ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ ВЛИЯНИЯ ДЕФЕКТОВ СТРУКТУРЫ НА ЭФФЕКТЫ СТАРЕНИЯ И НАРУШЕНИЯ ФЛУКТУАЦИОННО-ДИССИПАТИВНОЙ ТЕОРЕМЫ ДЛЯ НЕРАВНОВЕСНОГО КРИТИЧЕСКОГО ПОВЕДЕНИЯ В ТРЕХМЕРНОЙ МОДЕЛИ ИЗИНГА

В. В. Прудников^{*}, П. В. Прудников^{**} Е. А. Поспелов

Омский государственный университет им. Ф. М. Достоевского 644077, Омск, Россия

Поступила в редакцию 15 июня 2013 г.

Численно исследованы методом Монте-Карло особенности неравновесного критического поведения трехмерной структурно-неупорядоченной модели Изинга. На основе анализа двухвременной зависимости автокорреляционных функций и динамической восприимчивости для систем со спиновыми концентрациями p = 0.8, 0.6 были выявлены эффекты старения, характеризующиеся замедлением релаксации системы с ростом времени ожидания, и нарушение флуктуационно-диссипативной теоремы. Для рассматриваемых систем методом Монте-Карло получены значения универсального предельного флуктуационнодиссипативного отношения. Показано, что присутствие дефектов структуры приводит к усилению эффектов старения и увеличению значений предельного флуктуационно-диссипативного отношения.

DOI: 10.7868/S0044451014030082

1. ВВЕДЕНИЕ

В последние годы исследование систем, характеризующихся медленной динамикой, вызывает значительный интерес как с теоретической, так и с экспериментальной точки зрения [1-4]. Это обусловлено предсказываемыми и наблюдаемыми при медленной эволюции систем из неравновесного начального состояния свойствами старения, характеризуемыми нарушениями флуктуационно-диссипативной теоремы. Хорошо известными примерами подобных систем с медленной динамикой и эффектами старения являются такие комплексные неупорядоченные системы, как спиновые стекла [5-7]. В то же время данные особенности неравновесного поведения, как показали различные аналитические и численные исследования [8-10], могут наблюдаться и в ферромагнитных системах в окрестности точки фазового перехода второго рода, так как их критическая динамика характеризуется аномально большими временами релаксации. Отметим, что введенное ранее для спиновых стекол флуктуационно-диссипативное отношение, связывающее двухвременную спиновую функцию отклика и двухвременную корреляционную функцию и обобщающее флуктуационно-диссипативную теорему на случай неравновесного поведения, становится новой универсальной характеристикой для критического поведения различных систем [8].

В работе решается задача численного исследования методами Монте-Карло особенностей влияния вмороженных точечных дефектов структуры на характеристики неравновесного критического поведения трехмерных спиновых систем, описываемых моделью Изинга. Следует отметить, что к классу универсальности критического поведения трехмерной модели Изинга принадлежат реальные анизотропные магнитные системы с анизотропией типа «легкая ось» [11]. Изучение релаксационной динамики ферромагнитных систем, с одной стороны, проводить значительно легче, чем излучение таких сложных неупорядоченных систем с эффектами фрустрации, как спиновые стекла, а с другой стороны, эти системы на неравновесном этапе критической эво-

^{*}E-mail: prudnikv@univer.omsk.su

^{**}E-mail: prudnikp@univer.omsk.su

люции демонстрируют аналогичные спиновым стеклам эффекты старения и отклонение предельной величины флуктуационно-диссипативного отношения (ФДО) от единицы, как показателя неравновесности системы.

Ренормгрупповые [12, 13], численные [14–17] и экспериментальные [18] методы исследования критической динамики структурно-неупорядоченных систем позволили к настоящему времени однозначно установить, что присутствие в системах как некоррелированных дефектов структуры, так и дефектов с эффектами дальнодействующей корреляции, приводит к новым типам критического поведения и к заметному усилению эффектов критического замедления по сравнению с «чистыми» системами. В связи с этим особенности неравновесного поведения, такие как эффекты старения, несомненно должны найти более яркое проявление в структурно-неупорядоченных системах с новыми универсальными значениями флуктуационно-диссипативного отношения.

Ренормгрупповые расчеты ФДО, проведенные в работах [19, 20] в рамках метода ε -разложения для диссипативной модели с несохраняющимся параметром порядка в низших порядках теории, показали, что сложности выделения флуктуационных поправок в двухвременных зависимостях для корреляционной функции и функции отклика не позволяют пока с достаточной убедительностью выявить характер влияния дефектов на относительное соответствие значений предельного ФДО для структурно-неупорядоченной и «чистой» модели Изинга. В работе [21] были проведены исследования эффектов старения в неупорядоченной модели Изинга, сочетающие ренормгрупповой расчет в рамках метода ε-разложения двухвременной зависимости для автокорреляционной функции и функции отклика, уточнившие для них результаты работы [20] при сохранении полученного в работе [20] значения предельного ФДО, и расчеты методом Монте-Карло поведения автокорреляционной функции для различных спиновых концентраций в трехмерной модели Изинга. Однако в работе [21] не были проведены исследования Монте-Карло ни для функции отклика, ни для флуктуационно-диссипативного отношения.

