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GIANT MAGNETORESISTANCEIN THE VARIABLE-RANGE HOPPING REGIMEL. B. Io�e a;b*, B. Z. Spivak 
aLPTHE, Université Pierre et Marie Curie,Paris CEDEX 05, Fran
ebDepartment of Physi
s, Rutgers UniversityNew Jersey, 08854, USA
Department of Physi
s, University of WashingtonSeattle, WA 98195, USARe
eived May 3, 2013Dedi
ated to the memory of Professor Anatoly LarkinWe predi
t the universal power-law dependen
e of the lo
alization length on the magneti
 �eld in the stronglylo
alized regime. This e�e
t is due to the orbital quantum interferen
e. Physi
ally, this dependen
e shows up inan anomalously large negative magnetoresistan
e in the hopping regime. The reason for the universality is thatthe problem of the ele
tron tunneling in a random media belongs to the same universality 
lass as the dire
tedpolymer problem even in the 
ase of wave fun
tions of random sign. We present numeri
al simulations thatprove this 
onje
ture. We dis
uss the existing experiments that show anomalously large magnetoresistan
e. Wealso dis
uss the role of lo
alized spins in real materials and the spin polarizing e�e
t of the magneti
 �eld.DOI: 10.7868/S00444510130901491. INTRODUCTIONIn strongly disordered 
ondu
tors, single ele
tronsstates are lo
alized, and therefore the 
ondu
tivity isdue to phonon-assisted ele
tron tunneling between lo-
alized states. The length of a typi
al hop rhop in-
reases as the temperature is de
reased and be
omesmu
h larger than the distan
e between the lo
alizedstates in the variable-range hopping regime [1; 2℄. Inthis paper, we study the orbital me
hanism of the mag-netoresistan
e in this regime. We show that at su�-
iently low temperatures, it is due to the lo
alizationlength dependen
e on the magneti
 �eld B and that it isgiven by a universal power law. This lo
alization lengthdependen
e on the magneti
 �eld translates into an ex-ponentially large variation of the resistan
e. The signof the orbital magnetoresistan
e depends on the detailsof impurity s
attering, but in the typi
al 
ase, the low-temperature magnetoresistan
e is negative. Similarlyto the metalli
 regime, the origin of the negative mag-*E-mail: io�e�physi
s.rutgers.edu

netoresistan
e is the ele
tron quantum interferen
e, butthe amplitudes that interfere 
orrespond to di�erentpro
esses in these two 
ases. Despite its mu
h largermagnitude, the negative magnetoresistan
e in the hop-ping regime re
eived mu
h less attention, both theoret-i
ally and experimentally, than its 
ounterpart in themetalli
 regime. One of the goals of this paper is todraw the attention of the 
ommunity to this interest-ing phenomenon.We begin with a brief review of the nature of mag-netoresistan
e in metals. The 
onventional theory ofmagnetoresistan
e asso
iates it with the 
lassi
al ef-fe
t of ele
tron motion along 
y
lotron orbits. For atypi
al metal, the magnetoresistan
e is 
ontrolled bythe parameter (!
�tr)2, where !
 is the 
y
lotron fre-quen
y and �tr is the transport mean free time (see,e. g., [3℄). In 
ontrast to these expe
tations, manydisordered metals show negative magnetoresistan
e atsmall magneti
 �elds. The negative magnetoresistan
ein weakly disordered metals has been explained in theframework of the weak lo
alization theory, whi
h takesinto a

ount the quantum interferen
e of probabilityamplitudes for ele
trons to travel along self-interse
ting632
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Fig. 1. Qualitative pi
ture of the interferen
e e�e
tsin disordered metals. Panel a shows interferen
e in theweak lo
alization regime that is due to self-
rossingdi�usive paths. Quantum propagation from A to Bis the sum of two amplitudes that 
ontain 
lo
kwiseand 
ounter
lo
kwise motion along the loop that is apart of the self-interse
ting path. Panel b shows inter-feren
e in the hopping regime in whi
h the ba
kwardmotion of ele
trons gives negligible 
ontribution to thetunneling between sites A and B. In this 
ase, typi
alpaths 
ontributing to the interferen
e are lo
ated in theshaded (light gray) area with the transverse dire
tionthat s
ales with the length of the hop L. The magneti
�eld has a signi�
ant e�e
t if the �ux S� through thearea formed by a typi
al path and a straight line (darkgray) is of the order of one �ux quantumdi�usive paths [4�7℄, su
h as those shown in Fig. 1a.The interfering amplitudes 
orrespond to the 
lo
kwiseand 
ounter
lo
kwise propagation of the ele
tron wavealong the loop formed by a self-interse
ting path. In theabsen
e of the magneti
 �eld, these amplitudes inter-fere 
onstru
tively, in
reasing the probability of returnto the interse
tion point. In the presen
e of the mag-neti
 �eld, these amplitudes a
quire di�erent phases,and the interferen
e is suppressed, leading to the neg-ative magnetoresistan
e. The negative magnetoresis-tan
e magnitude in this regime is relatively small be-
ause it s
ales with the small parameter 1=kF ltr, wherekF is the Fermi momentum and ltr is the transportmean free path.Experimentally, in many materials the magnetore-sistan
e in the hopping regime is signi�
antly largerthan in the metalli
 regime. A positive magnetoresis-tan
e of several orders of magnitude in the hoppingregime has been observed long ago (see, e. g., Ref. [1℄and the referen
es therein). Signi�
ant negative mag-netoresistan
e in the variable-range hopping regime

ranging up to two orders of magnitude has been ob-served in many experimental works [8�18℄. In some ofthese works, a large anisotropy of the negative magne-toresistan
e has been observed in 2D samples, indi
at-ing its orbital nature.Phonon emission and absorption make di�erenthopping events in
oherent, while the ele
tron tunnel-ing between lo
alized states is a quantum me
hani
alpro
ess. The magnetoresistan
e is due to the magneti
�eld dependen
e of the probability of one hop. Quali-tatively, large orbital magnetoresistan
e in the hoppingregime is due the interferen
e of the tunneling ampli-tudes along di�erent tunneling paths 
ontributing to asingle hop that are distributed in a 
igar-shaped regionshown in Fig. 1b. In this regime, the tunneling paths
ontaining loops give exponentially small 
ontributionto the tunneling probability. This is the main di�er-en
e from the weak lo
alization, where the interferen
eis due to the paths that 
ir
le a loop (see Fig. 1a). Inthe variable-range hopping regime, ele
trons hop overdistan
es mu
h larger than the distan
e between lo
al-ized states, and hen
e the 
igar-shaped region 
ontainsmany ele
tron s
atterers. The amplitude �i des
rib-ing the individual s
attering pro
ess at a state i 
anbe positive and negative. The sign distribution of the�i determines the sign of the magnetoresistan
e, as weexplain below in Se
. 2.3.Large positive magnetoresistan
e may be asso
iatedwith a shrinkage of the hydrogen-like lo
alized ele
tronwave fun
tions at the s
ales less than the inter-impuritydistan
e. Quantitatively, this pi
ture works well only ina very high magneti
 �eld and at su�
iently high tem-peratures at whi
h the typi
al ele
tron hopping lengthis shorter than the distan
e between impurities. A the-ory of the positive magnetoresistan
e that takes theele
tron s
attering with positive s
attering amplitudesinto a

ount has been developed in [19�23℄. In this
ase, the tunneling amplitudes interfere 
onstru
tivelyin the absen
e of the �eld, while the phases indu
ed bythe magneti
 �eld destroy this interferen
e.An orbital me
hanism of the negative magnetore-sistan
e may be asso
iated with the randomness of thesigns of the s
attering amplitudes �i, whi
h is due tothe random sign of �� �i [24�29℄. Here, � is the energyof the tunneling ele
tron and �i is the energy of a lo
al-ized state. This sign randomness may lead to randomsigns of the interfering tunneling amplitudes at B = 0.The magneti
 �eld makes tunneling amplitudes 
om-plex, whi
h in
reases the 
ondu
tan
e in this situation.Thus, the sign of the orbital magnetoresistan
e is re-lated to the sign distribution of the lo
alized ele
tronwave fun
tions.633



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013In this paper, we develop a quantitative theory oforbital magnetoresistan
e in the hopping regime anddis
uss the available experimental data in the light ofour results. Be
ause most of experiments have beendone on two-dimensional samples, we fo
us on the two-dimensional hopping regime of ele
trons and the 
orre-sponding experiments.We show that in physi
ally relevant 
ases, even asmall 
on
entration of impurities with �i < 0 leads to
ompletely random signs of the tunneling amplitudesat large s
ales. Therefore, at su�
iently low tempera-tures and small magneti
 �elds, the variable-range hop-ping magnetoresistan
e is negative. At higher magneti
�elds and higher temperatures, it 
an be both positiveand negative.The plan of the paper is as follows. In Se
. 2.1, westart with a brief review of the basis of variable-rangehopping theory and dis
uss a qualitative pi
ture of thevariable-range hopping magnetoresistan
e. In Se
s. 2.2and 2.3, we dis
uss the statisti
s of the modulus and thesign of the lo
alized ele
tron wave fun
tion. In parti
-ular, in Se
. 2.3, we dis
uss the 
onditions for the exis-ten
e of the �sign phase transition�, where as a fun
tionof the 
on
entration of s
atterers with �i < 0, the sys-tem 
hanges from the sign-ordered to sign-disorderedphases. In Se
. 3, we apply the theory developed inSe
. 2 to 
ompute the magnetoresistan
e. Se
tion 4dis
usses appli
ations of the results for the sign phasetransition to other physi
al systems. Finally, Se
. 5gives a short review of the experimental situation.2. ELECTRON TRANSPORT IN THEVARIABLE-RANGE HOPPING REGIME2.1. Review of the variable-range hoppingtheoryIn the lo
alized regime, the ele
tron wave fun
tionsde
ay exponentially with the distan
e jr� rij from theimpurity:  i (r) � exp(�jr � rij=�), where ri is the
enter of a lo
alized wave fun
tion and � is a typi-
al lo
alization radius. In this 
ase, the 
ondu
tivityis determined by phonon-assisted ele
tron hopping be-tween lo
alized states. At low temperatures, the typ-i
al hopping length rhop is determined by the 
ompe-tition between two exponential fa
tors: the hoppingprobabilityWij that de
ays exponentially with the dis-tan
e rij between impurities and the thermal fa
torexp(�Ehop(rij)=T ), where Ehop(rij) is the hopping a
-tivation energy that de
reases with rij . These fa
torsgive the exponential dependen
e of the typi
al hoppingrate at a distan
e rhop: exp(�Ehop(r)=T � 2r=�). This

