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Statistical mechanics of a 1D multivalent Coulomb gas can be mapped onto non-Hermitian quantum mechanics.
We use this example to develop the instanton calculus on Riemann surfaces. Borrowing from the formalism de-
veloped in the context of the Seiberg-Witten duality, we treat momentum and coordinate as complex variables.
Constant-energy manifolds are given by Riemann surfaces of genus g > 1. The actions along principal cycles on
these surfaces obey the ordinary differential equation in the moduli space of the Riemann surface known as the
Picard—Fuchs equation. We derive and solve the Picard—Fuchs equations for Coulomb gases of various charge
content. Analysis of monodromies of these solutions around their singular points yields semiclassical spectra
as well as instanton effects such as the Bloch bandwidth. Both are shown to be in perfect agreement with

numerical simulations.
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1. INTRODUCTION

One of the very last works of Anatoliy Larkin [1] was
devoted to transport through ion channels of biological
membranes. An ion channel may be roughly viewed
as a cylindrical water-filled tube surrounded by a lipid
membrane. Its typical radius a ~ 6 A is much smaller
than its length L &~ 120 A. The important observation
with far-reaching consequences, made in Ref. [1], is that
the dielectric constant of water €,qter & 80 is signifi-
cantly larger than that of the surrounding lipid mem-
brane ;piq &~ 2. This defines a new length scale

5 ~ AEwater In Ewater ~ 140A
Elipid Elipid

over which the electric field stays inside the channel
and does not escape into the surrounding media. Since

“E-mail: kamenev@physics.umn.edu

& 2 L, the ions inside the channel interact essentially
through the 1D Coulomb potential

U(l‘l — 1‘2) ~ 6E0|1‘1 — 1‘2|,

where Fy = 26/a26wat67« is a discontinuity of the elec-
tric field created by a unit charge. This fact dictates a
significant energy barrier U(L/4) &~ 4kpTyoom for mov-
ing a single ion through the channel. If indeed present,
such a barrier would essentially impede ion transport,
preventing the channel from performing its biological
functions.

Nature removes such Coulomb blocking by screen-
ing. A moving ion is screened either by mobile ions of
dissociated salt [1], or by immobilized charged radicals
attached to the walls of the channel [2-9]. Neverthe-
less, due to the peculiar nature of the long-range 1D
Coulomb potential, the transport barrier proportional
to the channel length L is always present. Its magni-
tude, however, is typically suppressed [1] down to about
kBT oom, allowing for a relatively unimpeded trans-
port of ions. These considerations call for developing a
transport theory of 1D Coulomb gases. Following the
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celebrated mapping of 1D statistical mechanics onto
an effective quantum mechanics, pioneered by Edwards
and Lenard [10] and Vaks, Larkin, and Pikin [11], the
authors of [1] mapped the problem onto quantum me-
chanics with a cosine potential (we briefly review this
mapping in Sec. 2). The ground-state energy of such
quantum mechanics is exactly the equilibrium pressure
in the Coulomb plasma. Moreover, the width of the
lowest Bloch band is a specific energy barrier for ion
transport through the channel.

It is instructive to notice that the 2acosf
= a(e’ + e") potential describes a mixture of posi-
tive, e*?, and negative, e %, monovalent ions with con-
centration . We can also consider a situation where
the channel is filled with a solution of dissociated mul-
tivalent salt, e.g., divalent CaCly or trivalent AlCl;3.
In these cases, the corresponding 1D statistical me-
chanics is mapped onto the quantum problem with a
non-Hermitian potential such as a(e??/2 + =) or
a(e?? /3 + e7%) [2,10]. This paper is devoted to effi-
cient mathematical methods of treating non-Hermitian
quantum mechanics of this sort.

Our particular focus here is on a semiclassical treat-
ment, applicable in the regime of a sufficiently large salt
concentration a. In its framework, the energy spectrum
(and hence the pressure) is determined by the Bohr—
Sommerfeld quantization condition for the action of
classical periodic orbits. On the other hand, the band-
width (and hence the transport barrier) is given by the
exponentiated action accumulated on an instanton tra-
jectory, running through the classically forbidden part
of the phase space. The traditional techniques of Her-
mitian quantum mechanics call for finding classical and
instanton trajectories by solving equations of motion in
real and imaginary time and evaluating corresponding
actions. This route cannot be straightforwardly fol-
lowed in non-Hermitian quantum problems arising in
the context of multivalent Coulomb gases. Even leav-
ing aside the technical difficulties of solving complex
equations of motion, there are conceptual difficulties
with identifying periodic orbits as well as the meaning
of classically allowed vs forbidden regions and with the
imaginary time procedure.

In this paper, we borrow from the algebraic topol-
ogy methods developed in the past decades in the con-
text of the Seiberg-Witten solution [12, 13] and its
applications to integrable systems [14-16] (and many
follow-up contributions). The central idea is to consider
both the coordinate € and the corresponding canonical
momentum p as complex variables. This leads to a four-
dimensional (4D) phase space. Then (complex) energy
conservation restricts the trajectories to live on 2D Rie-
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mann surfaces embedded into the 4D phase space. The
dynamics of the system are essentially determined by
the topology, i.e., the genus g of such Riemann sur-
faces. We show that mono- and divalent gases are
described by tori, while trivalent and 4-valent lead to
genus-2 surfaces, etc. The Cauchy theorem and the
resulting freedom to deform the integration contour in
the complex space allows us to avoid finding specific so-
lutions of the equations of motion. Instead, we identify
the homology cycles on the Riemann surface and find
the corresponding action integrals, which depend only
on the topology of the cycles and not on their specific
shape. For example, the cosine potential of a mono-
valent gas leads to a torus, which obviously has two
topologically distinct cycles (see Fig. 6 below). The
two turn out to be related to classical and instanton
actions correspondingly. The genus ¢ > 1 Riemann
surfaces admit 2¢g topologically distinct cycles. Below,
we identify and explain the meaning of the correspond-
ing action integrals.

The shape of the specific Riemann surface depends
on the parameters of the problem, e. g., salt concentra-
tion « in our case. Such parameters are called mod-
uli of the Riemann surface. It turns out that the
action integrals, being functions of the moduli, sat-
isfy a closed ordinary differential equation (ODE) of
the order 2g, known as the Picard—Fuchs equation.
The actions can be found as solutions of this ODE
in the moduli space, rather than by performing inte-
grations over cycles on the surface. Below, we derive
and solve Picard—Fuchs equations for several (positive
and negative) ionic charge combinations, such as the
genus g = 1 cases (1,1),(2,1) and the genus g = 2
cases (3,1),(3,2),(4,1). We then discuss how to con-
nect the principal classical actions with the spectra
of the corresponding quantum problem. The key ob-
servation is that in the moduli space, the actions ex-
hibit a few isolated branching points. Going around
such a branching point transforms the actions into
their linear combinations, effecting an Sp(2¢g,7Z) mon-
odromy transformation. The invariance of quantum ob-
servables under monodromy transformations dictates
Bohr—Sommerfeld quantization for one of the principal
classical actions. The remaining actions can be iden-
tified with the instanton processes, e. g., related to the
Bloch bandwidth.

Statistical mechanics of 1D Coulomb gases may
seem to be an isolated problem, not worthy of de-
veloping an extensive mathematical apparatus. Our
goal here is to use it as a test-drive example, grounded
into a well-posed physics problem, to develop a ma-
chinery applicable in other setups. Recently, the so-
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called PT symmetric non-Hermitian quantum mechan-
ics attracted much attention for its application in ac-
tive optics [17] and open quantum systems [18], as well
as in the description of antiferromagnetic lattices [19]
and calculating energy states in larger molecules [20].
Our examples also belong to the class of P77 symmetric
problems. It seems likely that the methods developed
here may be applied to advance analytic understand-
ing of a broader class of PT symmetric quantum me-
chanics. Another context where complexified quantum
mechanics was proven to be extremely useful, is dynam-
ics of large molecular spins [21, 22]. Indeed, functional
integral representation of the spin dynamics leads nat-
urally to the Hamiltonian formulation, where the pro-
jective coordinates (z, Z) on the sphere play the role of
the canonical pair [23]. It was realized in [21, 22] that to
find instanton trajectories, one has to consider z and Z
as independent complex variables, thus expanding the
dynamics into 4D phase space. The Riemannian ge-
ometry methods seem to be well-suited to advance this
subject as well.

This paper is organized as follows. In Sec. 2, we out-
line the relation between 1D multivalent Coulomb gases
and non-Hermitian quantum mechanics and discuss
general symmetries of the latter. In Sec. 3, we sum-
marize major numerical observations regarding com-
plex spectra and the band structure for the family of
Hamiltonians considered here. In Sec. 4, we illustrate
the machinery of algebraic geometry on Riemann sur-
faces for the familiar Hermitian cosine potential quan-
tum mechanics, which corresponds to the monovalent
(1,1) gas. There, we introduce the complexified phase
space and Riemann tori of constant energy; we then de-
rive, solve, and analyze solutions of the Picard-Fuchs
equations. In Sec. 5, we apply the developed methods
for the divalent (2,1) Coulomb gas, which is also de-
scribed by a genus-1 torus. In Sec. 6, we extend the
method for genus-2 example of a trivalent (3,1) gas,
which exhibits some qualitatively new features. The
(3,2) and (4,1) gases are briefly discussed in Sec. 7. In
Sec. 8, we outline connections to the Seiberg—Witten
theory. We conclude with a brief discussion of the re-
sults in Sec. 9.