Стоит отметить, что аналитические ренормгрупповые методы исследования критического поведения примесных систем применимы лишь для слаборазбавленных магнетиков при концентрациях дефектов $(1 - p) \ll 1$, где величина *p* задает спиновую концентрацию. При увеличении разбавления системы немагнитными атомами примеси при спиновых концентрациях $p_c^{(s)} ,$ где $p_c^{(s)}$ и $p_c^{(imp)}$ — соответственно пороги спиновой и примесной перколяции (для кубических решеток с взаимодействием ближайших соседей $p_c^{(s)} \approx 0.31$, $p_{c}^{(imp)} \approx 0.69$), примеси образуют связывающий кластер, который для $T \leq T_c$ сосуществует со спиновым связывающим кластером вплоть до $p_c^{(s)}$, образуя фрактороподобную структуру с эффективной дальнодействующей пространственной корреляцией в распределении примесей [22]. Изменение эффектов рассеяния флуктуаций параметра порядка на атомах примеси должно сопровождаться появлением новых неподвижных точек для вершин взаимодействия флуктуаций параметра порядка и, следовательно, как впервые было предсказано в работе [23], область $p_c^{(s)} характеризуется новым$ типом критического поведения трехмерной модели Изинга, соответствующим области сильной структурной неупорядоченности.

Такие универсальные характеристики критического поведения, как критические индексы, полученные для структурно-неупорядоченной модели Изинга с применением ренормгруппового теоретико-полевого описания при фиксированной размерности системы d = 3 и различных методов суммирования рядов теории, характеризуются значениями $\nu = 0.678(10), \beta = 0.349(5), \gamma = 1.330(17),$ $\omega = 0.25(10)$ [24], z = 2.179(1) [25], $\theta' = 0.120$ [15] (для статических и динамических показателей приведены значения, полученные с лучшей доступной на данный момент точностью) и достаточно хорошо согласуются с результатами экспериментального исследования изингоподобных магнетиков $\mathrm{Fe}_p\mathrm{Zn}_{1-p}\mathrm{F}_2$ при спиновой концентрации p = 0.9: $\nu = 0.70(2)$, $\gamma = 1.34(6)$ [26], $\beta = 0.350(9), z = 2.18(10)$ [18, 27]. Экспериментальные исследования сильнонеупорядоченных магнетиков дали значения $\nu = 0.73(3), \gamma =$ = 1.44(6) [28] для $\mathrm{Fe}_p \mathrm{Zn}_{1-p} \mathrm{F}_2$ при $p = 0.6, \nu =$ $= 0.75(5), \gamma = 1.57(16)$ [29] для $Mn_pZn_{1-p}F_2$ при p = 0.5.

Результаты численных исследований Монте-Карло критического поведения структурно-неупорядоченной трехмерной модели Изинга достаточно противоречивы: результаты одних исследователей направлены на защиту концепции независимости значений критических индексов от концентрации дефектов вплоть до порога перколяции с $\nu = 0.684(5), \beta = 0.355(3), \gamma = 1.342(10)$ [30], z = 2.62(7) [31], z = 2.35(2) [32], $\theta' = 0.10(2)$ [33], получаемых при некоторой процедуре подгонки промежуточных значений индексов и амплитуд в

скейлинговой зависимости вычисляемых термодинамических характеристик для различных спиновых концентраций с использованием подбираемого индекса поправки к скейлингу $\omega = 0.370(63)$ [30], $\omega = 0.50(13)$ [31], $\omega_2 = 0.82(8)$ [32]; результаты других исследователей указывают на существование двух универсальных классов критического поведения для слабонеупорядоченных систем с $\nu = 0.68(2), \ \beta = 0.34(2) \ [34], \ z = 2.38(1) \ [35],$ $\nu = 0.682(3), \ \beta = 0.344(3)$ [36], $\nu = 0.683(4),$ $\beta = 0.310(3), \gamma = 1.299(3)$ [37], $\nu = 0.696(3),$ $\gamma = 1.345(4), \ \omega = 0.23(13)$ [14], z = 2.20(7) [23], $z = 2.191(21), \omega = 0.256(55), \theta' = 0.127(16)$ [15] и сильнонеупорядоченных систем с $\nu = 0.72(2)$, $\beta = 0.33(2), \gamma = 1.51(3)$ [34], z = 2.53(3) [35], $\nu = 0.717(7), \ \beta = 0.313(12) \ [36], \ \nu = 0.725(6),$ $\beta = 0.349(4), \gamma = 1.446(4)$ [37], $\nu = 0.725(4), \gamma =$ $= 1.415(11), \omega = 0.28(15)$ [14], z = 2.58(9) [23], $z = 2.663(30), \omega = 0.286(10), \theta' = 0.167(18)$ [42, 43].