exponential fa
tor is maximal for the typi
al hoppinglength rhop, whi
h is mu
h larger than the distan
e be-tween lo
alized states, as illustrated in Figs. 1b, 2:rhop � �T0T �� �: (1)As a result, the resistivity a
quires an exponential de-penden
e on temperature [1; 2℄:�(T ) = �0 exp"��T0T ��# : (2)Here, the prefa
tor �0 is determined by the ele
tron�phonon matrix element and � is the lo
alization radius.Generally, the density of lo
alized states 
an beenergy-dependent near the Fermi energy [1℄:�(�) = C�� ; (3)where we 
ount the energy � of a tunneling ele
tronfrom the Fermi energy. In the absen
e of ele
tron�ele
tron intera
tion (Mott's theory), the density ofstates at the Fermi level is 
onstant (� = 0 and C == �0), leading to the a
tivation energy T0 � 13(�0�2)�1and to the exponent � = 1=3 for d = 2 (Mott's law). Inthe 
ase where ele
trons (in two or three dimensions)intera
t via the three-dimensional Coulomb intera
tion(Efros�Shklovskii regime) � = 1, C � (2=�) e4=�2,where � is the diele
tri
 
onstant. This results in � == 1=2 and T0 � e2=�� for 2D ele
trons with the three-dimensional Coulomb intera
tion.The qualitative arguments of the Mott theory 
anbe made more quantitative by 
onsidering the per
olat-ing 
luster of ele
tron hops [1℄. Probability of a singlehop between the states lo
alized around positions riand rj is given byWij = 2�h Z jMij (q) j2Æ (�i � �j � uq) ddq; (4)where Mij � Z ddr i (r� ri) j (r� rj) eiq�r (5)is the phonon matrix element, u is the speed of sound,and q is its wave ve
tor. Be
ause the wave fun
tions i(r � ri) and  j(r � rj) de
rease exponentially, Mijand Wij are exponential fun
tions of the lo
alizationlength � (B).In the main part of this paper, we 
onsider the mag-neti
 �eld range in whi
h the Wij(B) dependen
e isdominated by � (B). In this 
ase, we 
an approximatethe phonon tunneling matrix element by the amplitudeof tunneling between states i and j: Mij � Aij .634



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistan
e in the variable-range hopping regimeIn a uniform medium, the magneti
 �eld suppressesthe amplitude of a single quantum tunneling event:Aij / exp � r2ij2L2B! at rij � L2B� ; (6)whi
h gives positive magnetoresistan
e. Here, LB == (
~=eB)1=2is the magneti
 length. In disordered me-dia, ele
trons s
atter from other lo
alized states thathave energies di�erent from the energy of the �nalstate. The e�e
t of the magneti
 �eld is due to the in-terferen
e of the dire
ted optimal paths, whi
h is showns
hemati
ally in Fig. 1b. In this 
ase, Aif =P�A� isa 
oherent sum of amplitudes A�(B) to tunnel alongpaths � between the initial �i� and �nal �f � sites. Thetunneling paths 
an be de�ned by the sequen
e of statesthat s
atter ele
trons in the 
ourse of tunneling. Atzero magneti
 �eld B = 0, the wave fun
tions of lo
al-ized states and the tunneling amplitudes A�(0) 
an be
hosen to be real [30℄:Aif (0) = 1jrf � rij1=2 exp��jrj � rij� �++X� 1jr� � rij1=2 exp��jr� � rij� ��� (��)1=2jr� � rj j1=2 exp��jr� � rf j� �++X�;� 1jr� � rij1=2 exp��jr� � rij� � ��jr� � r�j1=2 �� exp��jr� � r�j� � ��;jr� � rf j1=2 �� exp��jr� � rf j� �+ : : : = (7)=X� A�(0); (8)�� � b�� � �i : (9)Here, �� is the amplitude of s
attering on �'s lo
alizedstate, �i and �� are energies of the tunneling ele
tronand the lo
alized s
attering state, b � p��0 > 0, and�0 is the 
hara
teristi
 binding energy of the lo
alizedstates. Generally, �� are random quantities, and hen
ethe amplitudes A�(B = 0) = A�(0) have random signs.We note that Eq. (7) des
ribes both the pro
esses inwhi
h an ele
tron is s
attered by empty sites and thepro
esses in whi
h it goes through o

upied sites (seeFig. 2), whi
h 
an be des
ribed as a hole moving ba
k-wards. The important 
ondition for the interferen
e isthat in the �nal state, all intermediate ele
trons shouldreturn to their original positions and spin states.

ε

0
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f

i

Fig. 2. Qualitative pi
ture of the phonon-assisted tun-neling through lo
alized states from the initial statei to the �nal state f . Solid bars indi
ate the ener-gies of the lo
alized states. The energies of the initialand �nal states are 
lose to the Fermi energy �F = 0(indi
ated by the dashed line) while the intermediatelo
alized states are typi
ally farther away from � = 0.The states with negative energies 
an be �lled with oneor two ele
trons. In the former 
ase, they are 
hara
-terized by the spin of the ele
tron shown by verti
al ar-rows. The states with � > 0 are empty. Bla
k and grayarrows indi
ate ele
tron tunneling paths through emptyand �lled lo
alized states. If the path goes through asite that is already o

upied by the ele
tron with thesame spin, the 
oherent pro
ess o

urs by 
reating anele
tron�hole pair (indi
ated by the empty 
ir
le), thenby tunneling the hole 
arrying the opposite spin in theopposite dire
tion, and �nally by anihilating it with theele
tron 
oming from the left. This pro
ess leaves thespin state inta
t. The in
oherent pro
ess in whi
h thehole 
arrying the same spin might also be possible insome physi
al situations (see Se
. 3.3)The hopping probability Wif is a random quantity.Generally, to obtain the value of the resistan
e of thesystem, one has to solve the full per
olation problemwith the probability of individual hops given by Wif[1℄. But as long asln �(B)�(0) 1ln �(0) � 1;the magnetoresistan
e is given by the average of thelogarithm of the hopping probability [1℄:ln �(B)�(0) = ��ln Wif (B)Wif (0) � : (10)Here, the bra
kets denote averaging over random s
at-tering 
on�gurations and over di�erent hoppings thatbelong to a per
olation 
luster. These hoppings are
hara
terized by a typi
al hopping length rhop. With agood a

ura
y, we 
an repla
e the full average (10) withthe average over random s
attering 
on�gurations for635



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013the hopping pro
esses by the distan
e rhop. Physi
ally,the averaging of the logarithm in (10) means that theresistivity is 
ontrolled by the typi
al hopping proba-bility rather than by rare events.The appli
ation of a magneti
 �eld B introdu
esrandom phases to the tunneling amplitudes,A�(B) = A�(0) exp�i2����0� ; (11)where �� = BS� and S� is the area en
losed betweenthe the path � and the straight line going from theinitial to �nal states (see Fig. 1b ).Depending on distributions of the signs of the am-plitudes A�(0), the orbital magnetoresistan
e 
an beboth positive and negative. To illustrate this fa
t, we
onsider a model in whi
h there are only two paths,A1(0) � A2(0), whi
h are independent random quan-tities and j�1 � �2j � �0. If A1;2(0) > 0 are posi-tive, in the presen
e of magneti
 �eld, then the ampli-tudes A�(B) partially 
an
el ea
h other. As a result,hlnWij(B)i de
reases by a fa
tor of the order of unitywhen j�1 � �2j � �0. In this 
ase, the magnetoresis-tan
e is positive.The situation 
hanges if A1;2(0) have random signs.In the simplest 
ase where the signs are 
ompletely ran-dom, the average probabilityD���XA�(B)��� 2E =XDjA(0)j2Eis independent of B. If the magneti
 �ux through the
losed loop formed by paths 1 and 2 is larger than the�ux quantum, the phases of the amplitudes A1;2 are
ompletely random, and therefore hA1(B)A2(B)i = 0:This implies that the varian
e*�����X� A�(B)����� 4+�*�����X� A�(B)�����2+2de
reases by a fa
tor of the order of unity whenj�1 � �2j � �0. As a result, a typi
al value of theresistan
e de�ned by (10) in
reases by a fa
tor of theorder of unity and the magnetoresistan
e is negative.This simpli�ed pi
ture of magnetoresistan
e beingdetermined by the interferen
e between only two pathsbe
omes more 
ompli
ated for two reasons. First, atlarge s
ales, the propagation amplitude is dominatedby many paths that go through the same s
atterer ora group of s
atterers. This implies strong 
orrelationsbetween the amplitudes A�, as we dis
uss in Se
. 3.1.This makes the mathemati
al problem 
al
ulating �(B)nontrivial. Se
ond, the behavior of the magnetoresis-tan
e be
omes more 
ompli
ated if the amplitude signs

are 
orrelated at some �nite distan
es (see Se
. 2.3). Inthis 
ase, we 
an expe
t a 
rossover from the negativeto positive magnetoresistan
e as the �eld in
reases, aswe explain in Se
. 3.Be
ause the sign and the magnitude of the magne-toresistan
e are intimately related to the statisti
s ofthe sign and amplitude distribution of Aij(0), we startwith a dis
ussion of this quantity.2.2. Statisti
s of the amplitude A in theabsen
e of the magneti
 �eldIn the 
ase of small and positive s
attering ampli-tudes �� > 0 and at zero magneti
 �eld, the problemof ele
tron tunneling 
an be mapped [30�33℄ onto theproblem of dire
ted polymers. In the latter problem,one studies the thermodynami
s of an elasti
 stringin a delta-
orrelated two-dimensional random potentialW (x; y), 
hara
terized by the energy fun
tionalHdirpolfy(x)g == xZ�1 h�2 (�xy)2 +W (x; y(x))i dx: (12)Introdu
ing the partition fun
tionZ(y; x) = Xyfxg exp(��H)of the string that ends at the point (x; y), we obtainthat its evolution as a fun
tion of x is des
ribed by theequation �xZ = 12���2yZ � �W (x; y)Z: (13)This equation should be 
ompared with the equationfor the parti
le propagation in disordered media:E	 = � 12mr2	+ V (x; y)	; (14)with the white-noise potential V (x; y). At negative en-ergies 
orresponding to tunneling; after substitution	 = exp(���x)Z(x; y)we 
an negle
t the terms with the se
ond-order deriva-tive in x, whi
h are small at a weak potential V � �E.Then S
hrödinger equation (14) 
oin
ides with (13)with (��)2 = �2mE and W = �V=2E. This map-ping also holds for an arbitrary (not ne
essarily white-noise 
orrelated) potential V . However, it be
omes lessuseful for arbitrary potentials be
ause analyti
 results636



