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We derive a model of localized edge states in a finite-width strip for the two-dimensional electron gas formed
in the hybrid system of a bismuth monolayer deposited on the silicon interface and described by the nearly free
electron model with giant spin-orbit splitting. The edge states have the energy dispersion in the bulk energy gap
with a Dirac-like linear dependence on the quasimomentum and the spin polarization coupled to the direction of
propagation, demonstrating the properties of a topological insulator. The topological stability of edge states is
confirmed by the calculations of the Z invariant taken from the structure of the Pfaffian for the time reversal
operator for the filled bulk bands in the surface Brillouin zone, which is shown to have a stable number of zeros
with the variations of material parameters. The proposed properties of the edge states may support future
advances in experimental and technological applications of this new material in nanoelectronics and spintronics.
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1. INTRODUCTION

During the last decade, an increasing attention is
given to a new class of structures called topological in-
sulators (TIs) with promising characteristics as regards
both fundamental aspects of their physics and possible
applications in nanoelectronics, spintronics, and fabri-
cation of new magnetic, optical, and information pro-
cessing devices [1-5]. The principal features of TIs in-
clude the presence of time-reversal invariance in the
system where the propagating edge states may exist,
being localized near the boundary of the host material
and having the dispersion relation that is linear near
the origin of their quasimomentum (Dirac-like struc-
ture), corresponding to energies belonging to the insu-
lating gap of the bulk material. The spin of such states
is firmly attached to the direction of propagation along
the edge, making them protected against backscatter-
ing due to the time-reversal invariance, which leads to
effective cancelation of two scattered states with oppo-
site possible directions of the spin flip that accompa-
nies such backscattering. The existence of such edge
states has been shown in numerous theoretical models
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of TIs, and also in the experiments. The materials in-
cluded graphene [6], HgTe/CdTe quantum wells [7-10],
bismuth thin films [11], quantum wires [12], nanocon-
tacts or bilayers [13], the LiAuSe and KHgSb com-
pounds [14], and general two-dimensional (2D) models
of paramagnetic semiconductors [15], silicene [16,17],
and topological nodal semimetals [18]. Another 2D
TT has been predicted in the inverted type-II semicon-
ductor InAs/GaSh quantum well [19] and observed ex-
perimentally in the contribution of edge modes to the
electron transport [20]. Many studies have also been
devoted to the general properties of 2D and 3D mod-
els of TIs with certain symmetries [17,21-27], where
four topological invariants have been found in 3D TIs
instead of a single Z, invariant in 2D TIs [1, 2, 22].

Recently a general group-theory analysis has been
made for the links between the geometry of the Bravais
lattice and the properties of TIs [28]. We note that
the symmetry arguments always played a significant
role in classifying the systems as trivial or topologically
protected against external perturbations [6,21,28-31].
The time-reversal property of spin-1/2 particles in such
systems can be described by the presence of time-rever-
sal invariance (without magnetic impurities or an exter-
nal magnetic field) and the absence of the spin rotation
invariance. Here, the time-reversal operator is given by
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© =ioy, K, where K is the complex conjugation opera-
tor and oy, is the second Pauli matrix. According to the
general symmetry considerations [30, 31|, this means
the class-AIl symmetry for the Hamiltonian for which
the so-called Z> topological order is possible for 2D and
3D systems, forming the basis for the TT properties.

The studies of 3D materials were mostly focused on
BisSes, BiaTes, or BioTesSe [1, 2, 32-34], where also the
edge states were constructed explicitly in several mod-
els of finite-size geometry [35,36]. Another important
issue is the effect of impurities and disorder on the band
structure and topological stability in TIs. It is known
that TIs are robust against weak disorder or the po-
tentials produced by nonmagnetic impurities [6, 21, 37],
while the presence of magnetic impurities may lead to
hybridization of the insulator atomic orbitals and mag-
netic material orbitals, producing a strong modifica-
tion to the metallic or nonmetallic nature of the states
and their spin polarization [38]. Even for nonmagnetic
impurities, it has been shown recently that the forma-
tion of impurity bands within the energy gap at strong
doping of the bulk material may lead to their mixing
with the edge states of a TI, modifying their structure,
although preserving the Z, order and topological sta-
bility [39].