Проведенные в данной работе численные исследования методом Монте-Карло всех двухвременных характеристик неравновесного критического поведения для «чистой» и структурно-неупорядоченной трехмерной моделей Изинга, непертурбативные по своей основе, позволят более однозначно ответить на вопрос об относительном соответствии значений предельного ФДО для структурно-неупорядоченной и «чистой» моделей Изинга и выделить влияние дефектов структуры на эффекты старения и значения ФДО в неравновесном критическом поведении трехмерной модели Изинга со спиновыми концентрациями как в области слабой, так и в области сильной ее неупорядоченности.

2. ОСНОВНЫЕ ПОНЯТИЯ И МОДЕЛЬНЫЕ ПРЕДСТАВЛЕНИЯ

Эффекты старения, проявляющиеся на неравновесном этапе релаксации системы с медленной динамикой, характеризуются существованием двухвременных зависимостей для корреляционной функции и функции отклика от времени ожидания t_w и времени наблюдения $t - t_w$. Для спиновой системы корреляционная функция определяется выражением $(t > t_w)$

$$C(t, t_w) = \frac{1}{V} \int d^d x \left[\langle S(x, t) S(0, t_w) \rangle - \langle S(x, t) \rangle \langle S(0, t_w) \rangle \right], \quad (1)$$

а функция отклика на малое внешнее магнитное поле *h*, приложенное к системе в момент времени t_w , формулой

ЖЭТФ, том **145**, вып. 3, 2014

$$R(t, t_w) = \frac{1}{V} \int d^d x \left. \frac{\delta \langle S(x, t) \rangle}{\delta h(x, t_w)} \right|_{h=0}.$$
 (2)

Время ожидания определяется временем, прошедшим с момента приготовления образца до начала измерения его характеристик. В течение $(t-t_w) \ll t_{rel}$, где t_{rel} — время релаксации системы, во временном поведении системы проявляется влияние начальных состояний системы и эффектов старения, характеризующихся как нарушением трансляционной симметрии системы во времени, так и замедлением релаксационных и корреляционных процессов с увеличением «возраста» образца t_w .

Еще одним проявлением медленной динамики является нарушение флуктуационно-диссипативной теоремы (ФДТ) [8–10,38], которая связывает функцию отклика системы и корреляционную функцию соотношением

$$R(t, t_w) = \frac{X(t, t_w)}{T} \frac{\partial C(t, t_w)}{\partial t_w},$$
(3)

где $X(t,t_w) - флуктуационно-диссипативное отно$ шение (ФДО). ФДТ утверждает, что в равновесном $состоянии <math>X(t > t_w \gg t_{rel}) = 1$. Предельное значение

$$X^{\infty} = \lim_{t_w \to \infty} \lim_{t \to \infty} X(t, t_w) \tag{4}$$

используется в качестве универсальной характеристики неравновесного поведения систем с медленной динамикой.

Корреляционная функция и функция отклика в неравновесном критическом состоянии системы характеризуются следующими скейлинговыми зависимостями [39]:

$$C(t, t_w) \propto (t - t_w)^{a + 1 - d/z} (t/t_w)^{\theta - 1} f_C(t/t_w),$$

$$R(t, t_w) \propto (t - t_w)^{a - d/z} (t/t_w)^{\theta} f_R(t/t_w)$$
(5)

с конечными функциями $f_C(t/t_w)$ и $f_R(t/t_w)$ при $t_w \rightarrow 0$. Показатели a и θ связаны с критическими индексами рассматриваемой системы. Так, a = $= (2 - \eta - z)/z$, $\theta = \theta' - z^{-1}(2 - z - \eta)$, где z — динамический критический индекс, определяющий температурную зависимость времени релаксации $\tau_{rel} \propto |T - T_c|^{-z\nu}$ с критическим индексом корреляционной длины ν ; η — критический индекс пространственной корреляции (индекс Фишера); θ и θ' — динамические критические индексы, характеризующие соответственно неравновесную критическую эволюцию функции отклика $R(t, t_w)$ и намагниченности M(t). Линейная функция отклика (2) не может быть непосредственно измерена экспериментально или получена методами компьютерного моделирования. Более удобной величиной является интегральная характеристика — динамическая восприимчивость

$$\chi(t,t_w) = \int_{t_w}^t dt' R(t,t').$$
(6)

Методами Монте-Карло восприимчивость $\chi(t, t_w)$ для трехмерной системы может быть рассчитана на основе следующего соотношения:

$$\chi(t, t_w) = \frac{1}{L^3 h^2} \sum_i \overline{\langle h_i(t_w) S_i(t) \rangle}, \qquad (7)$$

где h_i — малое случайное бимодальное магнитное поле, черта сверху обозначает процедуру усреднения по различным реализациям магнитного поля.