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistan
e in the variable-range hopping regimefor this problem were obtained only in the 
ase of thewhite-noise potential.Computation of positive magnetoresistan
e requiressolving the dire
ted polymer problem beyond the whitenoise approximation, and hen
e the analyti
 results arenot dire
tly appli
able. Furthermore, the physi
allyrelevant problem of s
attering with negative amplitudes
annot be mapped onto any thermodynami
 problembe
ause the 
orresponding free energy be
omes imag-inary. The appli
ability of the results of the dire
tedpolymer problem in the white noise approximation be-
omes even more questionable in this 
ase. Below, wegive a brief review of the results of the dire
ted polymerproblem in the white noise approximation. Then wepresent results of our numeri
al simulations beyond thewhite noise approximation, whi
h indi
ate that theseproblems belong to the same universality 
lass. Fi-nally, we dis
uss the statisti
s of the signs of the tun-neling amplitude and show that the existen
e of the�sign phase transition� is 
ompatible with the resultsfor the dire
ted polymer problem.The main result of the dire
ted polymer theory isthe s
aling form of the �u
tuational part of a free en-ergy of a polymer of length L, F / L1=3, and its de-viations in the transverse dire
tion Y / L2=3: For theequivalent problem of domain wall pinning, this s
al-ing was �rst found numeri
ally in [34℄. Analyti
ally,it was extra
ted from the third moment of the distri-bution fun
tion of polymers of length L, P(F ) [35; 36℄.The repli
a method that was used in this work mightbe questioned be
ause of an apparent non
ommutativ-ity of the limits L ! 1 and n ! 0 and be
ause itgives unphysi
al results for all moments of the distri-bution fun
tion ex
ept the third. All these problems
an be eliminated by solving for the distribution ofthe energy di�eren
es of the in�nitely long polymersthat end at di�erent points y1 and y2; this solutiongives the same s
aling exponents [37℄ as the originalapproa
h [34�36; 38�40℄.The striking generality of this s
aling result thatwe prove by numeri
al simulations below is, proba-bly, due to the qualitative reasoning that relates it tothe Markovian form of the free energy �u
tuations asa fun
tion of the transverse 
oordinate. Indeed, theMarkovian form implies that free energy �u
tuationsat large s
ales are proportional to Y 1=2; on the otherhand, they should be of the order of the string elas-ti
 energy at these s
ales, Y 2=L / Y 1=2. Solving thelast equation for Y gives the s
aling dependen
es of theexa
t solution and of the numeri
al simulations.Despite being intuitively appealing, the Markoviannature of free energy �u
tuations is di�
ult to prove

for the physi
ally relevant situation in whi
h some s
at-tering amplitudes (9) are very large. It is even moredi�
ult to prove it in the 
ase of negative s
atteringamplitudes in whi
h wave fun
tion 
an 
hange sign atsome points. At these points, the free energy de�nedby F � �T lnZ a
quires an imaginary part (ImF = �)while its real part be
omes large. Be
ause these pointsare due to 
lose by negative s
atterers, the e�e
tivefree energy be
omes highly 
orrelated, whi
h violatesthe main assumption of the Markovian nature of thefree energy �u
tuations.Re
ently [41; 42℄, a full Bethe-ansatz solution ofproblem (12) established the 
omplete form of the dis-tribution fun
tion of the free energy F � �T lnZ of thestring of length L, whi
h turns out to 
oin
ide with theTra
y�Widom distribution [43℄. This result allows usto 
he
k that the problem of parti
le hopping belongsto the same universality 
lass as the dire
ted polymers.Namely, we de�ne the e�e
tive free energy of the quan-tum problem as F = �R lnA(x; y); (15)where A is the ele
tron amplitude at the site (x; y),propagating in x-dire
tion. This free energy des
ribesthe de
ay of the wave fun
tion. We 
ompute the ampli-tude A by simulating ele
tron propagation and 
he
kthe s
aling properties of its real part �u
tuations inthe y-dire
tion and the universality of the distributionfun
tion.We determine the amplitude A from the solution ofthe latti
e re
ursive equationAi;j = g�ij [Ai�1;j+1 +Ai�1;j +Ai�1;j�1℄ ; (16)where �ij are random independent variables de�ned onea
h latti
e site and g is the parameter that determinesthe average de
ay of the amplitude (inverse lo
alizationlength). Below, we dis
uss di�erent distribution fun
-tions of �ij appropriate for di�erent physi
al systems.Physi
ally, the model in (16) des
ribes the motionof ele
trons on the latti
e shown in Fig. 3. The site withthe energy �ij = h�i 
an be identi�ed with the ideal lat-ti
e, the rest with impurities. If the energy �ij is dis-tributed in a narrow interval around its average, evolu-tion (16) be
omes equivalent to (14) in the 
ontinuumlimit. As dis
ussed in Se
. 2.1, the physi
ally mostnatural 
hoi
es of the distribution fun
tion of � are uni-form P (�) = �(�), linear P (�) = 2�, and their analogsfor the negative s
attering amplitudes, P (�) = 1=2 andP (�) = j�j. In all 
ases, we assume that the distribu-tion is 
ut-o� by �0 at large �: P (j�j > �max) = 0.The 
hoi
e of �max determines the average de
ay rate637
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jFig. 3. S
hemati
s of the ele
tron propagation de-s
ribed by Eq. (16). The 
omputation of the lo
aliza-tion length dis
ussed in Se
. 2.2 involves simultaneouspropagation of amplitudes in the verti
al dire
tion formany (typi
ally, L > 106) steps. For the 
omputationof the matrix elements in Se
. 3.2, the wave fun
tionswere assumed to be lo
alized on two sites in the middleof the upper and lower rows at a distan
e L and thendetermined in the middleof the ele
tron amplitude that is mostly irrelevant; inthe 
omputations, we have set it to �max = 1. Wehave also studied the gapped distribution P (�) = 2 for1=2 < � < 1, for whi
h we expe
t to obtain the re-sults similar to the one predi
ted by the exa
t solution.Finally, we studied the binary distributionP (�) = (1�X)Æ(�� 1) +XÆ(�� (�+ 1)�1)
hara
terized by a parameter X and a negative s
at-tering amplitude � < 0.Some of our results are presented in Figs. 4 and5. For all the studied distribution, we observe verygood s
aling, 
�F 2�1=2 / L
 , with the respe
tive ex-ponents 
 = 0:28, 0.345, 0.343 for gapped, linear, anduniform densities of states. These values are very 
loseto the expe
ted value 1=3, espe
ially for the linear anduniform densities of states. The data for the gappeddensity of states display a signi�
ant transient regime,and therefore the deviation of the exponent from theanalyti
 result is not surprising. The presen
e of neg-ative s
attering amplitudes has small e�e
t on theseexponents; they be
ome 
 = 0:31, 0.33, 0.345, whi
hare even 
loser to the expe
ted values. Furthermore,the higher moments of the distribution fun
tion tendto the universal values expe
ted for the Tra
y�Widomdistribution. These results are in agreement with pa-pers [44; 45℄ that observed the Tra
y�Widom distribu-tion of 
ondu
tan
es in two-dimensional models.These data lead to the 
on
lusion that the main re-sults of the dire
ted polymer problem, the s
aling de-

penden
e of the free energy and the universality of thedistribution fun
tion, remain valid for the problem ofele
tron tunneling in disordered media.2.3. The sign phase transitionAs explained in Se
. 2.1, the sign of the magne-toresistan
e is related to the statisti
s of signs of theamplitudes Aif (0) in the absen
e of the magneti
 �eld.If the 
on
entration of impurities with negative s
at-tering amplitudes is large, the sign of Aif (0) be
omes
ompletely random. If all impurities are 
hara
terizedby positive s
attering amplitudes �i > 0, the sign ofAif (0) is positive. We let P+ and P� denote the re-spe
tive probabilities to �nd a positive or negative am-plitude Aif (0). The quantity �P = P+ � P� 
ha-ra
terizes the sign order. As the 
on
entration X ofthe impurities with negative s
attering amplitudes in-
reases, �P should 
hange from 1 to 0. Generally,�P is s
ale-dependent and a
quires its limit value asjri � rf j ! 1. There are two logi
al possibilities: ei-ther at large s
ales �Pr!1 = 0 only for X > X
 while�Pr!1 > 0 for smallerX < X
, or any nonzeroX > 0leads to �Pr!1 = 0. The former implies that the
hange in the X-dependen
e of the sign statisti
s 
anbe viewed as a phase transition. This possibility hasbeen suggested in [24; 25; 27℄, while the alternative wasargued for in [31�33℄.We study the sign statisti
s in the latti
e models de-�ned by (16) in Se
. 2.2 and show that both the phasetransition and 
rossover 
an be realized depending onthe distribution of �:We start with the simplest 
ase ofthe binary distributionP (�) = (1�X)Æ(�� 1) +XÆ(�+ �0)with small X � 1 and small �0 � 1. This modeldes
ribes the wave fun
tion propagation on the ideallatti
e (sites with � = 1) that 
ontains rare impuri-ties 
hara
terized by a negative s
attering amplitude� � �1=2�0, j�j � 1. The large value of j�j allowsa 
ontinuous des
ription of the tunneling amplitude.The size of the region where the tunneling amplitudeAif (0) < 0 is negative 
an be found by noti
ing thatthe wave fun
tion	(x; y) = exp��x��+ �(x2+y2)1=4 exp �px2+y2� !
hanges its sign in the egg-shaped region in the wakeof the impurity given byy2(x) = x� ln ��2=x� ; 0 < x < �2:638
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Fig. 4. S
aling dependen
e of �u
tuations of the ele
tron wave fun
tion de
ay, �F = hF i�F , where F is de�ned by (15).The quantity F is equivalent to the free energy of the dire
ted polymer problem. a � the results for the linear density ofstates with P (� < 0) = 0, and b � the same results for the equally probable positive and negative s
attering amplitudes.The upper insets show the distribution fun
tion of �F and its �t to the Gaussian, 
ompared to whi
h the distribution isslightly skewed as expe
ted for the Tra
y�Widom distribution. The lower insets show the evolution of the normalized highermoments of the distribution fun
tion that tends to the universal values expe
ted for the Tra
y�Widom distribution (shownas dashed horizontal lines). The numeri
al results were obtained by simulating evolution (16) on systems of sizes N = 106,107, 5 � 107 , as indi
ated by points of di�erent size and 
olors. The straight line 
orresponds to the exponent 
 = 0:345 (a),0:33 (b ). The 
onvergen
e to the s
aling form of the free energy �u
tuations o