2. MAPPING OF COULOMB GASES ONTO
QUANTUM MECHANICS

We consider a 1D gas of cations with charge nie
and anions with charge —nse, where (ny,ns) are posi-
tive integers. By Gauss’s theorem, the electric field at a
distance x larger than the radius of the channel a from

a unit charge is Ey = 2e/a?cater. At the location of
a charge n », the electric field exhibits a discontinuity
+2Fpni . Since all charges are integers, the field is
conserved modulo 2E; along the channel. This allows
defining the order parameter [1, 3] ¢ = E(x)(mod 2Ey),
which acts like an effective boundary charge ¢ at the
two ends of the channel. The Poisson equation in 1D is
V2¢p = —2Eyd(x), leading to the 1D Coulomb potential
¢(x) = —Ep|z|. The potential energy of the gas is thus

_Bo

U= >

G,O'J|l'2 xj|7 (1)
i,j

where o; is the charge n; or —ns of an ion at the po-
sition z; and we omit the +¢ boundary charges for
brevity. Our goal is to evaluate the grand canonical
partition function of the gas in the channel of length L,

Nz

Z Nl'NQ

Ni,Na=0

/dlex

L
U
X /daf:j exp <—]€B—T>, (2)
0

where f; o are fugacities of the two charge species. We
can now introduce the charge density using a delta-
function d[p(z) —3_; 0;0(x —x;)]. The delta-function is
elevated to the exponent with the help of the auxiliary
field §(x). This procedure decouples all z; integrals [1],

bringing them to the form
= exp {f /dx ei"e(z)} .

Interaction potential (1), being inverse of the 1D
Laplace operator, leads to exp{(T'/eE,) [dz 0026}. As
a result, partition function (2) is identically written as
a Feynman path integral, in an “imaginary time” z, for
the quantum mechanics with the Hamiltonian

= (i0p—q)*—

where a5 = f12kpT/eEy are dimensionless ion con-
centrations. Such a Feynman integral is the expecta-
tion value of the evolution operator during “time” L,
leading to

wO(x

Z [ffdxe

[av1 exp(ing @) +as exp(—in2b)], (3)

L
E N
Zr = <q‘)(exp —ZB;/daf:H ‘q> =

0
EL

- 5 o (2

@), @
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where A stands for the z-ordered exponential.
Here, €p,(q) are eigenvalues of the effective Hamil-
tonian H and |m) = ¢, (#) are its eigenvectors in
the Hilbert space of periodic functions ), (6)
= Y (0 + 27), and finally the matrix elements are
(qlm) = fo% dfe=%%),.(f). The boundary charge
q plays the role of the Bloch quasimomentum and
the spectrum is obviously periodic in ¢ with the unit
period (reflecting the fact that the integer part of the
boundary charge may be screened by mobile ions and
thus becomes inconsequential).

The pressure of the Coulomb gas is its free energy
per unit length,

Oln Z o
oL L L2 eFpeolq),

where €y(q) is the eigenvalue with the smallest real part.
In equilibrium, the system minimizes its free energy
by choosing an appropriate boundary charge ¢. In all
cases considered below, the minimum turns out to be
a nonpolarized state of the channel, i.e., ¢ = 0 (see
Refs. [2] for exceptions to this rule, however). Adia-
batic charge transfer through the channel is associated
with the boundary charge ¢ sweeping through its full
period. As a result, the (free) energy barrier for ion
transport is

P =kgT (5)

UO = eE()LAo, (6)

where Ay is the width of the lowest Bloch band. There-
fore, the ground-state energy and the width of the
lowest Bloch band of Hamiltonian (3) determine ther-
modynamic and transport properties of the (ni,ns)
Coulomb gas. The rest of this paper is devoted to a
semiclassical theory of the spectral properties of such
Hamiltonians. We start by discussing some general
symmetries of non-Hermitian Hamiltonian (3).

2.1. PT Symmetry

Although the Hamiltonian in (3) is non-Hermitian
for ny # na, it obeys PT symmetry [24,25]. Here, the
parity operator P acts as # — —# and the time-reversal
operator 7 works as complex conjugation i — —i.
Clearly, the two operations combined leave Hamilto-
nian (3) unchanged. It can be proved [25,26] that all
eigenvalues of PT-symmetric Hamiltonians are either
real or occur in complex-conjugate pairs. As shown be-
low for positive values of concentrations ay 2 > 0, the
lowest-energy band ep(q) is entirely real, ensuring the
positivity of the partition function. The higher bands
em(q) are in general complex. It is interesting to note
that for unphysical negative concentrations a; s < 0,
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already the lowest band €y(¢) is complex, making the
free energy ill-defined.

2.2. Isospectrality

The spectrum of Hamiltonian (3) is invariant un-
der shifts of the coordinate 8 — 6 + 8y, where 6 is
an arbitrary complex number. Under this transfor-
mation (preserving the periodic boundary conditions),
the dimensionless concentrations aj » renormalize as
a; — ajexp(ingfy) and as — asexp(—inaby). We
note that the combination af?a}' remains invariant.
We hence conclude that the family of Hamiltonians (3)
with

(7)

is isospectral [10]. Therefore, without loss of generality,
we can pick one representative from each isospectral
family. It is convenient to choose such a representa-
tive to manifestly enforce charge neutrality in the bulk
reservoirs. For this, we take ajny = asns = a, which
brings Hamiltonian (3) to the form

n2 N1 _
ooyt = const

A=a [ﬁ_ (nil exp(mle)+ni2 exp(—inﬁ))] ®)

where we have defined the momentum operator as

p=« -1/2,

(it +q), (6.0 =i (9)
The commutation relation shows that a~'/2 plays the
role of the effective Planck constant. With the help
of isospectrality condition (7), a proper a can always
be chosen such that the spectrum of Hamiltonian (8)
is identical with that of a Hamiltonian with arbitrary
a1,2. The physical reason for this symmetry is that
the interior region of the long channel always preserves
charge neutrality, allowing the edge regions to screen
charge imbalance of the reservoirs. Therefore, irrespec-
tive of the relative fugacities of cations and anions in
the reservoirs, the thermodynamics of the long channel
is equivalent to the one in contact with neutral reser-
voirs with an appropriate salt concentration a. Here-
after, we restrict ourselves to the neutral Hamiltonian
(8) with a single parameter a.

3. NUMERICAL ANALYSIS

In this section, we discuss numerical simulation of
the spectrum of Hamiltonian (8). We focus on unequal
charges ny # ns, because the case of ny = ny reduces
to the well-known Hermitian cosine potential [27,28].
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For unequal charges, the Hamiltonian is non-Hermitian
but P7T symmetric, allowing for complex eigenvalues,
which appear in conjugate pairs [25, 26].

Since the Hamiltonian H acts in the Hilbert space
of periodic functions, we can choose the complete basis
in the form {e?™},,c7. In this basis, the Hamiltonian
is represented by an infinite-size real matrix [2]

Hm m! = (m - q)25m,m’ -
1 1
-« n_15m+n17m’ + n_25m—nz,m’ . (10

The boundary charge ¢ plays the role of quasimomen-
tum residing in the Brillouin zone ¢ € [-1/2,1/2].
To numerically calculate the energy spectrum €, (q),
we truncate the matrix at a large cutoff, after verify-
ing that a further increase in the matrix size does not
change the low-energy spectrum. We left the bound-
ary conditions “open”, i.e., did not change the matrix
elements near the cutoff, after verifying that different
boundary conditions do not affect the result. It is easy
to see that the matrix size should be much more than
Va to accurately represent the low-energy spectrum.
As an illustration, we show the Hamiltonian cut to a
5 x 5 matrix for the divalent (2,1) gas:

(—2—¢)> 0 —a/2 0 0
- (—1—¢q)? 0 —a/2 0

0 —a (0—q)? 0 —a/2
0 0 o (1-¢g? 0

0 0 0 —a (2=¢)

For reasons that become apparent below, it is con-
venient to represent the spectrum e on the complex
plane of the normalized energy u defined as

nins €

il (11)
For the divalent (2,1) gas, u = 2¢/3a and the corre-
sponding spectra are shown in Fig. 1. The spectrum
consists of a sequence of complex Bloch bands. The
number of narrow bands within the unit circle |u| =1
scales as y/a. They form three branches, which termi-
nate at u = —1 and u = e*™/3 and approximately line
up along the lines connecting the termination points
with the point u = 1. We discuss the corresponding
bandwidths below. Outside the unit circle, the bands
are wide and centered near the positive real axis of en-
ergy.

Figure 2 shows the band structure in the first Bril-
louin zone |¢| < 1/2 for a = 1. We note that the lowest
Bloch band is purely real (this is always the case for

a e L " a=0.5
0.5
.
-1 /1 , 2
-0.5r
=10
b a=10
| |
-1 2
-0.5r
_1'0 I
e 1O,
¢ ":(.__.. a=2.0
4
-1 /1 2
B \'/ ‘;'
-0.5r
~1.0"
...... LO
d e a =200
0.5F
-1 o] 2
L o
\ v
~0.5F i
7
Lo
Fig. 1. Complex plane of the normalized energy
u = 2€m(q)/3a for the (2,1) gas. The color corresponds
to different values of the quasimomentum ¢; dark gray
stands for ¢ = 0 and light gray for ¢ = £1/2. The dot-
ted circle is |u| = 1, the dashed lines connect between
599 =1 and u=e*"/?