В данной работе проведены исследования эффектов старения в неравновесном критическом поведении трехмерной неупорядоченной модели Изинга. Гамильтониан модели задается выражением

$$H = -J \sum_{\langle i,j \rangle} p_i p_j S_i S_j, \tag{8}$$

где суммирование проводится по ближайшим соседям, $S_i = \pm 1$, p_i — числа заполнения, характеризующие наличие структурного некоррелированного беспорядка в системе: $p_i = 1$ для узла *i* со спином и $p_i = 0$ для узла с немагнитным атомом примеси. Дефекты структуры распределялись в системе каноническим образом в соответствии с функцией распределения $P(p_i) = (1 - p)\delta(p_i) + p\delta(1 - p_i)$.

Осуществлялось вычисление автокорреляционной функции $C(t, t_w)$,

$$C(t, t_w) = \left[\left\langle \frac{1}{pL^3} \sum_{i=1}^{pL^3} p_i S_i(t) S_i(t_w) \right\rangle \right], \qquad (9)$$

и магнитной восприимчивости $\chi(t, t_w)$,

$$\chi(t,t_w) = \left[\left(\frac{1}{h^2 p L^3} \sum_{i=1}^{p L^3} p_i h_i(t_w) S_i(t) \right) \right], \quad (10)$$

где p задает концентрацию спинов в кубической решетке с линейным размером L, угловые скобки означают статистическое усреднение по реализациям начального состояния, квадратные — усреднение по различным конфигурациям распределения дефектов в решетке. Для вычисления динамической восприимчивости $\chi(t, t_w)$ в момент времени t_w к гамильтониану добавлялось возмущение $\delta H = -\sum_i h_i S_i$, где случайное магнитное поле задавалось бимодальным распределением $\pm h$ на узлах кристаллической решетки [9].

Динамика системы моделировалась с помощью алгоритма Метрополиса. Данный алгоритм односпинового переворота хорошо зарекомендовал себя при исследовании неравновесного критического поведения [9, 12, 15, 17] и соответствует релаксационной динамической модели A в классификации Гальперина – Хоэнберга [40]. Это позволяет сравнивать результаты компьютерного моделирования с ренормгрупповыми теоретико-полевыми расчетами характеристик неравновесного критического поведения для слабонеупорядоченных систем. В качестве единицы времени в работе используется шаг Монте-Карло на спин (MCS/s), под которым понимается $N = pL^3$ переворотов спинов в единицу времени.

3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ И ИХ АНАЛИЗ

Моделирование системы проводилось на решетке спинов с линейным размером L = 128 с наложенными периодическими граничными условиями при спиновых концентрациях p = 0.8, 0.6 и соответствующих критических температурах $T_c = 3.4995(2)$, 2.4241(1) [14, 15]. Формировалось высокотемпературное при $T \gg T_c$ начальное состояние системы с малым значением намагниченности $M_0 \ll 1$ $(M_0 = 0.01$ для p = 0.8 и $M_0 = 0.005$ для p = 0.6), которое для исследуемого критического режима при $T = T_c$ являлось существенно неравновесным. Поведение системы исследовалось на временах до 10000 шагов Монте-Карло на спин для времен ожидания $t_w = 50, 250, 500, 1000 \text{ MCS/s}$. Значение поля h задавалось равным 0.01. Итоговые зависимости были получены путем усреднения по 1000 примесных конфигураций, для каждой из которых усреднение проводилось по 20 реализациям начального состояния и 10 реализациям случайного магнитного поля.

На рис. 1 в двойном логарифмическом масштабе представлены графики вычисленной временной эволюции автокорреляционной функции для систем с p = 0.8, 0.6 для различных времен ожидания. Из графиков наглядно видно, что в двухвременном поведении автокорреляционной функции можно выделить несколько режимов. Так, для $t - t_w \ll t_w$ в ее поведении отсутствует зависимость от времени ожи

6 ЖЭТФ, вып. 3

Рис. 1. Зависимость автокорреляционной функции C от $(t-t_w)$ в двойном логарифмическом масштабе для разной концентрации спинов p. Данные приведены для различных времен ожидания t_w : 1-50; 2-250; 3-500; 4-1000

дания и $C(t, t_w) = C(t - t_w)$, т.е. реализуется квазиравновесный режим, характеризуемый степенной зависимостью $C(t - t_w) \propto (t - t_w)^{-(d-2+\eta)/z}$, где d — размерность системы.

На временах наблюдения $t - t_w$ и ожидания t_w достаточно больших, но сравнимых друг с другом $(t - t_w \sim t_w \gg 1)$, во временной зависимости $C(t, t_w)$ проявляется существенная зависимость от времени ожидания t_w , характеризующая эффекты старения, т. е. замедление спадания временной корреляции в системе с увеличением ее «возраста» t_w . Аппроксимируя на этом этапе при $T = T_c$ поведение автокорреляционной функции степенной зависимостью $C(t, t_w) \propto (t - t_w)^{-\lambda}$, мы определили значения показателя λ для различных значений t_w . Приведенные в табл. 1 значения λ указывают на замедление эволюции системы с ростом t_w , при этом увеличение концентрации дефектов приводит к усилению эффектов старения.