urs relatively fast, while higher momentsof the distribution fun
tion require enormous statisti
s, espe
ially at large L, as is indi
ated by the deviation of 
urvesrepresenting the fourth moment for N = 107 and N = 5 � 107The area of this region isS(�) = 23r2�3 j�j3�1=2:A small 
on
entration XS � 1 of su
h impurities leadsto independent lakes of negative signs shown in Fig. 6.In this situation, �P > 0.As the 
on
entration X in
reases, di�erent lakesstart to overlap and form a state with random signof the amplitudes. The transition between these twophases o

urs at X = X
 � S�1 / j�j�3. The depen-den
e P�(X) is expe
ted to have a general form 
hara
-teristi
 of a phase transition, sket
hed in Fig. 7a. Thesequalitative arguments ignore the 
ontributions fromimpurities lo
ated 
lose to ea
h other, whi
h shouldnot be relevant in the limit X ! 0.The numeri
al simulations show that the transitionalso survives for not very large values of the s
atteringamplitudes. In parti
ular, this transition has been ob-served for the binary distribution fun
tions with �0 = 1.Figure 7 represents the results of our numeri
al simula-tions for this 
ase. As we 
an see, the behavior of�P asa fun
tion of the distan
e 
hanges qualitatively asX in-
reases beyond X
 � 0:032. For smaller 
on
entrationsx, the probability di�eren
e �P saturates at nonzerovalues, while for larger 
on
entrations, it approa
hes

0. The s
ales needed to observe this 
hange in the be-havior are generally very long. We believe that this isthe reason that prevented unambiguously establishingthe existen
e of the transition in early numeri
al sim-ulations. We note that the s
ales are further enlargednear X
 � 0:032, as is expe
ted at a phase transition.We have also 
he
ked that the phase transition be-tween the sign-ordered and sign-disordered phases sur-vives for a gapped distribution of � de�ned in Se
. 2.2.The numeri
al data look very similar to those shown inFig. 7, the value of X
 in this model is X
 � 0:02.The existen
e of the sign phase transition has beenquestioned in paper [33℄, whi
h used the mapping tothe dire
ted polymer problem. The essen
e of the ar-gument is that the free energy of dire
ted polymersleading to a given site are dominated by a single path,and hen
e just a single impurity along this path su�
esto 
hange the sign of the amplitude. At a small 
on-
entration of negative s
atterings, one 
on
ludes thatthe amplitude should be
ome 
ompletely random at thes
ale L / 1=X . This argument, however, does not takethe 
ontribution from subdominant paths into a

ount,whi
h may eventually restore the sign of the amplitudeat large s
ales, as is indi
ated by numeri
al data for thegapped density of states (see Se
. 2.2).639



L. B. Io�e, B. Z. Spivak ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013
5.0

2.0

1.0

0.5

〈∆F 2〉1/2

〈∆F 3〉c
~

〈∆F 4〉c
~

0.5

0.3

0.2

0.1

50

L

0.2

10010 500 1000 5000

RS

PS

20 50 100 200 500 1000Fig. 5. S
aling dependen
e of �u
tuations of the ele
-tron wave fun
tion de
ay�F = hF i�F obtained fromthe numeri
al solution of evolution (16) with a gappeddensity of states. The lower data set (denoted by PS)
orresponds to the positive s
attering amplitudes, andthe upper data set (denoted by RS), to the 
ompletelyrandom amplitudes with equal probability of signs. Thedata were �tted with the s
aling dependen
es with theexponent 
 = 0:28 for positive s
atterers and 
 = 0:31for random signs. The results were obtained for thesystems of size N = 107, 5 � 107. Higher momentstend to the universal values of the Tra
y�Widon distri-bution as shown in the inset, whi
h gives the data forrandom-sign s
atterers

Fig. 6. Qualitative pi
ture of lakes of negative ampli-tude signs formed in the wake of an impurity (shownas a small gray 
ir
le) 
hara
terized by a negative s
at-tering amplitudeWe now show that for a gapless density of states (3)with � < 2 and for any nonzero 
on
entration of neg-ative s
atterers, the sign of the amplitude A be
omes
ompletely random at large s
ales. Indeed, in this 
ase,the total area of negative lakes is

Stot � X Z d�� (�)S [� (�)℄ ;where S [�℄ / �3 / "�3. Hen
e, Stot diverges for alldensities of states � (�) � "� with � � 2. For example,this is the 
ase for the Coulomb gap, where � (�) / ".We have 
he
ked this 
on
lusion numeri
ally for thelinear density of states and we have indeed observedthat even a very small X � 10�4 leads to a randomsign of the amplitude at very large s
ales. Our dataare shown in Fig. 8. As expe
ted, the s
ale at whi
hthe sign be
omes random grows qui
kly with the de-
rease in X .3. MAGNETORESISTANCE IN THE HOPPINGREGIME3.1. Magneti
 �eld dependen
e of thelo
alization lengthWe now turn to the dis
ussion of magnetoresistan
ein the variable-hopping regime. We begin by summa-rizing the results of numeri
al simulations for re
ursiveequation (16) that was modi�ed to in
lude the phases�j = Bj indu
ed by magneti
 �eldAi;j(B) = 1�ij [Ai�1;j�1ei�j�1=2 ++ Ai�1;jei�j�1=2 +Ai�1;j+1ei�j+1=2 ℄: (17)Then we give the qualitative explanation of the resultsbased on the mapping of hopping to the dire
ted poly-mers. The dimensionless magneti
 �eld B in this equa-tion and in the dis
ussion below is given by the �ux ofthe physi
al magneti
 �eld Bphys through the elemen-tary square plaquette of the latti
e: B = Bphysa2=�0,where a is the latti
e 
onstant and �0 = h
=e is the�ux quantum.Our main result is that at large rhop > LB (whi
hholds at low temperatures), both positive and negativemagnetoresistan
es are des
ribed by 
orre
tions to thelo
alization length:g(B) = ��(B)�(0) = �C��B�2�0 �� : (18)This s
aling law is 
hara
terized by the universal expo-nent � � 4=5 and nonuniversal numeri
al 
oe�
ientsC�. The latter depend on the distribution of "ij , e. g.,C+ � 2:6 for the gapped and C+ � 0:9 for linear den-sity of states. Here, we de�ne the lo
alization lengthas the limit � = limrij!1 lnAij(B)=rij . The positivesign (+) in (18) 
orresponds to the 
ase where the sys-tem is in the sign-disordered phase and the negative640



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistan
e in the variable-range hopping regime�P

X

Signordered

a
10�310�210�15 � 10�1 P (	 < 0) 0:04 0:035b 0:030:02102 103 104 105 L
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XFig. 7. a � Qualitative pi
ture of the phase transition des
ribed by the order parameter �P (X) that o

urs at X
 � 0:032for the the binary distribution des
ribed in the text. b � S
ale dependen
e of the probability of the negative amplitude,showing the transition around X
 � 0:032
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Fig. 8. a) The map of the amplitude sign resulting from the wave fun
tion evolution in the verti
al dire
tion for the lineardensity of states. The wave fun
tion has all positive signs (shown in bla
k) at the beginning of the evolution (bottom).As the evolution goes upward, the presen
e of a small 
on
entration X = 10�4 of negative s
attering amplitudes resultsin a larger and larger regions of negative signs (white regions) until the whole amplitude sign be
omes 
ompletely randomat the top. b) The length s
ale L(X) at whi
h the sign be
omes random as a fun
tion of the 
on
entration X. Here, wede�ne L(X) as the length at whi
h �P = 0:25. The data �t well with the dependen
e L / 1=X, in agreement with thetheoreti
al expe
tations based on the dire
ted polymer mappingsign (�) 
orresponds to the sign-ordered phase. Theuniversal regime (18) is a
hieved at low �elds. We notethat while the value of �(B) is mathemati
ally de�nedfor any magneti
 �eld, its appli
ability to the hoppingproblem requires that rhop > lB .At intermediate �elds, a slightly di�erent power lawg(B) = ��(B)�(0) = �D��B�2�0 ��0 (19)
if often observed with a di�erent exponent and pref-a
tors, �0 � 0:5, 0.6, 0.64 for the s
attering of ran-dom signs with gapped, linear, and uniform densitiesof states respe
tively. For these densities of states theprefa
tors are D+ � 0:11, 0.22, 0.30. The value of D+for the gapped density of states is in agreement withthe previous numeri
al simulations in [26; 28℄. We notethat the value of D+ for the uniform density of statesis roughly three times larger than for the gapped one.13 ÆÝÒÔ, âûï. 3 (9) 641
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Fig. 9. Change in the inverse 
orrelation length Æ� = Æ(1=�) indu
ed by the magneti
 �eld. a,
 