It can be seen that although the features of TIs are
very general and describe a truly novel state of mat-
ter, the number of different materials demonstrating
these features is currently quite limited. It is there-
fore of interest to find new materials and compounds
where possible manifestations of TIs may be present,
for both fundamental aspects and applied purposes. It
is also necessary to understand which properties of edge
states are common for different systems, and which are
special, and how all of them are related to the bulk
quantum states in a specific model.

Here, we consider a model of edge states and re-
late their properties to topological characteristics of
the host material for a new candidate to the class of
TIs: the 2D electron gas in a material with strong
spin—orbit coupling (SOC) formed at the interface of a
monolayer of bismuth deposited on silicon. This mate-
rial is characterized by a giant SOC splitting which, was
also predicted or observed experimentally in a number
of metal films or the combined materials of the “metal
on semiconductor” type [40—46], and recently described
theoretically [46, 47]. Tts huge spin splitting together
with the hexagonal type of the lattice creates a certain
potential of manifestation of TI properties, since the
spin-resolved bands may evolve into spin-resolved edge
states, and the hexagonal type of the lattice is favorable
for the TT to exist [28].
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The properties of the 2D electron gas at the
Bi/Si interface have been studied experimentally with
the help of angle-resolved photoemission spectroscopy
(ARPES) [40-44, 46, 48-50], applied also to other ma-
terials. It was found that this material represents
an example of the currently widely studied class of
materials with a large (up to 0.2-0.4 eV) SOC spin
splitting of their energy bands, which can be formed
in various compound materials or heterostructures of
the “metal on semiconductor” type. It has been
known for many years that SOC plays an important
role in the formation of TT properties [51], including
the localization effects of the Rashba SOC combined
with electron—electron interaction [52], the Dirac-cone
surface states in BiySez [53] and BinTe,Sesz_, [54],
PbSbQTe4 or PbQBiQT@QSg [55], and Bil_bex [56],
topological phases [57, 58] and the quantum spin Hall
phase in a honeycomb lattice [59], the ultracold Fermi
gases [60], the spin Hall effect in graphene [61], and the
Kondo insulator effects [62, 63].

Various materials with a strong SOC have been the
subject of intensive recent studies, including the struc-
tures of Bi deposited on Si-Ge substrates [64], the Pb
on Si structure [43], the trilayer Bi-Ag—Si system [42],
the structures with a monolayer of Pb atoms covering
the Ge surface [65] or the Pb on Ge structures [66].
We also mention new types of triple bulk compounds
with strong SOC like GeBiyTey [67], BiTel, or other
bismuth tellurohalides [68-70] or the recently discussed
Bi14Rh319 material [71]

In this paper, we adopt the nearly free model of two-
dimensional bulk states in Bi/Si, developed earlier [46]
and applied in the extended form in our previous paper
for the description of spin polarization, charge conduc-
tance, and optical properties of this promising mate-
rial [47], for the calculation of 1D edge states of elec-
trons on the Bi/Si interface in a finite strip geometry.
We obtain both the explicit form of edge wavefunc-
tions and the edge energy spectrum, calculate their
spin polarization, and relate the possible topological
stability of their properties to the Zy topological in-
variant studied by analyzing the behavior of the matrix
elements of the time-reversal operator in the Brillouin
zone [1,2,5,6,21,23]. The results of our paper are of
interest for expanding the knowledge of new materi-
als with the topologically protected properties where
the SOC plays a significant role, making them suitable
for further applications in spintronics as stable current-
carrying and spin-carrying channels.

The paper is organized as following. In Sec. 2, we
briefly describe the nearly free electron (NFE) model
of 2D bulk states at a Bi/Si interface, and derive a
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model for 1D edge states for the electrons in a finite
strip geometry. We calculate their spectrum, wavefunc-
tions, and spin polarization. In Sec. 3, we reinforce our
findings on the edge state stability by considering the
topological band properties of 2D bulk states in Bi/Si,
and find the results supporting the presence of the TT
phase. Our conclusions are given is Sec. 4.