Таблица 1. Значения критического показателя λ для систем со спиновой концентрацией p=0.8, 0.6

t_w	λ		
	p = 0.8,	p = 0.6,	
	$t - t_w = (160 - 1600)$	$t - t_w = (300 - 1200)$	
50	0.938(34)	0.746(32)	
250	0.739(40)	0.604(45)	
500	0.644(25)	0.531(40)	
1000	0.569(30)	0.467(36)	

Для этапа с $t - t_w \sim t_w \gg 1$ двухвременные динамические функции можно охарактеризовать следующими зависимостями [41]:

$$\frac{C(t, t_w) \propto t_w^{-(d-2+\eta)/z} F_c(t/t_w),}{R(t, t_w) \propto t_w^{-1-(d-2+\eta)/z} F_R(t/t_w).}$$
(11)

Поведение скейлинговых функций $F_c(t/t_w)$ и $F_R(t/t_w)$ хорошо известно для этапа существенно неравновесной эволюции системы с $t \gg t_w \gg 1$:

$$F_c(t/t_w) \approx A_C(t/t_w)^{-c_a},$$

$$F_R(t/t_w) \approx A_R(t/t_w)^{-c_r}$$
(12)

с показателем $c_a = c_r = d/z - \theta'$. Здесь критический индекс θ' характеризует рост намагниченности $M(t) \propto t^{\theta'}$ при неравновесной критической эволюции системы из начального состояния с $M_0 \ll 1$ (см. вставки на рис. 1).

Для подтверждения скейлинговой зависимости автокорреляционной функции (11) было осуществлено построение зависимости $t_w^{(1+\eta)/z}C(t,t_w)$ от t/t_w . Результат приведен на рис. 2, который демонстрирует «коллапс» полученных данных для различных t_w на соответствующих p = 0.8и p = 0.6 универсальных кривых, отвечающих скейлинговой функции $F_c(t/t_w)$ в (11). Для анализа были использованы значения критических индексов z = 2.191(21) и $1 + \eta = 2\beta/\nu = 1.016(32)$ в случае слабонеупорядоченной системы с p = 0.8 [15] и значения z = 2.663(30) и $1 + \eta = 0.924(80)$ для сильнонеупорядоченной системы с p = 0.6 [42, 43].

На основе анализа полученных данных для зависимости $t_w^{(1+\eta)/z}C(t,t_w)$ от t/t_w были вычислены значения показателя c_a для скейлинговой функции (12): $c_a(p = 0.8) = 1.237(22)$ и $c_a(p = 0.6) =$

Рис.2. Демонстрация реализации скейлинговой зависимости для автокорреляционной функции (11) при различных временах ожидания t_w для разных спиновых концентраций p

= 0.982(30). Значение показателя c_a для слабонеупорядоченной системы с p = 0.8 хорошо согласуется в пределах погрешности с вычисленным в работе [15] значением $c_a = 1.242(10)$ при применении метода коротко-временной динамики с учетом ведущих поправок к скейлингу и слабо согласуется со значением $c_a = 1.05(3)$, полученным в работе [21] при исследовании неравновесной критической динамики в неупорядоченной модели Изинга. Причины этого несоответствия детально обсуждались нами в работе [15].

Скейлинговое поведение в режиме $t - t_w \gg t_w \gg 1$ динамических функций $C(t, t_w)$ и $R(t, t_w)$, определяемое соотношением (11), приводит к функциональной зависимости флуктуационно-диссипативного отношения $X(t, t_w)$ только от (t/t_w) [44]

Рис. 3. Зависимость обобщенной восприимчивости χ от $(t - t_w)/t_w$ в двойном логарифмическом масштабе для разной концентрации спинов p и для различных времен ожидания t_w

$$X(t, t_w) = \frac{TR(t/t_w)}{(\partial/\partial t_w)C(t/t_w)} \propto \frac{F_R(t/t_w)}{(2\beta/\nu z) F_c(t/t_w) + (t/t_w) F_c'(t/t_w)}.$$
 (13)

Данное поведение $X(t, t_w)$ подтверждается ренормгрупповыми расчетами [19].

Данное представление позволило для получения значения предельного ФДО в работе [44] применить линейную аппроксимацию по $t_w/t \to 0$ к набору полученных данных для ряда двумерных спиновых систем (модель Изинга, модель Поттса с числом состояний q = 4, модель «Clock» с числом состояний q = 3) ввиду их слабой зависимости от t_w . В случае трехмерной модели Изинга полученные нами данные демонстрируют заметную зависимость от t_w , поэтому для получения значения предельного ФДО мы в соответствии с формулой (4) применили процедуру получения сначала $X^{\infty}(t_w) = \lim_{t\to\infty} X(t,t_w)$, а затем искомого предельного ФДО $X^{\infty} = \lim_{t_w\to\infty} X^{\infty}(t_w)$.