orrespond to the gappeddensity of states and b,d � to linear density of states. a,b 
orrespond to random s
attering amplitude signs and 
,d �to positive s
attering. The absolute values of the inverse 
orrelation length at B = 0 in these 
ases are ��10 = 1:85; 1:42for gapped and linear densities of states, and X = 0:5 and ��10 = 1:31, 0:95 for uniform and linear density of states forpositive s
attering (X = 0). The results for the 
onstant density of states (not shown) are very similar to the ones for thelinear density of states shown in b,d: they display a large domain of the intermediate regime of power-law behavior with therespe
tive exponents 0:6 and 0:9 for X = 0:5 and X = 0This makes it possible to observe large negative mag-netoresistan
e experimentally, as we dis
uss in Se
. 5.These statements are illustrated in Fig. 9. The s
alingdependen
e with the exponent �0 � 0:6 was observedpreviously in a number of works [28; 32℄, in whi
h in-su�
ient system sizes prevented the observation of theasymptoti
 behavior.We now give qualitative arguments that reprodu
ethe observed s
aling behavior of the 
hange in the lo-
alization length explained above.As we have shown in Se
. 2.2, the problem of ele
-tron tunneling belongs to the same universality 
lassas the problem of dire
ted polymers. In parti
ular, thetypi
al tunneling a
tion varies from one path to anotherby the amount that s
ales as �F / L1=3: This meansthat the tunneling from point i to f is dominated bya narrow bundle of paths, as shown in Fig. 10. Thewidth of this bundle does not in
rease with the lengthof the path, and hen
e the magneti
 �eld has very lit-tle e�e
t on the tunneling in this approximation. An-

other bundle of paths that di�ers from the dominantone at a s
ale L has the a
tion that is typi
ally largerthan that of the dominant path by �F / L1=3, andtherefore its amplitude is exponentially suppressed byexp ��
(L=a)1=3�, where a is the mean free path of theele
tron (latti
e spa
ing in the 
ase of numeri
al simu-lations). This leads to an exponentially small e�e
t ofthe magneti
 �eld. However, be
ause the di�eren
e ofthe a
tions between two paths is a random variable it-self, with probability p / L�1=3 two a
tions di�er onlyby the amount of the order of unity. If all s
atteringamplitudes are positive, the 
hange in the interferen
e
aused by the magneti
 �eld de
reases the total am-plitude by the fa
tor of the order of unity, if the �uxthrough the loop formed by these two paths is of the or-der of the �ux quantum. Be
ause the transverse dire
-tion s
ales as Y � a(L=a)2=3, the interferen
e be
omesrelevant at s
ales � L:BL5=3a1=3 � �0 (20)642
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Fig. 10. Dire
ted polymer pi
turewith probability p � (L=a)�1=3: The resulting de
reaseof the wave fun
tion implies that the typi
al inverselo
alization length in
reases byÆ��1 � a1=3=L4=3 � (B=�0)4=5a3=5:Repeating the same arguments for the amplitudesof the random signs and using the fa
t that the signs oftwo paths that 
ontribute to the interferen
e are ran-dom (
f. the dis
ussion after Eq. (11)), we obtain thesame dependen
e on magneti
 �eld but with the oppo-site sign: the inverse lo
alization length is de
reased bythe magneti
 �eld.All these 
on
lusions are valid in the limit of longs
ales, where �F � 1. In the intermediate regime,with �F . 1, the probability that two paths interfereis of the order of unity, resulting in the s
aling depen-den
e of Æ��1 on the �eld with the exponent �0 = 3=5.Looking at the numeri
al results for the s
aling depen-den
e of �F shown in Fig. 4, we see that it remains ofthe order of unity for L . 102, whi
h translates into the�eld B & 10�3, in rough agreement with the numeri
alresults shown in Fig. 9.The behavior of the 
orrelation length is given bysimple s
aling equations (18) and (19) only in the limitof 
ompletely random and positive amplitude signs. Inthe 
ase of a small 
on
entration of negative s
atter-ings, a more 
ompli
ated behavior is expe
ted. Large�elds a�e
t the amplitude at short s
ales. At theses
ales, the rare negative s
atterings have small e�e
ton the amplitude sign, and hen
e at large �elds theinverse lo
alization length is in
reased by the �eld,similarly to the 
ase of positive s
attering amplitudes.By 
ontrast, at large s
ales relevant for small �elds,the amplitude sign be
omes 
ompletely random, andtherefore a negative 
orre
tion to Æ��1 is expe
ted atsmall �elds, similarly to the fully random sign 
ase. Asthe �eld is in
reased, the sign of the 
orre
tion should
hange. Exa
tly this qualitative behavior is shown bynumeri
al simulations of model (17) with a small 
on-
entration of s
atterers with negative amplitudes. Our

1.5

1.0

0

1.4

B/B0

1.21.00.80.60.40.2

0.5

−0.5

−1.0

−1.5
0

f(B/B0)

Fig. 11. Universal behavior of the in
rement of theinverse lo
alization length as a fun
tion of the �eldfor a small 
on
entration of negative �ij and the lin-ear density of states. Di�erent 
urves show Æ��1for di�erent 
on
entrations X = 0:02, 0:08, 0:16res
aled in both verti
al and horizontal dire
tions:Æ��1 = Æ��10 �(B=B0). The 
hara
teristi
 value of the�eld s
ales with X as B0 / X� with � � 2:8. Verysmall values of the �eld imply that the negative 
or-re
tion of Æ��1 wins over the positive one only whensigns are 
ompletely randomized; even a small 
orre-lation between the signs of the amplitude su�
es toresult in a positive 
orre
tionresults shown in Fig. 11 display universal behavior ofÆ��1(B=B0). The 
hara
teristi
 �eld B0 s
ales, as ex-pe
ted, with the 
on
entration X : B0 / X�, but theexponent � � 2:8 is su�
iently larger than the oneexpe
ted from the s
aling behavior of L(x) / 1=x ob-tained in Se
. 2.3: �expe
ted � 1:6. We do not have asatisfa
tory explanation of this dis
repan
y. We onlynote that very small values of B0 found numeri
allyimply that even a small amount of sign 
orrelations issu�
ient to result in the positive Æ��1. This is notso surprising be
ause the positive in
rement of Æ��1,although given by the same s
aling dependen
e, is anorder of magnitude larger than the negative one (
f.Fig. 9a,b and Fig. 9
,d).The s
aling dependen
e in (18) is nonanalyti
 inB, and should therefore dominate over other sour
es of
orre
tions to the lo
alization radius as B ! 0. In theele
tron hopping problem, the largest s
ale rhop for the
oherent ele
tron tunneling is set by temperature (1).The nonanalyti
 behavior predi
ted by (18) o

urs ifthe s
ale L given by (20) is less than rhop(T ):��0B �3=5 a1=5 < ��T0T �� :643 13*
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A B�Fig. 12. Quantitative pi
ture of tunneling paths in thevi
inity of the metal�insulator transition in the 
asewhere � > aB. The path may 
ontain return loopsat short s
ales (of the order of �), but the ele
tronmoves only in one dire
tion at longer s
ales. We expe
tthat the problem is mapped onto dire
ted polymers ats
ales larger than �, and hen
e small magneti
 �eldsB�2 . �0 are expe
ted to have the same e�e
t on theresistivity as in the strongly lo
alized regimeIn the dis
ussion of the hopping transport, we haveassumed the strongly lo
alized regime in whi
h the ele
-tron wave fun
tion is lo
alized at s
ales of the order ofthe Bohr radius aB of a single impurity. However, allour qualitative 
on
lusions should also hold when thelo
alization length is larger, � > aB . In this 
ase, theele
trons tunnel from one area to another as is shownin Fig. 12. The loops of the tunneling paths are al-lowed inside individual areas, but not between them.In this regime, we expe
t to observe large nonanalyti
dependen
e of the lo
alization length on the magneti
�eld given by (18) and (19) at low �elds B�2 . �0.These universal 
orre
tions add to the e�e
t of the mag-neti
 �eld 
oming from the s
ales shorter than �, whi
h
an be found from the renormalization group approa
h.These 
orre
tions are of the order of Æ�=� � (B�2=�0)2and are therefore negligible 
ompared to the e�e
tsin (18) and (19) 
oming from the longer s
ales at low�elds. However, they 
an 
ontribute signi�
antly to thetotal variation of the magnetoresistan
e at large �elds.3.2. Magnetoresistan
e in the variable-rangehopping regimeThe results (18) and (19) for the �(B) dependen
e
an be 
onverted into magnetoresistan
e if the indu
ed
hange of the lo
alization length is small, Æ� � �;but the resulting 
hange in the hopping amplitudeis exponentially large, leading to resistan
e variationsln (� (0) =� (B))� 1. In this 
ase, we 
an negle
t other


ontributions to the variation of the hopping proba-bility (whi
h we dis
uss below), and the magnetoresis-tan
e is given byln � (B)� (0) � "2� �T0T ��# Æ�� : (21)Combined with the �(B) dependen
e dis
ussedin Se
. 3.1, this equation gives the magnetoresis-tan
e at moderate �elds, su
h that B�2 . �0 butln (� (0) =� (B))� 1.At large magneti
 �elds B�2 & �0, Eq. (21) re-mains valid, but the lo
alization length dependen
e onthe magneti
 �eld is due to short s
ales and is nonuni-versal. For a granular metal, the lo
alization length isroughly equal to the grain size r0; be
ause the mag-neti
 �eld has no e�e
t at s
ales shorter than r0, theÆ�(B) dependen
e saturates at B�2 . �0. By 
ontrast,in the 
ase of a weakly disordered nonintera
ting 2Dmetal with kltr>1, one expe
ts [7℄ a strong dependen
eon the magneti
 �eld. Indeed, in this 
ase, the lo
aliza-tion length is exponentially large � (0) � ltr exp (kF ltr)in the absen
e of the magneti
 �eld, with ltr being ele
-tron mean free path. The 
onventional renormaliza-tion group analysis [7℄ gives Æ�(B)=�(0) � (B�2=�0)2at B�2 < �0, and 
orre
tions of the order of unityare therefore expe
ted at B�2 � �0. At larger �elds(Bl2tr � �0), the lo
alization length in
reases expo-nentially to �(B) � ltr exp (kF ltr)2. At even larger�elds, the appearan
e of the quantum Hall regime anda pseudometalli
 behavior are expe
ted [13℄. The pres-en
e of ele
tron�ele
tron intera
tion 
an lead to an evengreater variety in the lo
alization length dependen
e onthe magneti
 �eld at high �elds.The 
omputation of the �(B) dependen
e in Se
. 3.1translates into the predi
tions for magnetoresistan
e(21) only in the asymptoti
 regime of large magneti
�elds at whi
h ln (� (0) =� (B))� 1. There are at leasttwo reasons why it is important to study the magne-toresistan
e in the opposite limit of low magneti
 �eld.First, be
ause it is di�
ult to measure large resis-tan
es, the parameter r=� . 15 
annot be very large,and therefore the 
ondition ln (� (0) =� (B))� 1 is sat-is�ed only in a limited range of �elds. As we showbelow, the power-law dependen
e of ln (� (0) =� (B)) ex-tends somewhat in the regime if ln (� (0) =� (B))) . 1,whi
h makes the observation of this dependen
e morerealisti
.Se
ond, many experimental data show that themagnetoresistan
e often 
hanges sign in small �elds. Aswe dis
uss in more detail below, this sign 
hange agreeswith the theoreti
al expe
tations. For instan
e, if the644
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attering amplitudes are mostly positive (P� � 1),the lo
alization length at large �elds be
omes shorter(see Se
. 2.3) and magnetoresistan
e is positive. But itmay 
hange its sign and be
ome negative at small �elds.This 
hange in the sign of the magnetoresistan
e 
anbe due to the 
hange in the sign of the 
orre
tion to thelo
alization length dis
ussed in Se
. 2.3 or to anothere�e
t at short s
ales that we dis
uss below. Gener-ally, the theoreti
al predi
tions in this regime are lessuniversal.At small magneti
 �elds, the a