2. MODEL FOR BULK STATES AND EDGE
STATES

2.1. Bulk states

Our model for 1D edge states is based on the 2D
NFE model for bulk states of the 2D electron gas
formed at the interface of the trimer Bi/Si(111) struc-
ture [46] developed for the description of the spectrum
near the M point of the Brillouin zone (BZ), and later
extended to modeling the electron states in the entire
BZ [47]. This model was compared with its expan-
sion containing anisotropic terms in the NFE model
as well as with an empirical tight-binding model [46].
While the details of band structure and the quality of
reproducing the experimental ARPES data on energy
bands in Bi/Si vary from model to model, the simple
NFE model allows reconstructing the main properties
of spin-split bands including the magnitude of splitting,
the energy gap, and the spin polarization. It also has
a major advantage of a straightforward derivation of
edge states in a finite-strip geometry, as we see below.

In this model, the Hamiltonian of the 2D electron
gas in the BZ of the (k;, ky) plane, H = Hy + V(z,y),
is written as a sum of a free-electron term with SOC,

R k>

H
0 2m

+aR(0'xky _Uykx)v (1)
k* = k2 + k2, corresponding to the Rashba paraboloid
centered at the [' point of the hexagonal BZ, and the
lattice potential represented via the spatial Fourier ex-
pansion with reciprocal space vectors Gj:

V(z,y) = Z‘/iexp(iGi 1)

2

(2)

The parameters of both Hy and V are fitted so
as to provide the best correspondence between the
model and the structure of bands near the Fermi level
experimentally known from ARPES measurements
[42—-44, 46]. The typical values [46, 47] are m = 0.8my,
agp = 1.1 eV - A, and V; = V5 = 0.3 €V, although
they should be treated as fitting parameters rather
than measured material constants, and we here con-
sider their variations in the range 0.3-0.6 €V for V4, and
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Fig.1. (a) The structure of reciprocal space vectors
connecting the equivalent T points 'y, ... ,I's in the
hexagonal lattice for the NFE model. The parameters
are TM = 0.54A"! and TK = 0.62A"". (b) Frag-
ment of the energy spectrum of the 2D electron gas at
the Bi/Si(111) surface in the NFE model correspond-
ing to the bulk band gap (marked by Er in the left
part of the figure) of around 0.2 eV between the bands
where the Fermi level is located, creating the possibility
of the edge state existence within this gap, and making
the system a possible new topological insulator

0.6-1.1 6V - A for ag. The structure of reciprocal space
vectors connecting the equivalent ' points Iy, ... , g in
the hexagonal lattice is shown in Fig. 1a. In the model
originally proposed in [46], only the vectors Gi, Ga,
Gg were included in order to describe states near the
M point, and we later expanded this model [47] with
vectors Gz, G4, Gj for the description of states in the
entire BZ. The parameters of the hexagonal lattice in
Fig. la are TM = 0.54 A=! and K = 0.62 A~'.

A Bloch eigenstate of the Hamiltonian H = Hy+V
is a two-component spinor that can be constructed in
the NFE approximation in the form

T ) = 3 et o) (3)

nk

where the Rashba eigenstates 24F = ¢fu/& have the

form of free electron states with the quasimomentum
shifted by the vector Gy, (see Fig. 1a) and
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The “+” sign corresponds to two eigenvalues for the
Rashba energy spectrum E(k) = h%k?/2m + agk.

In Fig. 1b, we plot a fragment of the energy spec-
trum of the 2D electron gas at the Bi/Si(111) surface
in the NFE model corresponding to the bulk band
gap (marked by Ep at the left part of the figure) of
around 0.2 eV between the bands where the Fermi level
is located, reported to be above the second spin-split
band [46]. The Fermi level position in the bulk gap,
where the gapped structure of the electron spectrum is
produced by the hexagonal lattice with potential (2),
creates the possibility of edge state formation with en-
ergies in this gap, and, as we see below, makes the sys-
tem a possible new candidate to the topological insula-
tor class. The large metallic-like values of the electron
energy and SOC amplitude present for the 2D electron
gas in this system make it promising for the considera-
tion in transport and optical experiments where the dis-
order, collision, and thermal broadening prevents the
application of conventional semiconductors. We note
that the discussed properties of the band structure for
the Bi/Si 2D electron gas are obtained in the framework
of one specific model with a set of parameters chosen
for the best fit to experimental data. Hence, it may
be modified in the future when more insight is gained
into the properties of Bi/Si or other similar compounds.
Still, we see below that the qualitative and topologi-
cally described features of the electron states studied
within this model are robust against significant, varia-
tions of the model parameters, which is an indication
of certain intrinsic and stable properties of the system.