Принадлежность к классу универсальности, как «чистой», так и неупорядоченной систем, проявляется в универсальности значений критических индексов и отношений критических амплитуд. Исходя из скейлинговых соотношений (12) и (13), предельное значение флуктуационно-диссипативного отношения принимает вид

$$X^{\infty} = \lim_{t_w \to \infty} \lim_{t \to \infty} X(t, t_w) = \frac{A_R}{A_C} \left[c_a - \frac{2\beta}{\nu z} \right]^{-1} \quad (14)$$

и также становится новой универсальной характеристикой критического поведения.

 6^{*}

Таблица 2. Значения флуктуационно-диссипативного отношения X^{∞} для систем со спиновой концентрацией p = 1.0, 0.8, 0.6

t_w	X^{∞}	t_w	X^{∞}	
	p = 1.0		p = 0.8	p = 0.6
10	0.586(24)	250	0.708(15)	0.726(13)
25	0.460(52)	500	0.544(23)	0.583(14)
50	0.437(63)	1000	0.494(17)	0.519(29)
∞	0.390(12)		0.415(18)	0.443(6)

Значения флуктуационно-диссипативного отношения могут быть получены на основе вычисленных нами временных зависимостей для автокорреляционной функции $C(t, t_w)$ и восприимчивости $\chi(t, t_w)$ (рис. 3), если выразить в соответствии с формулами (3) и (6) величину $T\chi(t, t_w)$ как функцию $C(t, t_w)$:

$$T\chi(t,t_w) = \int_{t_w}^t X(t,t') \frac{\partial C(t,t')}{\partial t'} dt' =$$
$$= \int_{C(t,t_w)}^1 X(C) dC. \quad (15)$$

Для этого зависимость $T\chi(t, t_w)$ от $C(t, t_w)$ представим в виде некоторой кривой (рис. 4), асимптотическая кривизна которой и будет задавать значение $X^{\infty}(t_w)$:

$$X^{\infty}(t_w) = -\lim_{C \to 0} \frac{d(T\chi)}{dC}.$$
 (16)

Получая $X^{\infty}(t_w)$ для различных времен ожидания и затем осуществляя аппроксимацию $X^{\infty}(t_w \to \infty)$, определяем искомое предельное флуктуационно-диссипативное отношение X^{∞} .

На рис. 4 представлены полученные параметрические зависимости $T\chi(t,t_w)$ от $C(t,t_w)$ при $t_w =$ = 1000 MCS/s для спиновых концентраций p == 1.0; 0.8, 0.6. Линией отмечена прямая, соответствующая квазиравновесному поведению системы с выполнением ФДТ и $X(t,t_w) =$ 1. Данные зависимости $T\chi(t,t_w)$ от $C(t,t_w)$ демонстрируют нарушение флуктуационно-диссипативной теоремы для неравновесного критического поведения как для «чистой», так и для неупорядоченной модели Изинга. Указанные зависимости и флуктуационно-диссипативные отношения вычислялись при значениях времени ожидания $t_w = 250, 500,$ 1000 MCS/s для структурно-неупорядоченных систем и $t_w = 10, 25, 50$ MCS/s для «чистой» систе-

стем и $t_w = 10, 25, 50 \text{ MCS/s}$ для «чистой» системы. В табл. 2 приведены значения $X^{\infty}(t_w)$, определенные для различных времен ожидания. Отметим, что значения $X^{\infty}(t_w)$ в согласии с (16) вычисляются в пределе $C(t, t_w) \to 0$, соответствующем этапу с $t \gg t_w \gg 1.$ Поэтому на вставке к рис. 4 выделены те участки зависимостей $T\chi(t,t_w)$ от $C(t,t_w)$, которые соответствуют этим критериям и на которых были определены значения $X^{\infty}(t_w)$. Важным при численных исследованиях неравновесного критического поведения является также то, что для трехмерных решеток даже с такими большими линейными размерами, как L = 128, в «чистых» системах длительность неравновесного этапа эволюции составляет величину в 1000 MCS/s, в то время как для структурно-неупорядоченных систем при L = 128 это уже на порядок большая в 10000 MCS/s характерная величина (подтверждением этого служат вставки на рис. 1). Это позволяет для анализа эффектов старения и значений предельных ФДО в структурно-неупорядоченных системах проводить исследования при значительно больших временах ожидания tw, чем для «чистых» систем, что повышает достоверность получаемых характеристик для критического состояния системы с аномально большими по амплитудам и долгоживущими флуктуациями параметра порядка.

На рис. 5 представлены вычисленная зависимость $X^{\infty}(1/t_w)$ и ее аппроксимация к значению X^{∞} при $t_w \to \infty$. Полученные значения предельного флуктуационно-диссипативного отношения $X^{\infty} = 0.415(18)$ для системы со спиновой концентрацией p = 0.8 и $X^{\infty} = 0.443(6)$ для системы с p = 0.6 указывают на нарушение флуктуационно-диссипативной теоремы в неравновесном критическом поведении структурно-неупорядоченных систем, описываемых трехмерной моделью Изинга, а также на то, что в сильнонеупорядоченных системах с p = 0.6 наличие дефектов приводит к большему значению X^{∞} , чем для слабонеупорядоченных с p = 0.8.