ura
y of the ap-proximation Mij � Aij be
omes insu�
ient be
auseit overestimates the 
ontributions to hopping rate (4)from the impurity 
on�gurations in whi
h the partialamplitudes A� (0) 
an
el ea
h other in the absen
e ofthe magneti
 �eld, when
e Aif (0) � 0. For these 
on-�gurations, a small magneti
 �eld 
hanges lnAif dra-mati
ally. For a �nite probability density of Aij(0) = 0,the magneti
 �eld dependen
e of lnA(B) be
omesa nonanalyti
 fun
tion of B: ln [A(B)=A(0)℄ / jBj[24; 25℄. Similarly to the qualitative dis
ussion of the�(B) dependen
e in Se
. 3.1, this nonanalyti
ity 
an bedemonstrated in the 
ase where the propagation ampli-tude is due to the interferen
e between just two paths,Aif = A1 + A2 � 0 with random A1 and A2. In thismodel 
ase, the typi
al amplitude in a magneti
 �eldbe
omesln ����A(B)A(0) ���� = Z dA1dA2 ln ��A1 �A2ei��� � j�j ; (22)where � / B is the phase di�eren
e indu
ed by themagneti
 �eld. Here and below, we let the bar denotethe averaging over the impurity 
on�gurations. Be-
ause the probability density of Aij(0) = 0 is �nite atany 
on
entration of s
atterers with �i < 0, the typi-
al amplitude always in
reases at small �elds. But thisdoes not always translate into negative magnetoresis-tan
e.The 
ru
ial di�eren
e between the amplitude Aijand hopping rate (4) is that the latter is the sum ofthe positive rates due to phonons with di�erent q di-re
tions. As a result, the probability density to �ndWif = 0 is zero, and the magnetorsistan
e is propor-tional to B2 at small B.To �nd the values of the 
rossover �elds, we notethat in the limit of low temperatures at whi
h qrij � 1,the exponential in (5) 
an be approximated by the �rstnonzero term:Mij(q) � Z dr yi (r) j (r)q � r: (23)

The main 
ontribution to the matrix element Mij
omes from the 
omponents of the phonon wave ve
-tor q that is parallel to rij . In the leading approxima-tion, we 
an negle
t the 
ontributions from the phononswith momenta in other dire
tions. In this approxima-tion, the hopping probability (4) is 
ontrolled by thematrix elementMij(qr̂ij) r̂ij = rij=rij . This matrix el-ement has the same statisti
al properties as the ampli-tude Aif , and therefore the reasoning resulting in (22)applies, when
eln jM (B;q) =M (0;q)j � jBj :The subleading pro
esses in whi
h hopping (4) is due tophonons with momenta perpendi
ular to rij 
ut o� thenonanalyti
 behavior of lnW (B) at very small �elds.Combining this result with the e�e
t of the �(B)dependen
e dis
ussed in Se
. 3.1 that o

urs at larges
ales at whi
h the �ux through the typi
al loop islarger than the �ux quantum, Br5=3�1=3 > �0, weobtain three regimes of the lnM(B) dependen
e forB�2 < �0:ln �(0)�(B) = ln Wif (B)Wif (0) �� 8><>: (B=B0)� & 1; B > B0;jBj=B0 . 1; B0 > B > B�;B2=B�B0 � 1; B < B�; (24)where B0 = �0=r5=3�1=3: As we saw in Se
. 3.1,the transverse deviations of the typi
al path s
ale asr? � r2=3�1=3. This allows us to estimate the 
ontri-bution to the average in (4) from phonons with q ? r:W? � (�=r)2=3W . Repeating the arguments that ledto (22), we obtainln W (B)W (0) = Z dWk ln �Wk +Wtyp�2 +W?� ; (25)whi
h results in the dependen
e (25) with B� = �0=r2.The qualitative estimates show that while theregime of a nonanalyti
 dependen
e is relatively wide(B0 < B < �0=r2), the regime of the linear dependen
eis narrow. We note that the estimates of B� and B0negle
t the numeri
al 
oe�
ients that might be impor-tant.The dis
ussion above and the result in (24) assumedthat the system is deep in the sign-disordered phase, inwhi
h signs of all amplitudes are 
ompletely random. Ifthe s
attering amplitudes are mostly positive, P� � 1,the signs of the amplitudes be
ome random only atlarge s
ales. This implies that the system 
an be in645
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hara
teristi
 s
ales set bythe magneti
 �eld. In this 
ase, the magnetoresistan
eat largest �elds is positive in 
ontrast to (24), whileat small B it is quadrati
 in B, and 
an therefore beboth positive and negative depending on the value ofP� � 1.To verify the validity of (25) for realisti
 parame-ters, we have performed the numeri
al 
omputation ofthe matrix elements. We did not attempt a full 
om-putation of the matrix element and its averaging overthe distribution of rij that 
hara
terize the per
olat-ing 
luster. Instead, we 
omputed the matrix elementfor the 
hara
teristi
 rij and averaged over di�erentdire
tion of q. Be
ause the results do not 
hange quali-tatively when r is in
reased by a fa
tor of 2, we believethat they faithfully reprodu
e the dependen
e of themagnetoresistan
e:ln �(0)�(B) = ln hM2(B)iqhM2(0)iq ; (26)where the angular bra
kets denote averaging of the di-re
tions of q. The result of our numeri
al simulationsfor the uniform density of states P (�) = (1=2)�(1� j�j)is shown in Fig. 13 for two typi
al distan
es: r=� � 8and r=� � 6. In both 
ases, we observe a large regimeof the pseudo-universal behavior ln(�(0)=�(B)) � B�with � � 0:5, whi
h is due to the nonuniversal 
orre
-tions to lo
alization length (19). At larger r=� & 8, weobserve the gradual appearan
e of the transient lineardependen
e in the magneti
 �eld, in agreement withthe expe
tations from (25). Figure 14 shows the ex-pe
ted magneto
ondu
tan
e at di�erent typi
al valuesof r=� 
onverted into expe
ted values of the resistan
es.3.3. Beyond the single parti
le modelSo far in our dis
ussion we have ignored the many-body e�e
ts due to ele
tron�ele
tron intera
tion. Gen-erally, one expe
ts that ele
tron 
orrelations play amu
h bigger role in the hopping regime than in themetalli
 regime. In this subse
tion, we brie�y dis
usstheir role and the 
onditions under whi
h the single-parti
le results obtained above are valid.At low temperatures, the ele
tron sites with �� < 0(and �� < 0) are o

upied by ele
trons, while thesites with �� > 0 are empty. Tunneling between ini-tial and �nal states 
an be viewed as a virtual pro
essin whi
h the ele
tron hops through the intermediatelo
alized states. Depending on the ratio between theele
tron�ele
tron intera
tion and the density of states
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10−3 10−110−5Fig. 13. Phonon matrix element as a fun
tion of themagneti
 �eld at long and moderate s
ales. The mainpanel shows the �eld dependen
e of the matrix elementfor relatively long hops 
orresponding to r=� � 8:0.We observes a very signi�
ant (two de
ades) regimeof the pseudo-universal s
aling dependen
e asso
iatedwith the lo
alization length dependen
e in (19). Atshorter s
ales (
orresponding to r=� � 6 shown in theinset), the s
aling regime shrinks. In both 
ases, theregime of the analyti
 dependen
e (B2) is limited tovery small �elds
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Fig. 14. Magneto
ondu
tan
e as a fun
tion of themagneti
 �eld for di�erent values of the matrix elementat zero �eld 
orresponding to R�=RQ � 5 � 105 (1 ),104 (2 ), 103 (3 ). For small matrix elements (largeresistan
es), the behavior at low �elds 
an be ap-proximated by a power law �(B)=�(0) � Ba witha � 0:5 � 0:6. The regime of very small magneti
�elds is hardly observable on the linear s
ale of the ploteven for smallest resistan
es646
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e in the variable-range hopping regimeat the Fermi energy in the impurity band, these lo
al-ized states 
an be singly and doubly o

upied. Thespins in the singly o

upied states intera
t via the ex-
hange intera
tion J . Although the detailed theory ofdisordered ele
tron systems does not exit, three obvi-ous limit 
ases are 
learly possible. In the �rst 
ase, theintera
tion between ele
trons is large, the majority ofsites are singly o