2.2. Edge states

We now turn our attention to the construction
of the model for edge states localized at the oppo-
site edges of a finite strip formed in the 2D electron
gas. We can start with the strip geometry where
the electrons are confined along the y direction in
the strip —L/2 < y < L/2 and with the conven-
tional assumption of the hard-wall boundary conditions
U(x,y =+L/2) =0 [8-10, 35, 36].

First, the spectrum of edge states can be found by
solving the eigenstate problem with the requirement of
an exponential dependence across the strip direction y.
This can be done by starting from the bulk Hamilto-
nian and replacing the quasimomentum component in
the direction of confinement by the purely imaginary
variable describing the inverse localization depth cor-
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responding to the localized states exp(+Ay), which in
our case means the substitution &, — —iA. We note
that A can be complex in general, with the imaginary
part corresponding to oscillations of the edge wavefunc-
tions on top of the exponential decay [8,35], while in
other models [9], A is taken purely real, as in our sys-
tem. The reason for a purely real A in our model of edge
states is the narrow bulk gap formed in the bulk spec-
trum originating from Hamiltonian (1) with the strong
Rashba SOC. If we add more real nonzero wavevector
components by adding the imaginary part to A, then
the resulting energy increase pushes the edge states out
of the bulk gap, making them unsuitable for the TI
phase.

The eigenfunctions of this Hamiltonian can be con-
structed in the same nearly free-electron approximation
as bulk states (3), and have the form

Oy, a(2,y) = M Fy,a(2),

(5)

Feoa(r) = an(ka, A)dnr,a(2). 6)

The spinors @i, A (z) can be obtained from (4) by the
substitution k, — —iA, which results in a purely imag-
inary number under the Arg function, giving

exp [i(ky + nG)x] y
V2

(antana) 7

The summation in (6) is over the 1D lattice in the recip-
rocal space, corresponding not to the 2D hexagonal but
the 1D simple lattice along the z direction formed by
the vectors G; and Gy in Fig. 1la, with the real space
period a = 27/G, where G = 1.08 A~! is the length
of the G; vector. State (6) remains a Bloch function
along x with the conventional translation property

Dk, A(T)

1
Fisign(ky +nG + A)

Pp A (x+a,y) = exp(ikya)®r A (z,y),

while along the confinement direction, the wavefunc-
tions are exponentials exp(£Ay). If we solve the
Schrodinger equation for our model of the 2D elec-
tron gas at the Bi/Si interface with the substitution
k, — —iA (without considering the specific bound-
ary conditions at this stage), then the spectrum of
edge states is obtained as a function of two parameters
(kz,A). If there are eigenstates with energies corre-
sponding to the gap in the bulk spectrum, they can be
interesting as potential candidates for the edge states
with topological protection.
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Fig. 2

The wavefunction satisfying the boundary condi-
tions Uy (z,y = £L/2) = 0 on a single edge and hav-
ing the specific energy E = E(k,,A) in the bulk gap
has the form of a linear combination of (6) with differ-
ent localization lengths Ay » corresponding to the given
energy E = E(ky, A1 2):

U, (2,9) = > ea,a(z,y). (8)
A

If the edge is represented by another and more
smoothly increasing potential differing from the hard
wall, or a more sophisticated boundary condition is cho-