Опираясь на информацию из работы [41] о том, что проведенные авторами численные исследования неравновесного критического поведения для «чистой» трехмерной модели Изинга дали предварительные значения $X^{\infty} \approx 0.4$ (в последующих публикациях авторов отсутствует подтверждение этого результата), а также на реализованные нами исследования данной модели, давшие $X^{\infty} = 0.390(12)$, можно сделать вывод о том, что присутствие дефектов структуры приводит к новому классу уни-

Рис. 4. Графики параметрической зависимости $T\chi(t,t_w)$ от $C(t,t_w)$ при $t_w = 1000$ MCS/s для разных спиновых концентраций p в сравнении с зависимостью при выполнении флуктуационно-диссипативной теоремы

версальности критического поведения для трехмерной модели Изинга, к набору определяющих характеристик которого относятся и значения ФДО с $X_{disorder}^{\infty} > X_{pure}^{\infty}$.

Отметим, что в работе [19] было проведено ренормгрупповое описание неравновесного критического поведения диссипативных систем с несохраняющимся параметром порядка и для них был осуществлен расчет флуктуационно-диссипативного отношения с применением метода ε -разложения во втором порядке теории. Полученное в виде ряда по ε ФДО имело вид

$$\frac{1}{2} (X_{q=0}^{\infty})^{-1} = 1 + \frac{n+2}{4(n+8)} \varepsilon + \varepsilon^2 \frac{n+2}{(n+8)^2} \times \left[\frac{n+2}{8} + \frac{3(3n+14)}{4(n+8)} \right],$$

где n — число компонент параметра порядка. Для трехмерной модели Изинга с $\varepsilon = 1$ и n = 1 при применении метода суммирования аппроксимантов Паде было получено значение $X^{\infty} = 0.429(6)$ (ряд не суммируем по Паде-Борелю или Паде-Борелю-Лерою). В работе [20] в однопетлевом приближении было рассчитано значение X^∞ для слаборазбавленной модели Изинга:

$$\frac{1}{2}(X_{q=0}^{\infty})^{-1} = 1 + \frac{1}{2}\sqrt{\frac{6\varepsilon}{53}},$$

что при $\varepsilon = 1$ приводит к результату $X^{\infty} = 0.416$. Как отмечено авторами, данные результаты вычисления X^{∞} в первом порядке теории для неупорядоченной модели Изинга не позволяют из сопоставления с результатами для однородной модели выделить особенности влияния дефектов на флуктуационно-диссипативное отношение, для этого требуется проведение вычислений в более высоких порядках теории. Тем не менее, отметим, что полученное нами значение предельного ФДО с $X^{\infty} = 0.415(18)$ для слабонеупорядоченной системы со спиновой концентрацией p = 0.8 находится в хорошем соответствии в пределах статистических погрешностей с результатом ренормгруппового описания.

Полученное значение предельного ФДО с X^{∞} = = 0.443(6) для сильнонеупорядоченной системы со спиновой концентрацией p = 0.6 демонстрирует отличие от значений соответствующей величины X^{∞} = 0.415(18) для p = 0.8 и X^{∞} = 0.390(12) для

Рис.5. Получение ФДО путем аппроксимации предельных значений $X^\infty(t_w)$ при $t_w^{-1} \to 0$ для разных p

p = 1.0, превышающее пределы статистических погрешностей и проведенных аппроксимаций. Это позволяет сделать вывод о том, что новая универсальная характеристика неравновесного поведения как предельное ФДО и полученные для нее значения указывают на то, что неравновесное критическое поведение «чистых», слабо- и сильнонеупорядоченных систем, описываемых трехмерной моделью Изинга, принадлежит к различным универсальным классам критического поведения.

Важно отметить, что при подготовке условий и анализе экспериментальных результатов критического поведения различных систем наряду с эффектами критического замедления необходимо учитывать влияние эффектов старения, значительно усиливающих эффекты критического замедления с увеличением «возраста» образца и приводящих к влиянию начальных состояний системы. При этом присутствие дефектов структуры в системе и увеличение их концентрации приводят к существенному усилению эффектов старения.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках проекта 2.3046.2011. Для проведения расчетов были использованы ресурсы суперкомпьютерного комплекса МГУ им. М. В. Ломоносова.

ЛИТЕРАТУРА

1. L. F. Cugliandolo, Slow Relaxation and Nonequilibrium Dynamics in Condensed Matter, Les Houches, Ecole d'Ete de Physique Theorique, ed. by J.-L. Barrat et al., Springer, Berlin, Vol. 77 (2003), p. 371.