, indicating positions of the narrow
complex bands in the limit of large
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u a L0 .1
0.5F
-1
21
-0.5r
S
_______ SLOp
—04___02__0 0.2 0.4 b 1.0 R 3.1
q b
0.5F g
Fig.2. Band structure for the (2, 1) gas with o = 1 (cf. R
Fig. 1) vs the boundary charge (quasimomentum) g. | '?_
For complex bands, the real part of €,,,(q) is shown in 1 1
dashed line L ’.,,m"
—05F
/'
/’I,
a > 0), ensuring positive partition function (4) and 21O
real pressure (5). The next two bands are complex.
For |¢| < ¢. = 0.36, they exhibit opposite imaginary ¢ _.\--\1‘:0" """"""" 4,1)
parts (not shown), but turn real at |q| > ¢.. The next - - ’
two bands are real (cf. Fig. 1b). The higher bands 05k
form an alternating sequence of two real and two com- N
plex bands. For larger values of «, there is a sequence |
of entirely complex narrow bands (cf. Fig. 1d). 1
Figure 3 shows normalized spectra for several dif- . 4
ferent combinations of charges on the complex energy —0.5 _‘~
plane of u, Eq. (11), at the large concentration a = 200. e
One may notice an odd number ny + ns or n; +ns — 1 1.0
of spectral sequences, consisting of order-y/a exponen-
tially narrow bands, seen as points. The central se- 4 \;_1.0" -------- (3.2)
quence goes along the real axis terminating at the bot- i ’
tom of the spectrum near © = —1. The others appear 05 _‘ N Y
in conjugate pairs terminating near the roots of unity A
u = —(1)1/(m+n2) " Close to the termination points, the o
band sequences align along the lines pointing towards—
u = 1. Farther away from the termination points, they _,} ..
deviate from these lines and may coalesce. 0.5 g 4
. Kt ya
Although thermodynamics and transport properties o ’
of the Coulomb gases are merely determined by the “-«_:"1/0_ ...........

lowest band €y(¢q), below we address the wider spectral
properties of Hamiltonians (8), presented in Figs. 1-3.

Fig.3. Complex plane of the normalized energy u,
Eq. (11), for &« = 200 and various valences (n1,nz). The
dotted circle is |u| = 1, the dashed lines connect spec-
trum termination points u = —(1)Y/(™1+2) and 4 = 1,
indicating positions of narrow complex bands

For this, we develop a semiclassical theory that is best
suited for the description of exponentially narrow bands
present at a large concentration a > 1.
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4. MONOVALENT (1,1) GAS

To introduce the methods, we first develop a semi-
classical spectral theory for the Hermitian Hamiltonian
in (), (9) with ny = na = 1. For this, we look for wave-
functions in the form v = exp(ia'/2S), where S is an
action for the classical problem with the normalized
Hamiltonian

2u = p* — 2cos b, (12)
where u = €/2a, such that v = F1 correspond to the
bottom (top) of the cosine potential. The semiclassical
calculations require knowledge of the action integrals.
Our approach to such integrals is based on complex al-
gebraic geometry. First, we let 2 = € and consider
(z,p) as complex variables. Since p(z) resides on the
constant-energy hypersurface

1

2u:p2—<z+—), (13)
z
we have a family of complex algebraic curves

Eu: Flpz)=p2—(224+2uz+1)=0 (14)

parameterized by u. For u # F1, it can be verified that
(0F |0z, 0F | Op) does not vanish on &, and hence each
&y is nonsingular. Then F(p, z) implicitly defines a lo-
cally holomorphic map p = p(z). The exceptions to
this occur at z = 0, 0o, z+, where

24 = —uExiv1—u?

are the roots of p?> = 0 (i.e., classical turning points).
In the vicinity of these four branching points, p(z) be-
haves as

(15)

p~zT'? (2~0,) (16)
p~2? (2~ 0), (17)
D~ (z—zi)l/2 (z ~ 24), (18)

i.e., p(z) is locally double-valued. (Note that we have
added a point at z = oo to the complex plane, thereby
rendering it compact and topologically equivalent to a
Riemann sphere, Fig. 4). To make sense of this double-
valuedness, we first introduce two cuts between the four
branching points. For convenience, we have chosen to
do so between 0, 00 and the turning points z. On this
cut domain, p(z) is locally holomorphic.

We then introduce a second sheet of the z-plane and
the corresponding Riemann sphere, cut in the same way
as the first. We then analytically continue p(z) on the
first sheet across the cuts to the second sheet. If p(z)

601

/ Rez
z_

Fig.4. (a) Complex z-plane with two cuts. (b) It com-
pactifies to the Riemann sphere with two cuts

S
-y
I }Qo 8
»

24

Fig.5. Construction of a Riemann surface of genus 1.

Two Riemann spheres with two cuts each are deformed

into tubes to make the gluing in the final step more
clear

is analytically continued across the branch cut again,
we return to the first sphere where we started. In this
way, we obtain p(z) as a locally holomorphic function,
whose domain is a double-branched cover of the Rie-
mann sphere. Furthermore, suppose we open up the
branch cuts, keeping track of where on the other branch
p(z) would be if we cross one side of a cut. Identify-
ing these edges, we obtain a torus as in Fig. 5 (where
the arrows are used to signify the glued together edges).
Thus the complex algebraic curve &, can be understood
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w1
3o

Fig.6. Riemann surface of genus 1 with two basic cy-

cles 4o and ; on it. In the limit v — F1, the torus

degenerates into a singular surface. This coincides with

the loop do (but not §1) becoming contractible to a
point

as a compact Riemann surface of genus g = 1 (gener-
ally, every compact Riemann surface is topologically a
sphere with some number of handles g, called the genus
of the surface).

At the exceptional points v = F1, the two turn-
ing points collide (24 = z_ = £1) and the branch cut
between them collapses. The Riemann surface degener-
ates into a sphere with two points identified, a singular
surface of genus 0. This coincides with one of the loops
of the torus becoming contractible to a point (Fig. 6).

4.1. Integration and topology on the torus

The action integrals can be understood as S = 557 A
over classical trajectories, where

dz

(22 + 2uz +1)'/2
123/2

1z

A(u) = p(0) db = p(2) dz (19)
is the action 1-form that is meromorphic on the torus.
To visualize the relevant trajectories, we momentarily
return to # and consider it complex. In this represen-
tation, there are square-root branch cuts along the real
axis, connecting the classical turning points. The ac-
tion integrals run just above or below the real axis be-
tween the turning points. Combining them into closed
cycles, we can push these cycles off the real axis and
away from the turning points without altering the ac-
tion integrals (by the Cauchy theorem). The two de-
formed cycles, shown in Fig. 7, are hereafter called g
and Y1-

Translating these two cycles to the complex z-plane
yields the contours in Fig. 8. We note that these are
indeed cycles (i.e., closed contours) owing to the cross-
ing of branch cuts. On the Riemann surface, both
wind around the torus. For this reason, the integrals
Si(u) = §w A are known as periods of &, with respect
to A(u). It can be verified that the residue of the action
form (19) at infinity is zero. Indeed, we have A ~ dp

602

—2cosf

Fig.7. The classically allowed (forbidden) region at

energy 2u are shown by the bold solid (dashed) line.

A classical (instanton) periodic orbit, in the complex
f-plane, leads to the 7o (1) cycle

1.5+

-1.5

—-1.5+

Fig.8. Cycles 7o and v1 on the complex z-plane for

u = —0.9. The cycle 41 crosses twice the two cuts

from the first branch (solid line) to the second branch
(dashed line) and back

at large z. Therefore, we can safely deform the con-
tour around infinity in the z-plane. We consider cycles
0o and d; as defined in Fig. 6. Any closed cycle on the
torus (after an appropriate deformation) can be decom-
posed into a superposition of an integer number of these
two basic cycles. For example, the cycles vy and 7, are

Yo =00, 71 =201 — do. (20)
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This is evident if we examine the manner in which these
cycles encircle around the torus. Formally, the basic
cycles generate the first homology group of the torus
(since cycles that are alike in this manner are homolo-
gous).

We can also consider the first cohomology group of
the torus, generated by two independent 1-forms on
the Riemann surface modulo exact 1-forms (the latter
integrate to zero for all cycles on the torus by Stokes’
theorem). In this work, we consider meromorphic 1-
forms with zero residues. Modulo exact forms, they
are dual to 1-cycles on the torus by the de Rham theo-
rem [29]. The duality implies that there are exactly as
many independent 1-forms to integrate upon the sur-
face as independent 1-cycles to integrate along the sur-
face. For the torus, the cohomology, like the homology,
is two-dimensional, i. e., any three (or more) 1-forms on
the torus are linearly dependent up to an exact form.