10 ZKSBT®, Beim. 3

sen, the edge wavefunction is expected to be modified
mainly in a small vicinity of the edge where a decaying
tail can be formed. Because this modification would
not strongly affect the global shape of the edge state
and the main localization parameter, as well as the pri-
mary property of their possible topological stability in-
duced by the presence of the topological invariant for
the bulk states, we proceed with the simple hard-wall
condition introduced above. We have found that in
our model, the edge states indeed exist in the gap of
the bulk spectrum. Their dependence on the k, param-
eter is shown in Fig. 2a as two linear dispersion curves
1 and 2 crossing the bulk gap for a typical value of the
inverse localization length A = 0.6 A~!, together with
the bulk spectrum plotted as a function of k, for all
values of £, in the 2D BZ shown in Fig. 1a. The joint
dependence of the energy of edge states on both &, and
A is shown as a 3D plot in the inset to Fig. 2b. The
two spin-resolved energy branches E = E(k,,A) are
shaded differently (branch 1 is dark gray and branch
2 is light gray) depending on their spin projection Sy.
In Fig. 2a, we also plot the mean values of the only
nonvanishing spin component S, = (¥|o,|¥) for the
edge states that are coupled to their direction of mo-

Fig.2. (a) Bulk (grayscale dots on the background)
and edge (black and gray linear dispersions marked as
1 and 2) energy bands in a Bi/Si strip shown as a func-
tion of k. for all k, (bulk states) and for the typical
value of the inverse localization length A = 0.6 A~?
(for edge states). The edge states are formed in the
bulk energy gap where the Fermi level position is shown,
and have the opposite spin polarization coupled to their
group velocity for left-moving electrons (band 2) and
right-moving electrons (band 1). (b) The edge-state
energy dependence on the inverse localization length
parameter A taken for k, = 0.05A~". For a given po-
sition of the Fermi level in the bulk gap, there are two
roots +A4 » for each edge of the strip yielding two edge
wavefunctions belonging to the corresponding branches
of the energy spectrum. The inset shows the side view
of the edge state spectrum as a function of both &, and
A, demonstrating the 3D structure of two branches 1
and 2 of spin split states intersecting along the line
k. = 0. (c) Edge states localized on the opposite bor-
ders of the strip for the edge-state energy equal to the
Fermi level inside the bulk gap, Er = 1.5 €V, and for
the strip width L = 10 nm. The edge states are well lo-
calized at the corresponding edge of the strip. For each
edge, there are two states propagating to the positive
and negative directions of the = axis and having oppo-
site spin polarizations Sy
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tion along the strip. The spin-up states move to the
right with the group velocity

v, = h '0c/0k, > 0,

while the spin-down states move to the left (v, < 0),
shown in the same gray-scale level with the correspond-
ing branches of the edge spectrum.

An important feature of the edge state spectrum is
the presence of two roots Aj, for each energy value
for a given k,; the equation E(k,,A) = Ep has two
pairs of solutions +A; » for the left and right edge of
the strip, as is shown in Fig. 2b for the dependence of
the energy on A at k, = 0.05 A~'. Such a structure of
energy eigenvalues is a direct consequence of the rela-
tive proximity of two branches of the Rashba spectrum
present in the basis for the Hamiltonian, which can be
also seen for the bulk spectrum in Fig. 1b. This fea-
ture allows constructing the edge states satisfying the
boundary conditions for a band of energies located in
the bulk energy gap, as is done in various models of
edge states in TTs [8,9, 35, 36].

The specific boundary conditions are applied to the
general form of the edge state in Eq. (8). The two wave-
functions for a given energy E = E(k,, A1 2) satisfying
the boundary condition ¥ (z,y = L/2) = 0 on the left
edge of the strip y = L/2 (in the forward direction of
the z axis) and decaying into the strip have form (8)
and can be constructed explicitly by the following su-
perposition of states (6):

D (2,y) = Froa, ()

x {exp(Aly) — exp [(A1 - AQ)g + Azy] } . (9)

U (0,y) = Fruns (@) x
L
X {exp(Agy) — exp |:(A2 — A1)§ + Aly] } ,  (10)
where the normalization condition is implied in

Fy, a(z). Accordingly, the localized wavefunctions for
the right edge y = —L/2 can be written as

U (2,y) = Fr,a, (2) X

X {exp(—Aly) —exp [(A1 - Az)g — Aw] } (1)

V2 (2,y) = Fr, a, () x

x {exp(—Agy) —exp [(A2 - Al)g - Aly] } . (12)

All the edge states in (9), (10) and (11), (12) have
different spinor parts Fj,, +a, , due to the different value
of parameter £A », and in general may describe differ-
ent spin polarization. We note that their spin proper-
ties are described by the mean value of spin calculated
for the edge state that is not itself labeled by the spin
quantum number, which is typical in the systems with
SOC where the spin operator does not commute with
the Hamiltonian. Still, because the direction of propa-
gation of 1D edge states is strongly coupled to the sign
of the mean spin polarization and the edge subband
index, we can link these two properties together and
describe the edge states as having a definite mean spin
value.