- M. Henkel and M. Pleimling, in *Nonequilibrium Phase Transitions*, Springer, Heidelberg, Vol. 2 (2010), p. 544.
- N. Afzal and M. Pleimling, Phys. Rev. E 87, 012114 (2013).
- 4. G. Ehlers, J. Phys: Condens. Matter 18, R231 (2006).
- L. Berthier and J. Kurchan, Nature Phys. 9, 310 (2013).
- E. Vincent, J. Hammann, M. Ocio et al., Lect. Notes Phys. 492, 184 (1997).
- J. P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mezard, in *Spin Glasses and Random Fields* (*Directions in Condensed Matter Physics*), ed. by A. P. Young, World Scientific, Singapore, Vol. 12 (1998), p. 443.
- P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).
- L. Berthier, P. C. W. Holdsworth, and M. Sellitto, J. Phys. A 34, 1805 (2001).
- 10. A. Gambassi, Eur. Phys. J. B 64, 379 (2008).
- 11. W. P. Wolf, Brazilian J. Phys. 30, 794 (2000).
- 12. В. В. Прудников, П. В. Прудников, И. А. Калашников и др., ЖЭТФ 137, 287 (2010).
- **13**. В. В. Прудников, П. В. Прудников, И. А. Калашников и др., ЖЭТФ **133**, 1251 (2008).
- **14**. В. В. Прудников, П. В. Прудников, А. Н. Вакилов и др., ЖЭТФ **132**, 417 (2007).
- V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov et al., Phys. Rev. E 81, 011130 (2010).
- V. V. Prudnikov, P. V. Prudnikov, B. Zheng et al., Progr. Theor. Phys. 117, 973 (2007).
- 17. P. V. Prudnikov and M. A. Medvedeva, Progr. Theor. Phys. 127, 369 (2012).
- 18. N. Rosov, C. Hohenemser, and M. Eibschutz, Phys. Rev. B 46, 3452 (1992).
- 19. P. Calabrese and A. Gambassi, Phys. Rev. E 66, 066101 (2002).
- 20. P. Calabrese and A. Gambassi, Phys. Rev. B 66, 212407 (2002).
- **21**. G. Schehr and R. Paul, Phys. Rev. E **72**, 016105 (2005).

- 22. V. V. Prudnikov, P. V. Prudnikov, and A. A. Fedorenko, Phys. Rev. B 62, 8777 (2000).
- 23. В. В. Прудников, А. Н. Вакилов, Письма в ЖЭТФ
 55, 709 (1992); ЖЭТФ 103, 962 (1993).
- 24. A. Pelissetto and E. Vicari, Phys. Rev. B 62, 6393 (2000).
- 25. А.С. Криницын, В. В. Прудников, П. В. Прудников, ТМФ 147, 137 (2006).
- 26. Z. Slanic, D. P. Belanger, and J. A. Fernandez-Baca, Phys. Rev. Lett. 82, 426 (1999).
- 27. N. Rosov, A. Kleinhammes, P. Lidbjork, C. Hohenemser, and M. Eibschutz, Phys. Rev. B 37, 3265 (1988).
- 28. R. J. Birgeneau, R. A. Cowly, G. Shirane et al., Phys. Rev. B 27, 6747 (1983).
- 29. P. W. Mitchell, R. A. Cowely, H. Yoshizawa et al., Phys. Rev. B 34, 4719 (1986).
- 30. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor et al., Phys. Rev. B 58, 2740 (1998).
- G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo, Phys. Rev. E 60, 5198 (1999).
- 32. M. Hasenbusch, A. Pelissetto, and E. Vicari, J. Stat. Mech.: Theor. Exp. P11009 (2007).
- 33. G. Schehr and R. Paul, J. Phys.: Conf. Ser. 40, 27 (2006).
- 34. H.-O. Heuer, Phys. Rev. B 42, 6476 (1990).

- 35. H.-O. Heuer, J. Phys. A 26, L341 (1993).
- 36. S. Wiseman and E. Domany, Phys. Rev. Lett. 81, 22 (1998); Phys. Rev. E 58, 2938 (1998).
- 37. А. К. Муртазаев, И. К. Камилов, А. Б. Бабаев, ЖЭТФ 126, 1377 (2004).
- P. Calabrese, A. Gambassi, and F. Krzakala, J. Stat. Mech. P06016 (2006).
- 39. H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73, 539 (1989); H. K. Janssen, in: *Topics in Modern Statistical Physics*, ed. by G. Gyorgyi et al., World Scientific, Singapore (1992), p. 600.
- 40. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.
 49, 435 (1977).
- C. Godreche and J. M. Luck, J. Phys. A: Math. Gen. 33, 9141 (2000).
- 42. В. В. Прудников, П. В. Прудников, А. Н. Вакилов, А. С. Криницын, М. В. Рычков, Тр. Семинара по вычислительным технологиям в естественных науках. Вып. 1. Вычислительная физика, под ред. Р. Р. Назирова, Изд-во КДУ, Москва (2009), с. 240.
- 43. В. В. Прудников, П. В. Прудников, А. Н. Вакилов и др., Вестник Омского университета, Вып. 2, 101 (2012); В. В. Прудников, П. В. Прудников, А. Н. Вакилов, *Teopemuчeckue методы описания неравновес*ного критического поведения структурно-неупорядоченных систем, Наука, Москва (2013).
- 44. C. Chatelain, J. Stat. Mech.: Theor. Exp. P06006 (2004).