4.2. Picard—Fuchs equation

As a result, there must exist a linear combination
of 1-forms {\'(u), \'(u), A\(u)} that is an exact form
(here, primes denote derivatives w.r.t. «). This com-
bination can be found by allowing for (u-dependent)
coefficients in front of the three 1-forms and seeking an
exact form d,[P»(z)/\/z(2% + 2uz + 1)], where P(z)
is a second-degree polynomial with u-dependent coeffi-
cients. Matching the coefficients for powers of z leads
to five equations for six unknown parameters, deter-
mining the sought combination up to an overall mul-
tiplicative factor. This way, we find that the operator
L= (u?—-1)0% +1/4 acts on \(u) as

1— 22

2(22 4+ 2uz + 1)

d |1

.2

It follows from Stokes’ theorem and the exactness of
LX(u) that £S;(u) = 0 since v; is a cycle on the
torus. Therefore, S;(u) satisfies the linear second-order
ODE [16]
2 " 1

(u” = 1)S7 (u) + 1 Si(u) = 0. (22)
This is an example of the Picard—Fuchs equa-
tion [30,31] (see Ref. [32] for a review). Exactly this
equation appears extensively in the context of the
Seiberg—Witten theory.

Inspecting the coefficient in front of the highest
derivative shows that Eq. (22) has regular singular
points at u = oo and u = F1, where the torus degener-
ates into a sphere (see Fig. 6). Changing the variable to
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Imz
1.5 -

1.5
Rez

—1.54

Fig.9. The two cycles 79,1 for u = 0. Here, 71 can be
mapped to o by rotating through 180°

u?, this equation can be brought to the standard hyper-
geometric form [33]. In the domain | arg(1—u?)| < 7, it
admits two linearly independent solutions of the form
Fo(u?) and uFy (u?), where

1 11
Fo(u?) = oFy [ —=,—=;=; u? 2
O(U) 21( 47 4,2,U>, (3)
1 13
2 L Loy
Fl(u)—gFl <+4,+4,2,U>. (24)

These solutions form a basis out of which S;(u) (and
indeed any period of (14)) must be composed:

So(u) = C()()FO(U2) + 001UF1 (U,Z),
Sl (U) = ClOF[)(U2) + C’HuFl (U2).

(25)
(26)

To find the coefficients Cj, j,k = 0,1 appropriate for
the action cycles v;, we need to evaluate the periods
at one specific value of u. Employing the fact that
the hypergeometric functions (23)—(24) are normalized
and analytic at u = 0, i.e., Fy = 14+ O(u?), we see that
Sj(u) = Cjo + uCj; + O(u?). Hence, to identify Cjg,
we expand S;(u) to the first order in u and evaluate
the integrals at v = 0. The corresponding cycles in
the z-plane are shown in Fig. 9 and explicit calculation
yields

Coo = e~ '™/20y = 87 1/2I'(3/4)2,
Co = 6iﬂ/2011 = 7T71/2F(1/4)2.

(27)
(28)
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Fig.10. Monodromy transformation (u + 1) —

— (u+1)e*™ rotates the branch cut between [z_, 2]

by 180° counter-clockwise. This changes the cycle
01 — 5’1 =01 — 50 along with it

The relations between Cy, and Cyj, are not acciden-
tal. They originate from the fact that for u = 0, the
turning points are £¢ and hence the cycle v; transforms
into v under the substitution 2’ = ="z, Fig. 9. To-
gether with Eqs. (25) and (26), these relations imply
global symmetry between the two periods,

So(u) = e /28 (e'™u). (29)

4.3. Structure of S;(u) near u = —1

Equations (23)—(28) fully determine the two actions
Sp.1(u) in terms of the hypergeometric functions”). We
should now relate them to physical observables. For
this, we consider the structure of S;(u) in the neighbor-
hood of u = —1. As noted above, the cycle v9 = dy con-
tracts to a point as u — —1, and therefore So(—1) =0
by Cauchy’s theorem. By contrast, S;(—1) remains
finite. Moreover, while Sy is analytic near v = —1,
it turns out that S; is not. To see this, we choose
some u > —1 and allow u to wind around —1 (i.e.,
(u+1) = (u+ 1)e?™). Since u &~ —1, the roots z4 in
(15) are of the form z1 = —1+£i,/2(u + 1), and we see
that this transformation exchanges these branch points
via a counter-clockwise half-turn; the branch cut in ef-
fect rotates by 180°. For the cycle dg, which encloses
the turning cut, this has no effect: the cut turns within
it. Not so for d;: as the cut rotates, we must allow &
to continuously deform if §; is never to intersect the
branch points. The overall effect is shown in Fig. 10.
The effect of this monodromy transformation is to pro-
duce a new cycle §]. Thus, while we have returned to
the initial value of u, the period Si(u) (unlike So(u))
does not return to its original value and therefore Sy (u)
cannot be analytic near u = —1.

1 Since the integrals considered here are in fact elliptic inte-
grals over a closed cycle, the hypergeometric functions presented
here could have been given directly in terms of the complete el-
liptic integrals of the first and second kind [33].

These facts are consistent, of course, with the origin
of the integrals as the classical and instanton actions.
Asu — —1, the classically allowed region collapses and
p(#) — 0, and hence the classical action at the bottom
of the cosine potential approaches that of the harmonic
oscillator Sp(u) o< (1 4+ u) (indeed, the classical period
T x 0,5y is a constant). For the instanton trajec-
tory 71, the action S; does not vanish. Moreover, as
u — —1, the period on the instanton trajectory is log-
arithmically divergent because the trajectory goes to
the extrema of the cosine potential (see Fig. 7). This
implies that Sy (u) oc const + (1 + ) In(1 + u).

In fact, more can be said. Under the monodromy
transformation, the basis cycle 0] relates to the original
basis as 6] = §; — do (as can be seen by counting inter-
sections of cycles or by moving onto the torus). Thus,
(00,01) = (do,01 — dp). From the decomposition of v
and 7y, noted in (20), it follows that the S;(u) must
transform as

So(w)\ (1 0) (So(w)) _
Sy (u) -2 1) \Si(w))

where we have introduced the monodromy matrix M_,
of the actions near u = —1. Since this variation of S;
occurs for every such monodromy near u = —1, S
must have a component that depends logarithmically
on 1+ wu. Indeed, In (1 + u) increases by 277 under the
monodromy and since S; changes by —2.5j it must have
the functional form,

$1(0) = Qi) + = Sywn(L+u), (31

where Q1 (u) and Sp(u) are analytic functions of 1+ w.

As an immediate corollary, we can use relation (29)
between Sy and S; to find the structure of the solution
near v = 1. Then the functional form of Sp(u) near
u=11is

So() = Qofa) = =51 (u) In(1 — w),

where Qo(u) = —iQ1(—u) and Si(u) = iSp(—u) are
analytic functions of 1 — u. The corresponding mon-

odromy matrix is
1 2
M, = . 32
1 <0 1) (32)

While the structure of the periods near u = +1 has
been shown through geometric reasoning, it can also
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be found directly by seeking solutions of Picard—Fuchs
equation (22) as power series in 1 4+ u. Such a proce-
dure along with the demand of a constant Wronskian
leads to a realization that one of the two solutions must
include (1 £+ u)In(1 £+ u) terms along with the iterative
sequence for finding the coefficients of the polynomials.
This allows directly verifying Eq. (31).

4.4. Semiclassical results

We now seek semiclassical results for the sequence
of low-energy bands terminated at v = —1. We inter-
pret the period Sp(u) that is analytic around u = —1 as
a classical action. It should be quantized according to
the Bohr—Sommerfeld rule to determine the normalized
energies 1, of the bands,

So(um) =2 Y?(m+1/2), m=0,1,... (33)

(we do not discuss the origin of the Maslov index 1/2
here). The second nonanalytic period Sj(u) is iden-
tified as the instanton action, which determines the
bandwidth (Au),, according to Gamow’s formula

= an exp (mmw> . (34)

where w 2 is the classical frequency for Hamil-
tonian (12).  The monodromy of u around -1,
Eq. (30), carries over to the bandwidth as the factor
exp[(i/2)a'/?(=2So(um))]. Then the Bohr-Sommer-
feld quantization in (33) is also a condition for the
bandwidth to be invariant with respect to monodro-
mies.

To illustrate these results, we expand the periods in
Eqs. (25)—(28) near u = —1 to find the physical energy
levels €, = 2ati,,. To the first order, we find

So(u) =
Q1(u) = 16i — ;(u + 1) In (32¢),

(Au)

om(u+1), (35)

(36)

implying €,, = —2a+2a'/2 (m +1/2). As a result, the
pressure of a monovalent gas, Eq. (5), is

—\/ kBTeEof.

The two terms here are respectively the pressure of the
ideal gas with the fugacity f and the mean-field De-
bye—Hiickel interaction correction [2].

The instanton action, Eq. (31), at the quantized wu,,

is
L 1
S1 () = 160 + 2i (m + 5) In ( ) , (38

P = —€E060 = QkBTf (37)

m+1/2
32eql/?

~
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where the linear term in (q(u) is absorbed into the
logarithm. Gamow formula (34) leads to

w

(A€)m = 2a(Au)p, 2a

X
O/,

St (u 4 m+1/2
1/2°21Um) \ __ *
<o (22Gm) =2 (C5)
X exp {—8041/2 + (5 + Z) In a] , (39)

This coincides with the known asymptotic results for
the Mathieu equation [27, 28, 34].