upied, and the resulting spin systemmight form an S = 1=2 spin glass at low temperaturesand a paramagnet at high temperatures. The low-tem-perature spin glass state breaks the time-reversal sym-metry; it might be 
ollinear or isotropi
 depending onthe anisotropy of the ex
hange 
ouplings. Althoughlogi
ally possible, neither 
ollinear nor isotropi
 stateswere observed experimentally, probably be
ause quan-tum spin �u
tuations are too large for spin 1=2. Thealternative (se
ond 
ase) is that ea
h spin forms a sin-glet with another spin to whi
h it is 
oupled by thestrongest intera
tion [46℄. This state does not breakthe time-reversal symmetry. Finally, in the limit ofsmall intera
tion, the majority of states are doubly o
-
upied (third 
ase). Both the se
ond and third 
asesare 
hara
terized by zero average spin on ea
h site.In all 
ases, the segments of the tunneling pathwhere ele
trons travel through o

upied sites 
an beviewed as a tunneling of a hole moving ba
kwardsthrough o

upied states, as is s
hemati
ally shown inFig. 2. In the intera
ting system, this pro
ess 
an leadto the 
reation of many-body ex
itations in the �nalstate that destroy the 
oheren
e between hopping am-plitudes A� along di�erent paths �. When this doesnot happen, the tunneling 
an be des
ribed by Eq. (7)with renormalized hopping amplitudes and energies �a.We now dis
uss the tunneling interferen
e in dif-ferent ele
tron states in more detail. We start with astate in whi
h all sites are singly o

upied. At hightemperatures, the resulting spins form a paramagnet,and hen
e the �nal spin states formed after the 
hargetransport along di�erent paths � are generally di�erentand do not 
oin
ide with the initial state. In this state,the 
orresponding amplitudes A� do not interfere. Inthis situation, no orbital e�e
ts of the magneti
 �eldon the 
harge transport are expe
ted. Appli
ation ofthe magneti
 �eld 
an polarize the spin system, restor-ing the path interferen
e. Thus, in this 
ase, we expe
tthat the polarization of the spin system by the in-plane�eld results in a state 
hara
terized by a large negativemagnetoresistan
e with respe
t to the �eld perpendi
-ular to the plane, while appli
ation of a small perpen-di
ular �eld in the absen
e of an in-plane one givessmall or no negative magnetoresistan
e. A large out-of-plane �eld (in the absen
e of the in-plane �eld) has

two e�e
ts: it might polarize the spin system and 
auseorbital e�e
ts. Thus, we expe
t a 
ompli
ated behavioras a fun
tion of the out-of-plane �eld.At low temperatures, the spins may freeze in a spinglass state or form a spin liquid. If the spins freezein the 
ollinear spin glass state, the �nal states 
orre-sponding to two paths mostly 
oin
ide and the inter-feren
e reappears. In this situation, the ele
tron hop-ping amplitude 
an be des
ribed by essentially the sameequation (7). Thus, we expe
t the same orbital e�e
tof the magneti
 �eld as dis
ussed in Se
. 3.1.The ele
tron hopping be
omes very di�erent in thenon
ollinear spin glass be
ause the ele
tron amplitudesa
quire a nontrivial phase fa
tors due to spin non-
ollinearity, whi
h 
an be des
ribed by 
omplex s
at-tering amplitudes �a. We expe
t that the magneti
�eld does not a�e
t the interferen
e in this 
ase anddoes not lead to orbital magnetoresistan
e. However,the isotropi
 spin glass state is rather unlikely to berealized in physi
al two-dimensional and even three-dimensional glasses [47℄.In 
ontrast to the spin glass states, the spin singletsformed in the se
ond and third 
ases do not break thetime-reversal symmetry. Thus, the s
attering ampli-tudes in these situations remain real as in the single-parti
le model. At low temperatures, the �nal statesformed after 
harge motion should 
oin
ide, and hen
ethe interferen
e between di�erent paths remains thesame as it was in the one-parti
le model in Se
. 3.1.We do not dis
uss the e�e
t of the magneti
 �eldon the spin 
on�guration, whi
h also a�e
ts the trans-port of 
harges. This dis
ussion is beyond the s
opeof this paper devoted to the orbital e�e
ts. But webrie�y mention possible s
enarios in Se
. 5, where wedis
uss the experiment that indi
ates that these e�e
tsare important.4. APPLICATION TO OTHER PHYSICALSYSTEMSThe sign phase transition that appears for the bi-nary distribution of s
attering amplitudes dis
ussed inSe
. 2.3 
an be observed in very di�erent physi
al sys-tems. Here, we show that it a�e
ts the physi
s of ran-dom 
lassi
al magnets at high temperatures. The sim-plest example is given by the Ising model on a 
ubi
latti
e H =Xi;j Jijsisj ; (27)647
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hange intera
tion takes twovalues: Jij = J0 > 0 with probability 1�X and Jij == J0 with probability X .At high temperatures, the sus
eptibility in thismodel is given by�(ri; rf ) = hs(ri)s(rf )i == Xfs0g s(ri)s(rf ) exp��HT � ; (28)whi
h is a random quantity at large rif � 1. To showthe existen
e of the sign phase transition in this quan-tity, we noti
e that at T � jJij j, we 
an expand theexponent in (28) and take only dire
ted paths betweensites i and f into a

ount. Summing over dire
ted pathsis equivalent to solving the re
ursion equation�km = �k�1mJkmk�1m + �;m�1Jkmkm�1n; (29)where indi
es �km� denote the site with 
oordinatesk;m on the square latti
e and Jkmk�1m denote the bond
onne
ting two su
h sites. Re
ursion (29) is very sim-ilar to (16) with the binary distribution of �ij , and we
an therefore expe
t that it shows the same sign tran-sition as a fun
tion of the 
on
entration X of negativebonds. The only di�eren
e between (29) and (16) isthat the negative signs are asso
iated with bonds inthe former and with sites in the latter. This is similarto the di�eren
e between site and bond disorder in theper
olation problem whi
h is known to have very littlee�e
t. Thus, we expe
t that at r !1, the distributionfun
tion of �(r) exhibits the sign phase transition as afun
tion of X . At high temperatures, the 
riti
al valueX
 is T -independent. As the temperature de
reases,the sign 
orrelations in
rease, whi
h 
an lead to theformation of the sign-ordered phase. This means thatthe transition from the spin-disordered to spin-orderedphase shifts to largerX at lower temperatures. Finally,at su�
iently low temperatures, the system might be-
ome a ferromagnet. At the transition point, sus
ep-tibility (28) de
reases as a power of jri � rf | and thesign 
orrelations are long-range whereas spin 
orrela-tor de
reases exponentially. Thus, the transition tothe sign-ordered state o

urs above the transition to aferromagnet.The staggered sus
eptibility is de�ned by ~�(r) == (�1)n�(r), where n is the number of steps in a di-re
t path on a square latti
e between the sites 0 andr. Obviously, it also exhibits a sign phase transition.Thus, at high temperatures, the sign-disordered phaseis separated from the phases in whi
h the sign of thesus
eptibility is positive or alternating. At su�
iently

F AF
T Signdisordered
0 1XSGFig. 15. Qualitative pi
ture of the phase diagram ofIsing spin glass. Dashed lines separate sign-ordered andsign-disordered phases at high temperatures. The spinglass phase (SG, dots) appears in dimension three andhigher. In two dimensions, the spin system remainsparamagneti
 down to lowest temperatures in the ab-sen
e of the ferromagneti
 (F) (or antiferromagneti
(AF)) long-range orderlow temperatures, the system freezes into a magnet-i
ally ordered or a spin glass phase. The spin glassphase may be sign-ordered or sign-disordered, the for-mer 
orresponds to the 
oexisten
e of ferromagneti
(or antiferromagneti
) and spin glass order parameters.These 
on
lusions are summarized by the phase dia-gram shown in Fig. 15.5. REVIEW OF THE EXPERIMENTALRESULTS AND CONCLUSIONSTheoreti
al expe
tations des
ribed in the previ-ous se
tions 
an be separated into the qualitative andquantitative predi
tions. Veri�
ation of the qualitativepredi
tion of the orbital me
hanism of a large nega-tive magnetoresistan
e in the variable-range hoppingregime is relatively simple: it requires measurements ofthe anisotropy with respe
t to the parallel and perpen-di
ular magneti
 �eld. By 
ontrast, verifying quanti-tative predi
tions represented by (18) and (19) wouldrequire stronger 
onditions ln [% (0) =� (B)℄ > 1 andB�2 > �0. We are not aware of experiments on the neg-ative magnetoresistan
e where all these requirementswere satis�ed. Below, we dis
uss the 
urrently avail-able data on large negative magnetoresistan
e in thevariable-range hopping.We begin with the maximal value of the magnetore-sistan
e observed experimentally and expe
ted theoret-648
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Fig. 16. Data from [8℄ and their �t to the behav-ior in (18) expe
ted for relatively small resistan
esR�=RQ � 103�104 involving the matrix elements 
om-puted in Se
. 3.2. Curve 1 
orresponds to the �eld per-pendi
ular to the plane of the sample. Data points 2show the e�e
t of the �eld in the plane of the sampleperpendi
ular to the dire
tion of the 
urrent, and dataset 3 � to the �eld in the dire
tion of the 
urrent.The gray line shows the theoreti
al expe
tations. Theupturn at large �elds is due to the e�e
t of the �eld atsmall s
ales, where it modi�es the hopping amplitudebetween the sites, whi
h was not taken into a

ountproperly in the modeli
ally. In our numeri
al simulations, we obtained themaximum value Æ�=� = 0:2 for the uniform density ofstates (Mott regime) and Æ�=� = 0:05 for the densityof states linear in " (Efros�Shklovskii regime). Themeasurable values of the resistan
e (R . 1011
) 
orre-spond to (T0=T )� . 15. Hen
e, Eqs. (18) and (19) de-s
ribe the negative magnetoresistan
e whose value doesnot ex
eed % (0) =� (B) < 30 in the Mott regime, and isexpe
ted to be more moderate, ln[� (0) =� (B)℄ < 1, inEfros�Shklovskii regime. This is in agreement with thefa
t that in all papers [8�18℄ where both the large nega-tive magnetoresistan
e has been observed and the tem-perature dependen
e of the resistan
e has been mea-sured, it followed Mott's law.Surprisingly, one of the most 
omprehensive stud-ies of the negative magnetoresistan
e in the variable-range hopping regime in a two-dimensional materialwas done in the early work [8℄ that studied Ge-soppedGaAs �lms. It observed a strongly anisotropi
 nega-tive magnetoresistan
e, the largest one 
orrespondingto the out-of-plane �eld. The e�e
t of the in-plane �eld
an be a

