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BISTABILITY IN A HYPERCHAOTIC SYSTEMWITH A LINE EQUILIBRIUMChunbiao Li a*, J. C. Sprott b**, Wesley Thio 
***aS
hool of Information S
ien
e and Engineering, Southeast University210096, Nanjing, ChinabDepartment of Physi
s, University of Wis
onsin-Madison53706, Madison, WI, USA
Department of Ele
tri
al and Computer Engineering, The Ohio State University43210, Columbus, OH, USARe
eived O
tober 26, 2013A hyper
haoti
 system with an in�nite line of equilibrium points is des
ribed. A 
riterion is proposed forquantifying the hyper
haos, and the position in the three-dimensional parameter spa
e where the hyper
haosis largest is determined. In the vi
inity of this point, di�erent dynami
s are observed in
luding periodi
ity,quasi-periodi
ity, 
haos, and hyper
haos. Under some 
onditions, the system has a unique bistable behavior,
hara
terized by a symmetri
 pair of 
oexisting limit 
y
les that undergo period doubling, forming a symmetri
pair of strange attra
tors that merge into a single symmetri
 
haoti
 attra
tor that then be
omes hyper
haoti
.The system was implemented as an ele
troni
 
ir
uit whose behavior 
on�rms the numeri
al predi
tions.DOI: 10.7868/S00444510140301971. INTRODUCTIONEquilibrium points are some of the most funda-mental properties of dynami
al systems, and theyplay an important role in the bifur
ations that o

ur.Frequently, systems have more than one equilibriumpoint [1�5℄, and if these equilibria are stable, they havebasins of attra
tion whose boundaries 
an be very 
om-pli
ated. Under 
ertain 
onditions, there 
an be a 
on-tinuum of equilibrium points, for example, spread alonga �nite or even in�nite line with di�erent points on theline having di�erent stability properties [6, 7℄. Su
h lineequilibria 
an o

ur in 
haoti
 systems where the lineis surrounded by a strange attra
tor and in�uen
es itsdynami
s. However, the 
ase where a line equilibrium*E-mail: 
hunbiaolee�gmail.
om; Also at Engineering Te
h-nology Resear
h and Development Center of Jiangsu Cir
ulationModernization Sensor Network, Jiangsu Institute of Commer
e,Nanjing 210007, China; Department of Physi
s, University ofWis
onsin-Madison, Madison, WI 53706, USA**E-mail: sprott�physi
s.wis
.edu***E-mail: wesley.thio�gmail.
om

o

urs in a hyper
haoti
 system in largely unexplored.Furthermore, the phenomenon of multistability is animportant feature in nature and is found to o

ur, forexample, in low levels of quanta [8℄ and in the Tay-lor�Green dynamo [9℄.Hyper
haos was �rst des
ribed by Rössler [10℄ in afour-dimensional system with two unstable equilibriumpoints. Other hyper
haoti
 systems have no equilib-ria [11, 12℄, one equilibrium [13℄, or �ve equilibriumpoints [14℄. It is thus natural to ask whether there arehyper
haoti
 systems with in�nitely many equilibriumpoints. In [15℄, hyper
haos was re
ently found in a four-dimensional memristive system with a line of equilibria,whi
h 
ontains one 
ubi
 and three quadrati
 nonlin-earities. In this paper, we provide a new example ofsu
h a system that exhibits hyper
haos over a large re-gion of parameter spa
e in the presen
e of an in�niteline of equilibrium points. Signi�
antly, this systemhas only quadrati
 nonlinearities and a relatively largeregion of bistability, where a 
oexisting symmetri
 pairof limit 
y
les turns into strange attra
tors that thenmerge into one symmetri
 strange attra
tor before itbe
omes hyper
haoti
 or a symmetri
 pair of strangeattra
tors merge or remerge between two hyper
haoti
regions.565
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−0.15Fig. 1. Hyper
haoti
 attra
tor observed from system (2) with a = 5, b = 0:28, and 
 = 0:05 for the initial 
onditions(0; 0; 0:8; 0:02) (a) xy plane, (b) zu plane2. HYPERCHAOTIC FLOW WITH A LINEEQUILIBRIUM2.1. Dynami
al analysis and basi
 propertiesSystems with several quadrati
 terms are mostlikely to have an in�nite line of equilibrium points. Asimilar three-dimensional �ow with six terms and a sin-gle linearity as reported in [7℄,_x = y � xz � yz;_y = axz;_z = y2 � bz2; (1)whi
h has 
haos for some parameters, su
h as a = 4and b = 0:3. System (1) has two equilibrium points at(0;�pb; 1) and an in�nite line of equilibrium points at(x; 0; 0). Correspondingly, by introdu
ing an additionaldimension with linear feedba
k in the above system, afour-dimensional system with a line of equilibria is ob-tained, _x = y � xz � yz + u;_y = axz;_z = y2 � bz2;_u = �
y: (2)

