s23p2) and Pb ([Hg℄6p2) are iso-eletroni. Indeed, the ESR measurements show verysimilar spin�lattie relaxation proesses in YbRh2Pband YbRh2Si2. However, the extremely weak f�phybridization in YbRh2Pb auses a very low inten-sity of ESR signals, probably, as a result of a muhlower e�ieny of the mixing between the 4f - and6p-shells in omparison with the strong 4f�3p hy-bridization in YbRh2Si2. Further, the substitutionof Rh ([Kr℄4d85s2) by Ir ([Xe℄5d76s2), having oned eletron less than Rh, in YbIr2Si2 leads to a re-dued ontribution of ondution eletrons to the ESRrelaxation mehanism in omparison with YbRh2Si2[9; 20℄. A vanishingly small RKKY interation amongmagneti moments and a weakened f�d�p hybridiza-tion with the absene of orrelation e�ets among theondution eletrons [18℄ suggest that relatively smallFM droplets of the Yb3+ moments are more loal-ized in YbRh2Pb than in the quantum ritial sys-

tems YbRh2Si2, YbIr2Si2, and �-YbAlB4, in whih themost intense ESR signals have been observed. A pos-sible lose relation of quantum ritiality to observa-tion of a sharp well-de�ned f -eletron ESR lines is oneof the unresolved problems in the physis of HF met-als [15℄. A deliate balane between the Kondo ouplingof the loalized 4f eletrons to the ondution ele-trons and spin�orbit oupling ompared with the rys-tal eletri �eld interation an be tuned by doping orby pressure and an lead to the appearane of a quan-tum phase transition [25; 26℄. Thus, the substitution ofsilion with lead atoms by passing from YbRh2Si2 toYbRh2Pb hanges the f�p hybridization and a possi-ble distane to the quantum ritial point. We believethat YbRh2Pb belongs to the weak-oupling limit ofthe Doniah phase diagram [5℄, and the small but �-nite temperature magneti phase transition observedin YbRh2Pb [18℄ limits any non-Fermi liquid behaviorto very small redued temperatures.Several ommuniations devoted to the detetionof ESR in a variety of dense intermetallis with apossible strong f�d�s�p hybridization e�ets havebeen published during the last �ve years. The ESRabsorption has been found not only in the typial HFmaterials suh as YbBiPt, YbT2Zn20 (T = Co, Fe)[27℄, �-YbAlB4 [6℄ or in the borides CeB6 [13; 28�30℄and EuB6 [31℄ with strong low-energy FM �utuations,but also in the Kondo lattie CeRuPO and in thealloy YbRh that exhibit a stati FM order [16℄. Theseobservations appear to be supported by FM orre-lations, and a sharp ESR signals may exist in manyother intermetalli systems. The probable onnetionbetween intense ESR spetra and quantum ritiale�ets should be a subjet for further investigations.Therefore, the ESR tehnique an be a very powerfultool in studying hybridization e�ets in di�erentitinerant ferromagnets in addition to methods suh asINS, X-ray-, and photoemission spetrosopy.The authors are grateful to J. Hoentsh for his as-sistane during the Q-band ESR measurements. One ofthe autors (V. A. I.) thanks the University of Leipzigfor hospitality. Work at Brookhaven National Labo-ratory was arried out under the auspies of the USDepartment of Energy, O�e of Basi Energy Sienesunder Contrat No.DE-AC02-98CH1886.REFERENCES1. A. C. Hewson, The Kondo Problem to Heavy Fermions,Cambridge Univ. Press, Cambridge (1993).869
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