ounted for by a signi�
ant thi
kness of the�lm (deff � 30 nm). Moreover, the in-plane negativemagnetoresistan
e was also anisotropi
 with respe
t to

the angle between the magneti
 �eld and the 
urrent.Finally, mi
ros
opi
 �u
tuations of the resistan
e as afun
tion of the magneti
 �eld in small samples wereobserved. These observations prove the orbital natureof the e�e
t. In this experiment, the resistan
e of thesample was R� . 30 M
 at lowest temperatures, in-di
ating that r=� . 5. A

ordingly, the magnitudeof the negative magnetoresistan
e remained moderate:((� (0)� � (B)) =� (0))max � 0:4. In Fig. 16, we presentresults of our numeri
al simulations of Eq. (26) andtheir 
omparison with the experimental data in [8℄.Paper [10℄ observed negative magnetoresistan
e witha similar amplitude and a similar dependen
e on themagneti
 �eld in thin �lms of poly
rystalline In2O3�x.A subsequent paper [9℄ on GaAs/AlxGa1�xAsdisordered heterojun
tions observed the signi�
antlylarger negative magnetoresistan
e %(0)=�(B) � 7.Strong anisotropy of the negative magnetoresistan
ehas been observed, indi
ating the orbital nature of thee�e
t. The magneti
 �eld dependen
e of �(B) in low�elds B . 4T where magnetoresistan
e is negative wasroughly linear in 
oordinates ln �(B), B1=2, whi
h is ingood agreement with the dependen
e expe
ted theoret-i
ally (25) and shown in Fig. 14. In these experiments,the lo
alization length � varied in the range 25�100 nmfor di�erent gate voltages, with B�2 � �0 o

urring atB � 4T. Generally, one expe
ts that the magneto
on-du
tan
e should show a 
rossover to a di�erent regimewhen B�2 � �0. It is surprising that this 
rossoveris not observed in the data. On the other hand, thispaper and the papers dis
ussed below give values forthe lo
alization length � extra
ted from the Mott law.This pro
edure is prone to a number of un
ertaintiessu
h as the value of the density of states, the exa
tform of the temperature dependen
e, et
., and the val-ues of the lo
alization length might therefore be wrongby a fa
tor 2�5, whi
h would be su�
ient to explain theabsen
e of the 
rossover in [9℄. A similar large nega-tive magnetoresistan
e (%(0)=�(B) � 20) of the orbitalnature was observed in poly
rystalline In2O3�x �lmsin [1℄. The behavior of %(0)=�(B) in these experimentsresembles a small power of magneti
 �elds in a widerange of �elds for all �elds; the quadrati
 behavior wasobserved only in very low �elds (B < 0:2T), at whi
hthe relative 
hange in the resistan
e was very small,ÆR=R� 1, in agreement with the theoreti
al expe
ta-tions (
f. Fig. 13 in whi
h the B2 behavior appears atÆR=R . 10�2�10�1).The maximal value of magnetoresistan
e in [9�11℄is somewhat above the value expe
ted theoreti
ally forthe �lms of these resistan
es. For instan
e, the resis-tan
e of GaAs/AlxGa1�xAs �lms in [9℄ implies that at649
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h translates into the max-imal expe
ted value � (0) =� (B) � 2�3. It is possible,however, that the largest �elds studied in these papers
orrespond to the regime B�2 & �0, in whi
h the mag-netoresistan
e may 
ontinue to grow with B.A huge e�e
t of the transverse �eld on the 
on-du
tivity (% (0) =% (B) & 30) of high mobility sili
onMOSFET was observed [12; 13℄ at low 
arrier 
on
en-trations. Remarkably, the large magnetoresistan
e inthe transverse �eld appears in these experiments onlywhen the spins are polarized by a large in-plane �eld,while low �elds result in an isotropi
 small and positivemagnetoresistan
e. The latter indi
ates the spin natureof the magnetoresistan
e, whi
h is in agreement withthe strong 
orrelations expe
ted in this material. Asdis
ussed in Se
. 3.3, this implies the existen
e of lo
al-ized spins in the system that suppress the orbital e�e
tof the magneti
 �eld. Appli
ation of a large in-plane�eld polarizes the spins, making the path interferen
epossible, su
h that a transverse �eld added to the sys-tem leads to a large negative magnetoresistan
e, as isobserved experimentally. Unfortunately, paper [12℄ didnot study the temperature dependen
e of the resistiv-ity in these samples. It is likely that the 
hange of thesign of magnetoresistan
e observed in [14℄ in studyingthe pregraphiti
 
arbon nano�bers that obey the Efros�Shklovskii law is due to a similar me
hanism. Unfortu-nately, this work did not study the �eld anisotropy.Paper [15℄ reported a big negative magnetoresis-tan
e (% (0) =% (B) � 10) of H-doped graphene, whilethe in-plane �eld had pra
ti
ally no e�e
t on the resis-tan
e. The observed negative magnetoresistan
e 
an beinterpreted as a large 
hange in the lo
alization length�(B)=�(0) = 4 indu
ed by the �eld B = 9T. Theseresults 
annot be 
ompared dire
tly with the univer-sal s
aling dependen
e derived in this paper be
ausethe large 
hanges in the lo
alization length imply thatB�2 � 1. We expe
t that at lower temperatures, thesamples studied in this work should exhibit large mag-netoresistan
e at low �elds asso
iated with small Æ�=�,but these data are not available.Finally, it is possible that negative magnetoresis-tan
e due to the orbital e�e
t was also observed inother materials but was not studied in any detail. Forinstan
e, a sharp (fa
tor of 2) drop of the resistan
e inthe �elds B = 1T at T = 100mK was observed in [16℄for CdSe: in samples that display the three-dimensionalMott resistan
e with the exponent � = 1=4 and R(0) == 6 M
 � 
m, signi�
ant (ÆG=G � 0:2) negative mag-netoresistan
e was also observed in three-dimensionaldoped n-type InP samples that also show the Mott law

but a mu
h lower resistan
e R(0) � 10
 � 
m. Pa-per [17℄ reported a de
rease in the resistan
e by a fa
torof 100 in the �eld B = 1 T for Ge �lms at T = 36mK
hara
terized by R = 400 k
.The 
omplexity of the data outlined above showsthat they 
annot be explained solely by a single-parti
letheory. In parti
ular, it 
annot explain why some ma-terials exhibit only positive while others only nega-tive magnetoresistan
e in the whole range of tempera-tures and magneti
 �elds in the variable-range hoppingregime. Moreover, there are also materials that exhibitan isotropi
 positive magnetoresistan
e only at small�elds. At larger in-plane �elds, the magnetoresistan
eof these samples saturates, and addition of a small per-pendi
ular �eld results in a giant negative magnetore-sistan
e [12; 13℄. Evidently, the spin physi
s plays animportant role in the these materials.Positive magnetoresistan
e of several orders of mag-nitude in high magneti
 �elds has been observed inmany experimental works (see, e. g., [23; 48; 49℄). How-ever, no data set is su�
iently 
omplete to allow asso-
iating it with the orbital interferen
e me
hanisms [19℄des
ribed by (18) and (19). For example, these worksdid not study the anisotropy of the magnetoresistan
e.We now brie�y dis
uss the origin of the isotropi
positive magnetoresistan
e in small �elds, whi
h wasobserved in a number of works. There are at leastthree possibilities. The �rst is that the ele
tron spinpolarization in
reases the ele
tron energy. As a result,the density of states at the Fermi energy 
hanges aswell. This is expe
ted to be a relatively small e�e
t.An alternative me
hanism asso
iates it with the pres-en
e of both singly and doubly o

upied states near theFermi energy in the impurity band. In the absen
e of amagneti
 �eld, the pro
ess in whi
h the ele
tron hopsfrom one o

upied site to another (
reating a singlet)is possible. The magneti
 �eld polarizes spins, whi
hsuppresses su
h pro
esses [50℄. Thus, the magneti
 �elde�e
tively 
hanges the density of states in the impurityband. This me
hanism provides 
ontribution to log�that are quadrati
 in B. Therefore, it 
an be e�e
tiveonly in the absen
e of the orbital 
ontribution, whi
his nonanalyti
 in B.A di�erent me
hanism might be e�e
tive if the ele
-tron system is strongly 
orrelated and in the absen
eof disorder is 
lose to the Wigner-
rystal�Fermi-liquidtransition. In the presen
e of disorder, the system maybe visualized as a random mixture of 
rystal and liquidpuddles. In this 
ase, the insulating phase 
orrespondsto the situation where metalli
 puddles do not over-lap. Be
ause the magneti
 sus
eptibility of the Wigner
rystal is higher than that of the Fermi liquid, the fra
-650



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Giant magnetoresistan
e in the variable-range hopping regimetion of the Wigner 
rystal grows with in
reasing themagneti
 �eld, leading to the positive magnetoresis-tan
e [13℄. In the theory of 3He, this phenomenon isknown as the Pomeran
huk e�e
t. It is possible thatthe huge positive isotropi
 magnetoresistan
e observedin [12; 13; 51℄ in the metalli
 regime of Si MOSFET'sand GaAs quantum wells is due to this me
hanism.We believe that the same me
hanism may be responsi-ble for the positive isotropi
 magnetoresistan
e in thehopping regime [13℄.Finally, the spin alignment in the parallel �eld pro-du
es the interferen
e between the paths and 
orre-sponds to a new me
hanism of magnetoresistan
e. Al-though this me
hanism in the hopping regime has neverbeen 
onsidered theoreti
ally, it is 
lear that it also pro-du
es a negative magnetoresistan
e. We expe
t thatthis 
ontribution will be isotropi
.While this work was in progress, we learned aboutpaper [52℄ that gives the arguments for the univer-sal 
orre
tions to the magnetoresistan
e of stronglydisordered super
ondu
tors des
ribed by a modelsimilar to the ele
tron hopping dis
ussed here. In ourterminology, this model 
orresponds to the 
ase ofthe uniform density of states and positive s
atteringamplitudes.We a
knowledge useful dis
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