4.5. Neighborhood of u = co

For completeness, we also consider the behavior of
the actions at high energy. In the limit v — oo, Pi-
card-Fuchs equation (22) is of the form u?S"(u) +

S(u)/4 = 0. Seeking a solution in the form S = u",
we find r(r — 1) + 1/4 = (r — 1/2)?> = 0 and thus there
must be two independent solutions with the leading be-
havior /2 and u'/?In(u). Therefore, the two periods
should be of the form

Si(u) = u'/® [Vi(uw) + Wi(u) Ind] , (40)

where W; and V; are analytic functions of 1/u. To find
these functions, we note that while the continuation to
infinity for S; is unambiguous, the result obtained for
So depends on whether the path to infinity passes above
or below u = 1. This is because Sy exhibits a nontrivial
monodromy around v = 1, Eq. (32). In other words,
whether u goes to infinity below or above the real axis
determines which of the two turning points z+ goes to
zero or infinity. Since these are also branching points
for the torus, the path of analytic continuation deter-
mines how the cycles on the torus are carried along in
the process.

Thus, looking for the asymptotic behavior of peri-
ods (25)—(28) at u — oo £ 0, we finds [34]

Vo(u) = in Wy (u) F Vi (u) (41)
Wo(u) = FWi (u), (42)
Vi(u) = 4iv2 [In (e2/8) +2/u] , (43)
Wi (u) = —4iv2[1 — (4u)™?] (44)

to leading corrections in 1/u. Since Sp(u) £ Sy (u)
= inWi (u)u'/?, it readily follows that under the mono-
dromy u — ue®>™!, the two actions transform with the
monodromy matrices

Moo_io = (: > v Meotio = (

3 2
21

1
-2

2

_3) . (45)
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It can be verified that the three monodromy matrices
satisfy

Me—io = MiM_1, Mootio =M 1M, (46)
as expected [33]: winding around 0 in a large counter-
clockwise circle is the same as winding —1 and 1 se-
quentially counterclockwise.

From Eqs. (40)-(44), we find the unique nonsin-
gular period at u — oo £ i0 to be given by Sp(u) +
+ S (u) inWi(uw)u'/?. As discussed above, it must
be identified with the classical action and subject to
the Bohr—Sommerfeld quantization

[So(ttm) £ St (um)] /2 = 2ma™ Y ?m.

This leads to u,, ~ m2/2a and hence ¢, = 2au,, =
=m?, as expected for the high-energy spectrum.

5. DIVALENT (2,1) GAS

The divalent (2,1) gas is the simplest case where
Hamiltonian (8) is non-Hermitian. In terms of the com-
plex variable z = ¢ and normalized energy u = 2¢/3a,
it takes the form

3

_u:p2_

i (47)

Similarly to Eq. (13), this defines a family of complex
algebraic curves

Eu: Fpo2)=2p"2— (*+3uz+2)=0. (48)

The map p = p(z) is locally holomorphic away from
the zeros 29,2+ (Fig. 11). At these three branching
points as well as at the singularity at z = 0, the
function p(z) is locally double-valued and behaves as
p~(z—2)"? j=0,4+and p ~ 271/2 respectively.
In contrast to the monovalent (1,1) case in Sec. 4, the
function p(z) is single-valued at z ~ oo, where it be-
haves as p ~ z, and hence no branch cut extends to
z o0o. Nevertheless, there are again four branch-
ing points. To construct the Riemann sphere, we draw
two branch cuts: one between [0, z9] and the other be-
tween [z, z_]. The resulting Riemann surface is again
a g = 1 torus, analogous to that in Fig. 5.

Its moduli space u contains four singular points
uw=—1,eF"/3 and u = oo, where the torus degener-
ates into the sphere. (There were only three such points
in the (1,1) case.) For u = —1, the branching points
2+ coalesce, while for u = e*™/3_ the branching point
zg collides with zy, correspondingly. As u — oo, the
branching point zy approaches z = 0, while z;. — +ico.
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Fig.11. Complex z-plane with two branch cuts, shown
in bold solid lines. (a) Three integration cycles
~o,71,v2 are displayed for v = 0. (b) The instan-

ton cycle ' = —41 4+ v2. The solid (dashed) lines
denote parts of the cycles going over the first (second)
branch

The action integrals are again defined as S; = 99%‘ A,
where the 1-form A(u) = p(z)dz/iz is meromorphic on
the torus. In general, the counterparts of the turn-
ing points in the complex #-plane are not real. This
makes it more convenient to discuss the action cycles
«v; in the z-plane. With three turning points zp, 2+, it is
convenient to take three paths of integration 7o, 1, v2,
depicted in Fig. 11. In terms of the two basic cycles
do and §; on the torus (see Fig. 6), the three paths are
given by

Y =00, Y1 =—01+00, 7Y2=01. (49)
We note that 9 — 71 —72 = 0, and hence Sy = Sy + Ss.
This equality holds because there are only two inde-
pendent closed cycles on Riemann surface of genus 1.
It follows from de Rham’s theorem [29] that there are
exactly two independent 1-forms. Therefore, the three
forms {\"(u), N'(w), \M(u)} are linearly dependent up to
an exact form. Following the root outlined in Sec. 4.2
(where Py(z) is replaced with P3(z), a polynomial of
degree 3), we obtain the Picard—Fuchs equation

(u® + 1) (u) + %sj(u) = 0. (50)

In agreement with the above discussion, there are regu-
lar singular points at the third roots of negative unity,
ie, u = —1,eF/3 where the coefficient in front of
the highest derivative goes to zero, and at © = co. Two
linearly independent solutions Fp(u?) and wF;(u®) of
this second-order ODE are given in terms of the hyper-
geometric functions
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1 12
Fo(ud) = oF [ ==, == 2.3 51 _---1.01
O(U) 2 1( 67 6737 ’U,>7 ( ) ,/‘,,
1 14
F F T TL i I 2
1(u”) = o 1(+6’+6’3’ U) (52) P

In this basis, the three periods S;(u), where j =0, 1,2,
are given by

Sj(u) = CioFo(u®) + CinuFi (u?). (53)

Since the hypergeometric functions Fj(u® — 0)
= 1+ O(u?), it follows that S;(u) = Cjo+uCj1 +O(u?)
as u — 0. We can thus find constants Cj;, by explicitly
evaluating the actions at u = 0, i.e., Cjjo = S;(0) and

Cj1 = S5(0). The corresponding integration paths are
shown in Fig. 11 and straightforward integration yields
. ) 211/6371'3/2
Coo = C mi/3 _ C —mi/3 _ 54
00 10€ 20€ 1"(1/6)1"(1/3)’ (54)
Co1 = Crie”™/3 = Oy e™/3 =
31/21(1/6)I(1/3
_arajerass
911/61/2

These relations along with Eq. (53) imply the three-fold
symmetry between the actions (cf. Eq. (29))

So(u) = eim/38, (672”/311) =

=e~i"/33, (eQi”/gu) . (56)

We now need to connect periods (53) with the
quantum spectrum. We start by discussing the real
branch of the spectrum terminating at the singular
point u = —1 (see Fig. 1). As u — —1, the two branch-
ing points z4 coalesce. As a result, the v cycle degen-
erates to a point, leading to So(u — —1) — 0, while
Si,2 remain finite and actually turn out to be nonana-
lytic. This can be seen by considering the monodromy
for a winding of u around —1, i.e., (u+1) — (u+1)e?™
(cf. Sec. 4.3). Such a transformation exchanges branch-
ing points z+ by a counter-clockwise 180° rotation.
This leaves the cycle §g = 7o, which encloses these two
points, unchanged. On the other hand, the cycle d;
picks up a contribution of —dg: 8] = d; —dp. Thus vy 2,
Eq. (49), pick up a contribution of £Jy. As a result, for
every monodromy cycle, S » pick up a contribution of
£S5, and therefore locally they are of the form

Sy a(u) = Q1 a(u) F %So(u) m(l+u),  (57)

where Q1 2(u) and Sp(u) are analytic functions of 1+ u
(moreover Q1 + Q2 = Sp, cf. Eq. (49)). This al-
lows identifying the period So(u) = (v61/2)(1 + u) +
+O((14u)?) as the classical action, while the instanton
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Fig.12. Narrow energy bands (o) in the upper half-plane
of the complex energy u for « = 200 (cf. Fig. 3a).
ImSo(u) = 0 along the real axis, where the small
lines mark ReSo(u) 2ra~"?(m + 1/2). The line
ImSy(u) = 0 emerges from u = ¢/ and intersects
the real axis at u = 0.96. To the right of this point, we
observe bands with narrow gaps and use the same color-
ing convention as in Figs. 1, 3. The small perpendicular
lines mark Re Si(u) = 2ra="?(m + 1/2)

action is a combination of the two nonanalytic periods
5172(u).

The corresponding monodromy matrix M_1, e.g.,
in the basis (Sp,S1) (since So = Sy — S; is linearly

-0
(5).