The 
orresponding Ja
obian matrix isJ = 0BBBB� �z 1� z �x� y 1az 0 ax 00 2y �2bz 00 �
 0 0 1CCCCA : (3)When a; b; 
; z 6= 0, system (2) has the full rank be
ausethe determinant of the Ja
obian matrix is 2ab
z2, whi
hmeans that system (2) is a truly four-dimensional sys-tem. If any of a; b; 
; z are zero, then the system redu
esto one whose dimension is less than four.The rate of hypervolume 
ontra
tion is given by theLie derivative,rV = � _x�x + � _y�y + � _z�z + � _u�u = �(2b+ 1)z: (4)Hen
e, system (2) is dissipative with solutions that 
on-tra
t as time goes to in�nity onto an attra
tor of zeromeasure in the four-dimensional state spa
e wheneverthe time average of z is positive and b > �0:5.The system has only the real line equilibrium(x; 0; 0; 0) if the parameters a; b; 
 are not zero, and the
orresponding eigenvalues are (0; 0; 0; 0), whi
h showsthat the equilibrium is nonhyperboli
 and the systemlies on a bifur
ation point and is nonlinearly unstable.For the initial 
onditions (y0; z0) = (0; 0), the dynami
sbe
ome one-dimensional, given by _x = u0, and there-fore the orbit is unbounded for u0 6= 0.566
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0 Fig. 2. Proje
tion onto the yz plane of a 
ross se
-tion of the attra
tor at x = 0 for system (2) witha = 5, b = 0:28, and 
 = 0:05 and initial 
onditions(0; 0; 0:7; 0:01)Like the three-dimensional system (1), system (2)has rotational symmetry with respe
t to the z axis, aseviden
ed by its invarian
e under the 
oordinate trans-formation (x; y; z; u)! (�x;�y; z;�u);whi
h means this four-dimensional system 
ould alsohave symmetri
 pairs of 
oexisting attra
tors, su
h aslimit 
y
les or strange attra
tors.2.2. Hyper
haoti
 attra
torThe degree of hyper
haos 
an be quanti�ed by thevalue of the se
ond largest Lyapunov exponent normal-ized to the most negative exponent. By this 
riterion,the maximum hyper
haos is found to o

ur for a = 5,b = 0:28, and 
 = 0:05, where the Lyapunov exponentsare (0:0750; 0:0366; 0;�1:6617) and the Kaplan�Yorkedimension is DKY = 3:0672. The hyper
haoti
 attra
-tor in di�erent proje
tions is shown in Fig. 1. System(2) is 
learly four-dimensional be
ause it has four dis-tin
t Lyapunov exponents and a 
ross se
tion in thehyper
haoti
 region whose dimension is at least 2.0, asshown in Fig. 2.
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aFig. 3. Regions of various dynami
al behaviors as afun
tion of the bifur
ation parameters a and b. The hy-per
haoti
 regions are in dark grey, the 
haoti
 regionsare in bla
k, the quasiperiodi
 regions are in light-lightgrey, and the periodi
 regions are in light grey2.3. Dynami
al regionsSystem (2) has eight terms and thus three param-eters. For 
 = 0:05, regions of di�erent dynami
al be-haviors in the a; b parameter spa
e are shown in Fig. 3.In this 
al
ulation, ea
h pixel uses a di�erent randominitial 
ondition 
hosen from a Gaussian distributionof mean zero and varian
e 1.0. Thus the dotted re-gions, whi
h suggest the 
oexisten
e of attra
tors ofdi�erent types, are a
tually long transients. In parti
-ular, the dense region of light-light dots 
orrespondsto a torus (quasiperiodi
) attra
tor. There are largeregions where the system is hyper
haoti
 with thoseregions surrounded by 
haos (bla
k), su
h that there isno way for the system to transition dire
tly to hyper-
haos from periodi
ity or quasiperiodi
ity.A 
ounter-intuitive feature is that the Kaplan�Yorke dimension is relatively small when the hyper-
haos is large, whereas the maximum Kaplan�Yorke di-mension o

urs for a � 300, b � 0:07, and 
 = 0, wherethe system be
omes three-dimensional with an extrane-ous equation and a 
onstant u given by the initial 
on-dition u0, for whi
h the greatest Kaplan�Yorke dimen-sion o

urs at u0 = 0. For these 
onditions, the Lya-567
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Fig. 4. Largest three Lyapunov exponents of system (2) with 
 = 0:05 and their respe
tive Kaplan�Yorke dimensions. (a)b = 0:28, versus a, (b) a = 5, versus bpunov exponents are (0:05632; 0;�1:7901), and the 
or-responding Kaplan�Yorke dimension is DKY = 2:3146in the three-dimensional spa
e or DKY = 3:3146 in thefour-dimensional spa
e, where the extraneous dimen-sion gives an additional zero Lyapunov exponent.3. BISTABILITY AND ATTRACTORMERGINGGenerally, 
haoti
 �ows with involutional symme-tries have either a single symmetri
 attra
tor or a sym-metri
 pair of 
oexisting attra
tors. To explore the bi-fur
ations of system (2), we take sli
es through Fig. 3for �xed b and �xed a. The 
orresponding Lyapunovexponents and their respe
tive Kaplan�Yorke dimen-sions are shown in Fig. 4.When b = 0:28 and 
 = 0:05, as a in
reases, asymmetri
 limit 
y
le splits at a � 1:08 into a sym-metri
 pair of limit 
y
les that evolve into a symmetri