An example of edge wavefunctions is shown in
Fig. 2¢ for the energy of the edge state equal to the
Fermi level inside the bulk gap, £ = Er = 1.5 eV, and
for the strip width L = 10 nm. We can see that the
edge states are well localized at the corresponding edge
of the strip on the length of about 1 nm, which may lead
to the formation of topologically protected edge modes
if the corresponding bulk topological invariant is non-
trivial, as is discussed in the next section. The arrows
indicate the direction of propagation and the spin S,
of each state in pair (9), (10) and (11), (12). The direc-
tion of the propagation of two chiral states on one edge
y = —L/2in our model is the same as on the other edge
y = L/2, which can be explained by the strong Rashba
SOC in our system, leading, among other things, to the
dominant polarization S, of the states moving in the
x direction. Here, the noncompensated total spin S,
can be accumulated if the population of right-moving
and left-moving electrons is unbalanced, for example,
by an external electric field E || Oz, as is the case in
various models with current-induced spin polarization
both in conventional materials with strong SOC and in
TIs [72], which can also be expected for the edge states
shown in Fig. 2e¢.

The form of spin polarization shown in Figs. 2a and
2¢ creates a positive expectation about their topolog-
ical stability for charge transport against the scatter-
ing on nonmagnetic impurities that do not violate the
time-reversal symmetry, if supported by the analysis of
the topological properties of bulk states indicating the
presence of a nontrivial topological invariant. If we con-
sider backscattering, then it is clear from Fig. 2¢ that
the change of the propagation direction would lead to
spin flip, and this cancels the reflected waves and extin-
guishes the backscattering [1, 2]. This is consistent with
the arguments of the topological stability of such edge
states as the participants of charge transport, which
is the required property of a system to become a TI.
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Fig. 3

We see in Sec. 3 below that our assumption about the
2D electron gas on the Bi/Si interface as a possible T1
is supported further by the analysis of the topological
properties of 2D bulk states.

3. TOPOLOGICAL PROPERTIES OF BULK
STATES

It is known from the general theory that the stabi-
lity of edge states is guaranteed by certain topological
properties of bulk states. In particular, the system can
be a TTif an integer called the Z» invariant is different
from zero [1,2,6,21]. There are several ways to calcu-
late this invariant, and here we use the method pro-
posed by Kane and Mele [6], which links the Z> index
to the zeros of the Pfaffian for the interband matrix el-
ements of the time-reversal operator between the occu-
pied bands, which has the form © =i, K for spin-1/2
particles, where K is the complex conjugation opera-
tor. If we have only two lowest bands occupied, which
is the case of the 2D electron gas in Bi/Si 2DEG, then
the Pfaffian P »(k) is equal to the single off-diagonal
matrix element between the Bloch functions uq (k) in
the occupied bands 1 and 2,

P (k) = (u1 (K)[O]uz(k)). (13)

The topological considerations provide a convenient
form of using definition (13) for the finding new mate-
rials demonstrating TT properties. If, for a hexagonal
BZ, the k-dependent function P(k) has pairs of zeros
in the corners of the BZ (or, depending on the overall
symmetry, on the lines inside the BZ), then the system
demonstrates the properties of a TI [6,11,21]. There
is an extensive discussion of the Z, invariant proper-
ties related to TIs including another definition of this
invariant, where the matrix elements of the TR, opera-
tor © are calculated between the states with opposite
wavevectors k and —k and the TT is determined by its
properties not in the entire BZ but at a discrete set of
“time reversal invariant points” like the I or M points.
The detailed discussion and all relevant mathematical
connections between different approaches to the calcu-
lation of the Zs invariant can be found in the litera-
ture [1,2,21, 23,30, 73-75].