Employing Eqs. (49) and (56), we find that at the sin-
gular point /3 (e~"/3)  the period S;(u) (Sa(u)) is
nonsingular and goes to zero. It should be thus iden-
tified with the classical actions for the branch of the
spectrum terminating at the respective singular point
(see Fig. 1). A combination of the remaining two ac-
tions Sy and Ss (S7) form the corresponding instanton.
The respective monodromy matrices (again in the basis

(Sp,51)) are found as
) . (59)

1
in/3 — (0 ) ) Me_i,r/3 = (

To find positions of the bands along the three
branches of the spectrum, terminating at the three sin-
gular points u = —1, e*¥"/3_ we use the Bohr—Sommer-
feld quantization for the proper classical action S;(u)
with 7 =0, 1, 2, correspondingly:

1
1

0
1

So(u)
Si(u)

So(u)
Sy (u)
So(u)
Sy (u)

-1
1

2
1

-1
0

M,

e

Sy =2ra”V2(m+1/2), m=0,1,... (60)
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Figure 12 shows the lines Im Sp(u) = 0 and Im S} (u) =

0 intersected with the set of lines ReS;(u)
2ra~1/2(m+1/2). The numerically computed spect-
rum sits right at the semiclassical complex energies u%).
The excellent agreement holds all the way up to the
point u &~ 0.96, where all three periods S; happen to
be purely real. Beyond this point, the semiclassical
approximation seems to break down, which manifests,
e.g., in the appearance of wide Bloch bands. Expan-
ding Sg(u) near u = —1, we finds for the energy le-
vels €, = 3u,(79b)a/ 2 in the semiclassical approximation,
€m ~ —3a/2++/6a(m+1/2). The corresponding pres-
sure P = —eFEjyeq in (5) consists of two contributions:
that of the ideal (2,1) gas and of the mean-field De-
bye—Hiickel interaction correction.

Taking into account that there is no physical dif-
ference between S; and S» and that the monodromy
around v = —1 in Eq. (57) should leave the band-
width in Gamow’s formula (34) invariant (i.e., it adds
the factor exp{(i/2)a'/2(=2S,(u!P))}), we identify the
instanton cycle with T -7 + 72 (see Fig. 11):
Sinst(u) = —S1(u) + Sa(u). This can also be found by
inspecting the cycles in Fig. 11: we see that the com-
bined ' = —~; + 72 cycle connects z4 turning points
through the “classically forbidden region”, similarly to
the 7, instanton cycle in the (1,1) case (cf. Fig. 8).
However, we do not have a rigorous proof of this fact.
Rather, our choice of the integration cycle should be
considered as an educated guess, which is verified by
the numerics.

Expanding the Sy »(u) actions near u = —1 and sub-
stituting uSS) from the Bohr—Sommerfeld quantization
in (60) with j = 0, we find the Bloch bandwidths of

the central spectral branch (cf. Eq. (34) with w = v/6)

m+1/2

X exp {—3\/@+ (% + Z) lna] . (61)

_2/6

T

36+/6¢

3
(A€),, = Ea(Au)m m+12

Of special interest is the bandwidth of the lowest en-

ergy band, due to its direct relation to the transport

barrier of the ion channel, Sec. 2. Setting m = 0 yields

(A€) ~ 34.14 /4 T35V (62)

This is in very good agreement with the numerical si-
mulations (Fig. 13).

Finally, we focus on the behavior at u = co. The

Picard-Fuchs equation is of the form u3S” + uS/4 =
= 0. Searching for a solution of the form S(u) = u”
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1.0

1.5

Fig.13. Analytic (numerical) results for the logarithm

of the bandwidth of the lowest band versus square root

of the charge concentration with (1,1) as dotted line

(circles), (2,1) dashed line (diamonds), and (3,1) as
solid line (stars)

leads to (r — 1/2)? = 0, signifying two independent so-
lutions with the leading asymptotic behavior u!/? and
u'/?Inu. Upon the monodromy transformation u —
— ue?™, the first of these solutions changes sign, while
the second, along with the sign change, picks up a con-
tribution from the first one. Considering the asymp-
totic forms of S »(u), Eq. (53), at u — +o00, we find
the SL(2, Z) monodromy matrix

(

ins MM, inss,

-1
3

0

My =
-1

(63)

It can be verified that

Mo = (64)

as it should be: winding once around 0 in a large coun-
terclockwise rotation is identical to winding counter-
clockwise in sequence around the other three singular
points.

6. TRIVALENT (3,1) GAS

The trivalent (3,1) Hamiltonian with the normal-
ized energy u is

4 9 21
—u=p -+ . 65
u=rt=(5+2) (65)

It gives a family of algebraic curves
Eu: Flp,2)=3p"2— (2" +4uz+3)=0  (66)
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w1

Fig.14. (a) Double torus curve &, for u* # 1, having
four basic cycles. (b) When u* = 1, the g = 2 torus
degenerates into a singular g = 1 surface. This makes
one of the basic cycles to pass through the singularity,
and renders another cycle contractible to a point

over complex (z,p). They are nonsingular if u* # 1,
and therefore F(p, z) implicitly defines a locally holo-
morphic map p = p(z) almost everywhere on (p, z). In
this case, there are six square-root branching points at
z = 0,00 and at the four turning points (i. e., four roots
of p?(2) = 0).

Hence, while &, is a double-branched cover of the
Riemann sphere, three cuts (instead of two as in the
genus-1 case) are required per branch. After opening
up cuts and identifying edges under analytic continu-
ation, this leads to a double torus, i.e., a sphere with
two handles, Fig. 14a. Unlike the mono- or divalent
cases, the trivalent channel gives a family of genus-2
Riemann surfaces. The exceptional u* = 1 cases make
&, singular at (p,z) = (0, —u), due to collision of two
turning points, Fig. 14b. The double torus then degen-
erates into a simple torus with two points identified (a
singular surface of genus 1).

As in the genus-1 cases, the actions can be under-
stood as integrals S; = 99%‘ A of the meromorphic action
1-form A(u) = p(z)dz/iz upon these Riemann surfaces.
Owing to the four turning points, there are four such
cycles v; with j =0,1,2,3. These are chosen as in the
divalent case, with the inner arcs of each being taken
to start on the principal branch. They are shown for
u = 0 in Fig. 15a. The u-dependence of these periods
is governed by the Picard-Fuchs equation.

Because the double torus is a genus-2 surface, there
are four independent cycles (as opposed to two for
genus 1). Therefore, the homology — and so too, as
argued before, the cohomology — is not, two- but four-
dimensional: any five meromorphic 1-forms on the dou-
ble torus are linearly dependent up to an exact form.
Thus A(uw) and its first four derivatives can be used
to produce an exact form; this is done by finding co-

11 ZK3T®, Bem. 3 (9)

Imz
151 _ b

Fig.15. The Riemann surface is doubly branched with

a total of three cuts, shown in bold lines. The four

cycles v; with j = 0,1,2,3, along with the instanton

cycle T' (defined for later reference) are displayed for

u = 0. The solid (dashed) lines denote parts of the
cycles going over the first (second) branch

efficients in a polynomial entering the exact form, as
discussed in Sec. 4.2. Stokes’ theorem implies that
S(u) = fy A(u) must satisfy a 4th-order linear ODE in
u, i.e., a Picard—Fuchs equation, which in the present
case takes the form

(u* = 1)S™ 4+ 8u25® 4 21_187 u?S" +

65

It has regular singular points at fourth roots of unity,
i.e,,u € {£1,+i} and at u = co. By changing the vari-
able to u*, we can cast the Picard-Fuchs equation as
a generalized hypergeometric equation. In the cut do-
main |arg(1—u*)| < 7, it has four linearly independent
solutions of the form u* Fj, (u*), where k = 0,1,2,3 and

1 15 13 11
5 13 3.U4>7 (68)

Fy(u*) = 4F3 <— 131
35
a 171711/)7 (69)

8 87247247 4

Fy(u?) =
Fy(u*) =

5 52331 537
= ,F 2,2 2990 99 (4 1
o <+8’+8’24’24’ 4’2’4’“) (7)
are generalized hypergeometric series. We note that the
parameters of each 4F3({a;}; {b;};u) satisfy > b; —
— >~ a; = 1; such hypergeometric series are known as
one-balanced or Saalschiitzian [35].
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Writing the actions in this basis as

3
Si(u) = CirubFy(u?), (72)
k=0

we note that Sj(u) = S3o_, Cjru® + O(u*) (because
generalized hypergeometric functions are unity at zero
and analytic nearby). We expand each S;(u) up to
u?® around u = 0 and evaluate the resulting integrals
(Fig. 15a) to obtain the {C;}?. For S, for example,

this yields

Coo = +27/% - 379871/ (5/R)T'(7/8), (73)
Cor = +271/2. 3_7/87T_1/2F(1/8)F(3/8)7 (74)
Copy = —275/2. 3713/87T71/2F(1/8)F(3/8)’ (75)
Cog = —7-271/2. 3727/8#71/2[‘(5/8)[‘(7/8)‘ (76)

When u = 0, the turning points satisfy 2* + 3 = 0 and
therefore lie on a certain circle in the complex plane.
Hence, ; and 7j41 are only different by a 7/2 rotation
(Fig. 15a). As a result, we find the four-fold symmetry
relations

So(u) — 671'2'/45«1 (efrri/2u) — eﬂi/2s2(67ﬂiu) —

= e TS5 Pu)  (77)
for u in the cut domain |arg(1 — u*)| < .