pair of strange attra
tors that merge into a single sym-metri
 strange attra
tor, whi
h then unmerges beforeremerging and be
oming hyper
haoti
 with a similarKaplan�Yorke dimension, as shown in Fig. 5.When a = 5 and 
 = 0:05, as b de
reases from 1:0,system (2) be
omes hyper
haoti
 through the limit 
y-
le, torus, and 
haos, whi
h are shown in Fig. 4 asdistin
t steps in the Kaplan�Yorke dimension.In Fig. 3, there is a nearly verti
al band of 
haos(bla
k) with an embedded region of hyper
haos (darkgrey), whi
h 
an be approximately des
ribed by thefun
tion b = 2:5a� 5:25:This band apparently stret
hes to in�nity and separatesthe periodi
 regions (light grey) into two di�erent areas.The left area 
onsists of a symmetri
 limit 
y
le thatbe
omes hyper
haoti
 after a narrow region of 
haosas the parameter a in
reases. A 
ompli
ated variety oflimit 
y
les is on the right side of the band. When ade
reases from a relatively large value, the symmetry568
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yy yFig. 5. Attra
tor merging and remerging at b = 0:28 and 
 = 0:05of the attra
tor is broken, and a symmetri
 limit 
y
leturns into a symmetri
 pair of limit 
y
les, and thenforms a symmetri
 pair of strange attra
tors as shownin Fig. 6. Eventually, the strange attra
tors merge toform a symmetri
 attra
tor that then be
omes hyper-
haoti
.This four-dimensional system shows a typi
al be-
havior for rotationally symmetri
 �ows, where 
haoti
and hyper
haoti
 regions are surrounded by periodi
regions, and hen
e the 
haoti
 attra
tors usually arisefrom a symmetri
 pair of limit 
y
les, and then theattra
tors merge until the system eventually be
omeshyper
haoti
. No spe
ial bifur
ation appears to a

om-pany the transition of 
haos to hyper
haos.569
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y
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а b

Fig. 8. Hyper
haoti
 attra
tor of system (2) with a = 5, b = 0:28, and 
 = 0:05 observed by os
illos
ope: (a) xy plane,(b ) zu plane, to 
ompare with the predi
tion in Fig. 14. CIRCUIT IMPLEMENTATIONA 
ir
uit that models this hyper
haoti
 system was
onstru
ted to 
on�rm the numeri
al predi
tions. The
ir
uit equations are given by_x = 1R2C1 y � 110R1C1xz �� 110R3C1 yz + 1R4C1 u;_y = 110R5C2 xz;_z = 110R6C3 y2 � 110R7C3 z2;_u = � 1R8C4 y: (5)
Resistors R5, R7, and R8 are made variable to 
hangethe parameters a; b, and 
 su
h that the dynami
 re-gions in Fig. 3 
ould be tested. The 
ir
uit s
hemati
is given in Fig. 7, and the resulting os
illos
ope tra
esare shown in Fig. 8.The system gives the maximum hyper
haos at a == 5, b = 0:28, and 
 = 0:05, whi
h 
orresponds to the
ir
uit values C1 = C2 = C3 = C4 = 1 nF,R1 = R3 = R6 = 40 k
; R2 = R4 = 400 k
;R5 = 8 k
; R7 = 150 k
; R8 = 8 M
;R9 = R10 = R11 = R12 = R13 = R14 = 100 k
:The multipliers are AD633JN, and the operational am-pli�ers are TL084. The 
ir
uit is powered by �9 volts.

The predi
tions in Fig. 3 were 
on�rmed in thispra
ti
al implementation when a varies between 1 to10, and b between 0 to 1, with 
 = 0:05. In 
ir
uit val-ues, this 
orresponds to R5 varying from 40 k
 to 4 k
and R7 from 400 k
 to 40 k
, with R8 = 8 M
. AsR7 in
reases, the parameter b de
reases, and the sys-tem goes through a limit 
y
le, torus, and 
haos beforerea
hing hyper
haos as predi
ted. As a varies from 2:2to 2:89 (R5 = 18181 
 to 13840 
), 
oexisting strangeattra
tors o

ur as expe
ted. In the pra
ti
al imple-mentation, these varying values were implemented byrepla
ing the 
orrespondent resistor with a potentiome-ter. 5. CONCLUSIONA four-dimensional system with an in�nite lineof equilibrium points is found to have hyper
haoti
solutions and a relatively large region of bistabilityin the parameter spa
e where a symmetri
 pair ofstrange attra
tors 
oexists, then eventually mergeand evolve into a symmetri
 hyper
haoti
 attra
tor atsome parti
ular parameter 
ombinations. The resultsof a physi
al 
ir
uit agree with the numeri
al analysis.This work was supported by the Jiangsu OverseasResear
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