Fig.3. The absolute value of Pfaffian (13) in the
hexagonal BZ for the 2D electron gas on the Bi/Si
interface for different values of bulk band parameters:
(a) Vo =03 eV, ar =1.1eV-A; (b) Vo =0.6 eV,
ar=1.1¢eV-A;and (¢) Vo = 0.3 &V, ar = 0.6 eV-A.
The Pfaffian has three pairs of zeros at the corners of
the BZ, where the visible zeros are shown as black cir-
cles while at TR-invariant T" and M points shown as
shaded and gray circles, the value is |P 2| = 1. These
properties indicate that the Z» invariant is odd, and
the topological insulator phase is present for all three
sets of material parameters

10%*
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In Fig. 3a, we plot the absolute value of Pfaffian
(13) in the hexagonal BZ for the 2D electron gas on
the Bi/Si interface for the same basic set of model
parameters as were used for calculations of the bulk
spectrum in Fig. 1b. To see the possible changes in
the Z5 index with the variation of the system pa-
rameters, we plot |Pj | for two other sets of parame-
ters: in Fig. 3b, the amplitude of the periodic poten-
tial is increased compared to the basic case shown in
Fig. 16, Vj = 0.6 eV, and the Rashba SOC ampli-
tude is the same, ap = 1.1 eV - A; in Fig. 3¢, the
periodic potential amplitude is the same as in Fig. 3a,
Vo = 0.3 eV, but the Rashba coupling amplitude is de-
creased, ag = 0.66V - A. Tt is clearly seen for all cases
that the Pfaffian has zeros in the corners of the BZ,
where the visible zeros are shown as black circles whose
border is shown schematically, while |P; »| = 1 at the
TR-invariant I' and M points, respectively shown as
shaded and dark gray circles. There are three pairs of
zeros for | Py 2|, which indicates that the Z» invariant is
odd, thus classifying the 2D electron gas on the Bi/Si
interface as a TT with protected edge states [1,2, 6, 21].
The presentation of the structure of the Pfaffian in
Fig. 3 in the whole BZ is useful in determining the areas
where the states of different bands belong to the “even”
or “odd” subspace relative to the action of the time re-
versal operator @, in accordance with the classification
proposed by Kane and Mele [6]. In our case shown
in Fig. 3, we see that the major part of the BZ cor-
responds to the states belonging to the even subspace
with |P(k)| = 1; however, in approaching the borders
of the BZ, the value of |P(k)| is modified significantly,
and in the corners we obtain the odd subspace where
|P(k)| = 0, and therefore the TI property is present.

We can also see in Fig. 3 that the variations of mate-
rial parameters do not significantly change the topolog-
ical properties of the Pfaffians, which all have the same
qualitative features with | Py 2| = 1 at the time-reversal-
invariant I' and M points and with three pairs of zeros
for | Py 5| in the corners of the BZ. The depth of the
parameter variation present in three parts of Fig. 3 is
rather big and reaches 50 %, which covers a wide range
of possible experimental and technological fabrication
of the 2D electron gas on the Bi/Si interface. Still, the
absolute values of the Pfaffians shown in Fig. 3 look
very similar to each other, indicating their qualitative
topological nature, which is the key for discovering new
examples of TIs. The method of mutual analysis of chi-
ral edge states and topological bulk properties used in
our calculations can be applied to other materials and
structures.
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4. CONCLUSIONS

We have derived a model for the one-dimensional
edge states for the electrons on the bismuth on sili-
con interface in a finite strip geometry. Based on the
bulk nearly free-electron model, their energy disper-
sion was obtained inside the bulk gap, to be linear in
the quasimomentum. The spin polarization of edge
states is related to the direction of propagation along
the given edge, which provides topological stability of
these chiral modes. The topological stability of edge
states was confirmed by the structure of the interband
matrix element for the time reversal operator, which
was shown to be stable against large variations of the
material parameters. The results in this paper may be
of interest both for the development of the topological
insulator theory by providing a novel example of the
material belonging to this class, and for the develop-
ment of new spintronics and nanoelectronics devices
with stable transport and operating at room tempera-
ture.
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