We now consider the periods in the neighborhood of
u = —1. As before, the cycle 7y becomes contractible
to a point as u — —1, and therefore Sy(—1) = 0 by
Cauchy’s theorem. The other three actions remain fi-
nite, but S; and Ss are nonanalytic. This can be seen
by considering the monodromy around v = —1. As in
the genus-1 cases, the shrinking branch cut near z =1
makes a half-turn. Examining the action cycles, it is
only v; and ~3 that intersect the cut rotating under the
monodromy within the vy cycle. Hence, it is these two
cycles that change under monodromy and thus have
logarithmic nonanalyticity near uv = —1. More pre-
cisely, (S1,S53) — (S1 + So, S35 — Sp) under the mon-
odromy, and therefore these actions are of the form

+ L Sy In(1 + u),

Si3(u) = Q1,3(u) 5

(78)
where Q1 3(u) as well as Sp(u) and S>(u) are ana-
lytic near v = —1. Since Si(u) + S3(u) is seen to be
invariant under the monodromy, there are a total of

2) Note that the integrals that arise at the u2-order and higher
are divergent near the turning points; however, they are con-
vergent near 0 and oo and can be calculated by deforming the
contours to run between these points.
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three independent periods that have trivial monodromy
around u = —1. This is again supported by consider-
ing series solutions of Picard-Fuchs equation (67) near
u = —1. This way, we find three regular solutions with
the leading behavior (1 + «)°, (1 4+ u)?!, (1 + u)? along
with an irregular solution with the leading behavior
(1 + u)In(1l + w). For reasons of space, we omit the
corresponding 4 X 4 monodromy matrix.

Although analytic facts about the 4F3 series are
sparse (see [33,35] for the relevant discussion), there
are simple consistency checks that our solutions (72)
must pass. First, the vanishing of the classical action
So(u) at u = —1 implies the identity

Y Cor(=1)*F(1) =0 (79)
k=0

for the hypergeometric functions given above. In ad-
dition, inspection of Hamiltonian (65), shows that the

classical frequency near ©v = —1 is w = /8. This im-
plies S{(—1) = (4/3)27/w and thus
3
d NS
Cor— (u* Fy(u* = 80
];) 0k du (u b ))u:—l 3 (80)

Being checked numerically, both relations hold up to
10716,

Now we turn to the analysis of the spectrum of
Hamiltonian (65) at large a. There are three spectral
branches terminating at the singular points u = —1, i
(see Fig. 3b) (notice that the fourth point v = 1 lies in
the middle of the spectrum and does not have an ob-
vious semiclassical interpretation). To determine posi-
tions of the bands, we quantize the corresponding ac-
tions 5 = 0,1,3 (but not j = 2, which is responsible
for the period vanishing at u 1) according to the
Bohr—Sommerfeld rule:

Si(uld)) = 2ra™ 2 (m +1/2),
j=01,3.

81
m=20,1,..., (81)

Figure 16 shows the semiclassical energies u%) along
with numerically found energy bands. We notes the
perfect agreement between these two for Reu < 1.09.
At the point u &~ 1.09, all three actions Sp 1,3 are purely
real and the corresponding instanton action (see below)
goes through zero. Beyond this point, energy bands are
not exponentially narrow and the semiclassical approx-
imation may not be applicable. This point is unmis-
takably different from the singular point © = 1. Focu-
sing on the real energies at the bottom of the spectrum

and expanding near wu —1, we use identities (79)
and (80) to find Sp(u) = (v/87/3)(1 4+ u) + O(1 + u)?.
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~1.0 0.5

Fig.16. Narrow energy bands in the upper half-plane
of the complex energy u for @« = 200 (cf. Fig. 3b).
ImSo(u) = 0 along the real axis, where the short
lines mark Re So(u) = 2ma~™"?(m + 1/2). The line
ImSi(u) = 0 emerges from u = i and intersects the
real axis at u =~ 1.09. To the right of this point, we
observe bands with narrow gaps and use the same color-
ing convention as in Figs. 1, 3. The small perpendicular
lines mark Re Sy (u) = 2ma~Y?(m +1/2); o dots are the
numerically computed narrow bands

Bohr-Sommerfeld rule (81) leads to €, = 4u£2)a/ 3=
= —4a/3 + 2/2a'/?>(m + 1/2). Employing Eq. (5),
this yields the pressure of the trivalent Coulomb gas as
P =4a/3 —/2a. The two terms here are respectively
the ideal gas pressure and the mean-field Debye—Hiickel
correction.

We now focus on the width of the Bloch bands near
u = —1. This requires identifying a cycle corresponding
to the instanton action. Guided by the cosine potential
example (cf. Fig. 7), we take the corresponding cycle
as connecting the turning points of the classical action
Sp through the “classically forbidden region”. This sug-
gests the cycle I' shown in Fig. 150, which is essentially
of the same form as the 7, instanton cycle in (1,1)
case. Considering intersections of these cycles shows
that I' = 43 — 42 — ¥1. Upon the monodromy transfor-
mation around u = —1, the instanton action thus ac-
quires a contribution —2Sg(u), Eq. (78), which leaves
the bandwidth invariant thanks to Bohr—Sommerfeld
quantization (81). The resulting instanton action is

Sinst (U) = Qinst (U) + %So(u) ln(l + U), (82)

where Qinst = Q3 — Sz — Q1 is the regular part of
Sinst(w) (cf. Eq. (78)). To the first order in 1 4 w, this
i8 Qinst(Um) ~ 14.12i — 6.71i(1 + u), where, e.g., the
leading term originates from

Qinst(_l) = Sinst(_]-) =
=) (O35 — Coj5 — Cyj) (1) Fj(1) ~ 14.12i.

=0

Then, for u,(g) along the real w-axis satisfying
the Bohr—Sommerfeld quantization, Gamow’s formula
yields the bandwidth

li%s _ 4o 3w

(Aehm = - (Auhn = 5 3= x

3

oo (112 Sinst(um)\ 4V (58114 \ "2
P 2 T Untl/2

X exp [—7.06\/E+ (% + 2) In a] . (83)

The width of the lowest band (Ae¢)g is compared with
the numerical results in Fig. 13. As in the previous
cases, the two results are in strong accord?.

For completeness, we address the v = oo behavior.
For large u, the Picard—Fuchs equation is of the form

utS™ 4+8u3 53 £217u25" /18+uS'+655/144 = 0.

The trial S(u) = «” brings four independent solutions
with the leading asymptotic forms {u'/?, u'/?In(u),
w2/, u~13/6}. The first two are familiar from the
genus-1 cases, but the last two are novel to the ge-
nus-2 case. The fractional powers proportional to 1/6
may seem unexpected, given the four-fold symmetries
of the periods. However, this symmetry is manifest at
the level of cycles at u = 0, where four turning points
are equally spaced on a circle in the complex z-plane.
By contrast, as u — oo, the turning points must sat-
isfy either 22> ~ —u or 1/z ~ —u, thus only three of
the four turning points tend towards infinity and one
towards zero. This leads to the three-fold exchange of
actions upon the monodromy transformation around
u = oo. Thus the u” behavior of the periods with r =
= —integer/(2-3) is exactly what is needed to construct
a proper SL(4,Z) monodromy matrix.

7. HIGHER-VALENCE GASES

Here, we briefly summarize our current state of un-
derstanding of the higher valence (4, 1) and (3, 2) gases.

3) In writing the Gamow formula above, we conjectured the
overall preexponential factor of 3 rather than 2 as in the (1,1)
and (2,1) cases, possibly due to the different structure of the uc-
tuation determinant. A detailed evaluation of the preexponential
factor is beyond the scope of the present work.
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The corresponding Hamiltonians are

@1 ju=p'- <ZZ4+%> (84)
(3,2) : %u =p® - (Z—; %) : (85)

In both cases, there are five turning points in the z-pla-
ne given by the equation p?(z) = 0. The behavior at
z = 0 and z = oo is somewhat different: for (4,1),
there is a branching point at z = 0, but not at z = o
(cf. the (2,1) problem); while for (3,2), the opposite is
true: there is no branching point at z = 0, but there is
one at z = oo. In either case, there are six branching
points, which dictate three branch cuts. The resulting
Riemann surface is the double torus, as in the (3,1)
case (see Fig. 14). In these cases, it is not degenerate
as long as u® # —1; otherwise, two of the five turning
points collide, leading to a contraction of one of the
cycles. Therefore, we expect five branches of the spec-
trum terminating at u = (—1)'/%, in agreement with
Figs. 3¢,d.

Since the Riemann surfaces are of genus 2, there is a
linear combination of the 1-form A(u) = p(z)dz/iz and
its four u-derivatives that sum up to an exact form.
Therefore, any period S = §\ must satisfy a 4th-order
ODE in w. This is found by matching coefficients in
a polynomial entering the exact form (see Sec. 4.2),
yielding the Picard-Fuchs equations

5 _
(4,1): (u® +1)S™(u) + Ju” 1 SG) () +
235 3o D o 39 _
+ 6 U S (u)+4u S(u)+64uS(u)—0, (86)
5_
(3,2): (u®+1)S™(u) + Ju” 1 SG) (u) +
M0 s+ 2 st + 12 us(a)
+ 9 u’S (u)-|-4u S(u)+144u5(u)—0. (87)

While the coefficients seem arbitrary, some features are
notable. First, changing the variable to u®, the equa-
tions can be brought to the generalized hypergeometric
form; we then find four independent solutions of the
form u* Fj,(u®), where k = 0,1,2,4 and F}, are certain
4 F3 hypergeometric series?). We note the absence of a
k = 3 solution. This can be verified directly from the
Picard-Fuchs equations, whose leading behavior near
u = 01is given by S®(u) —u1S®) (u) = 0. Substitut-
ing S oc u® gives k(k — 1)(k —2)(k — 4) = 0.

4) While we omit the parameters of these series for reasons of
space, we note that they satisfy the one-balanced condition [35]
stated in the (3,1) case.
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Second, we focus on the vicinities of fifth roots of
-1, e.g., on u = —1. Notably, both Egs. (86) and
(87) have the same leading behavior 5(u 4+ 1)S™ (u) +
+105®)(u) = 0, with all other terms being subleading.
Looking for a solution in the form S(u) ~ (1 + u)®, we
find 5s(s — 1)2(s — 2) = 0 for the s-exponent. There-
fore, in both cases there are three analytic solutions
with the leading behavior (1 + «)°, (1 +u)!, (1 + u)?,
while the double root at s = 1 signifies that the fourth
independent solution is of the form (1 + u)In(1 + u)?).

This observation indicates a nontrivial monodromy
matrix M_y, allowing one to identify the polynomial in
front of the In(1 4+ u) with the classical action Sp(u).
Being quantized according to Bohr—Sommerfeld, the
latter determines the spectrum along the branch ter-
minating at u = —1 (see Figs. 3¢,d).

Finally, we consider the behavior at © — oo. By
taking trial solutions in the form S(u) ~ u”, we ob-
tain 4-th order algebraic equations for the exponent r.
The four roots of these equations are {1/2, 1/2, —3/4,
—13/4} in the (4,1) case and {1/2,1/2, —7/6, —17/6}
in the (3,2) case. Remarkably, there is a doubly degen-
erate root at » = 1/2 in both cases, leading to two so-
lutions with the leading asymptotic behavior u'/? and
u'/?1In(u). This was also the case in all the examples
considered above. The first of these solutions, being
quantized, leads to €, = m?, expected at large ener-
gies. The other two roots bring two additional solutions
with the respective leading behavior u=3/% 4 =13/ or
w7/ u=17/6 for the (4,1) and (3,2) cases. The de-
nominators of these fractional powers may be related
to the fact that four and three turning points go to
infinity as u — oo in the two respective cases. The
monodromy transformation M., interchanges the cor-
responding periods (possibly with a sign change). This
is achieved by having —integer/4 and —integer/(2 - 3)
powers in the corresponding solutions.

8. CONNECTIONS TO THE
SEIBERG-WITTEN SOLUTION

Here, we briefly review the main features of the
Seiberg-Witten (SW) solution [12, 13|, which were
adopted in our calculations [36]. The original SW con-
struction gives the spectrum of a four-dimensional su-
persymmetric SU(2) Yang Mills theory (SYM). The

5 An existence of 3 = 4-1 analytic solutions near u = —1
follows from a theorem on generalized hypergeometric equations
going back to Pochhammer [33]; the analogous behavior of the
mono-, di-, and trivalent gases near u = —1 also provides in-
stances of this theorem.
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spectrum of the infrared theory appears to be given by
the set of electrically and magnetically charged parti-
cles (BPS dyons), which are different from the funda-
mental particles of the initial UV theory. The latter
consists of a vector multiplet transforming in the ad-
joint representation of SU(2), whose components are
one complex scalar field ¢, a pair of Weyl fermions
(gluini), and an SU(2) gauge field (gluon). In the clas-
sical UV vacuum, ¢ aligns along the Cartan generator
of SU(2) as (¢) = aos3/2, where the complex expec-
tation value a parameterizes the manifold of classical
vacua. In the quantum theory, a more convenient co-
ordinate is

w= (tr %) (88)

(such that in the classical limit v — oo, one has u ~
~ a?), defining the moduli space M,, of quantum vacua
of the theory.

Given the expectation value a, one defines the gen-
erating function (prepotential) F(a) as a logarithm
of the partition function of the theory, restricted by
(¢) = aos/2. It allows introducing a canonically con-
jugate complex variable

_ 0F(a)
da '’

(89)

where one may regard (a,ap) as the coordinate and
momentum on M,. The underlying supersymmetry
allows arguing that a(u) and ap(u) are holomorphic
functions on the moduli space, except possibly for few
isolated singular points. In the UV limit u — 0o, one
finds a one-loop correction of the form

ia

a2
aDN—(l—I—lnP), (90)

™

where A is a dynamical scale. We recall that a ~ \/u
in this region. Therefore, when the argument of u
changes by 2mi, a changes its sign and ap transforms
as ap — —ap + 2a. This rule can be parameterized
using the following monodromy matrix in the (ap,a)

basis:
-1 2
My, = . 91
G .

Finding the spectrum of the IR theory means com-
puting masses of particles that are protected by su-
persymmetry (so-called BPS dyons). The BPS mass
formula is

My, n,. (1) = |nea(u) + npap(u)], (92)

where (n.,n,,) are electric and magnetic charges of a
dyon; for example, a monopole has (ne,ny,) = (0, £1).
The above relation can be understood semiclassically
(at large u) by evaluating the energy functional for the
UV theory on the electrically and magnetically charged
configurations. The N = 2 supersymmetry guarantees
that the very same formula works at a strong coupling
as well. There are special loci in the u plane where the
masses in (92) vanish. These points can be identified
as singularities for a and ap.

We consider the point uy where the monopole be-
comes massless, ap(ug) = 0. By a conformal transfor-
mation, we can always scale ug = 1. In the vicinity of
this point, ap behaves as ap oc © — 1, and hence near
this point ap(u) is holomorphic, while a(u) is expected
to be singular. A one-loop calculation similar to the
one near u = oo, in the framework of the dual theory,
gives a relation similar to (90),

a~—In—. (93)
71'

Recalling that ap o« uw — 1, we find the monodromy
matrix near « = 1, again in (ap,a) basis:

1 0
T —

From the symmetry considerations one may argue
that there should be at least one more singularity in
addition to © = oo and u = 1. This follows from the
fact that if a singularity exists at some value of ug, then
there ought to be another one at —ug. The Zo symme-
try, which flips the sign of u, is a result of breaking the
global U(1) symmetry (so-called R-symmetry) of the
IR action. That symmetry is a remnant of the analo-
gous symmetry in the UV theory, which is common for
gauge theories with an extended supersymmetry. It ex-
ists on the classical level, but is broken by quantum cor-
rections (both perturbative and instanton) down to Zs
for u = (tr¢?). Therefore, there are at least three singu-
larities in My, e.g., at u = oo and v = +1. The third
singular point © = —1 corresponds to a massless dyon of
unit electric and magnetic charges a(—1)+ap(—1) = 0.
The monodromy matrix around it can be computed us-
ing the completeness relation M1 M_; = My, in the
complex u-plane.

The nontrivial realization of the SW construction
is that complex variables (ap(u),a(u)) with the ana-
lytic properties deduced above can be viewed as periods
of algebraic curves (tori) &,, defined over the moduli
space M, with respect to some meromorphic differ-
ential Agyw. The simplest way to parameterize such a
curve is
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Eur Fly,2) =y’ (z—u)(z-1)(z+1) =0, (95)

where x and y are complex. The above equation de-
scribes a double cover of the z-plane branched over
the four points z = +1,u and x = co. Moreover, the
cover is singular any time two of these points coalesce,
e., at u = +1,00, as required. A basis in the first
(co)homology of &£, (2D in this case) is given by inte-
grals of a one-form over one-cycles. We pick the ho-
mology basis dg, 01 in Fig. 6 and the one-form Agy (u)

(SW differential) such that
ap(u) ://\SW, a(u) = /)\SW. (96)

(50 51

To pick a proper SW differential Agy (1), we recall that
there are only two linearly independent meromorphic
1-forms on the torus up to an exact form. These two
forms can be chosen as A\; = dx/y and \y = xzdzx/y,

whence p p
T rdx
Asw = Bi(u )? + Ba(u)— .

where (1 2(u) are functions of w only. The requirement
that the period integrals in (96) reproduce the correct
asymptotic behavior of a(u) and ap(u) at v = 1 and
(Egs. (90) and (93)) allows determining /31 o (u).
Finally, we obtain

U = o0

V2 Ve—u
PrR e (97)

Asw =
This allows evaluating the periods in (96) in terms of
elliptic integrals. They in turn yield the entire infor-
mation about BPS mass spectrum (92) and prepoten-
tial (89).

Close parallels to our calculations are apparent. In
fact, the SW construction outlined above essentially
mirrors the (1,1) gas calculations. Elliptic curve (95)
is isogenic to torus (14) and the two SW periods
in (96) are directly related to the two action integrals
as Sop ~ ap and S; ~ a + ap. In fact, they can be
shown [15, 16] to satisfy exactly the same Picard—Fuchs
equation (22) as our actions. Therefore, the two basis
solutions (25) and (26), expressible through the com-
plete elliptic integrals of the first and second kind®), are
also a basis for the SW periods ap(u), a(u).

An interesting open question is whether our mul-
tivalent examples have analogs in SYM theories. For
example, the (2,1) case corresponding to a torus with
the residual Z 3 symmetry in the u-plane may be related
to the SU(2) theory with several fundamental hyper-
multiplets added. Other examples, leading to g = 2

6) See the footnote 1) on p.
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surfaces with Z4 and Zs symmetries, may be related to
certain SU(3) SYM theories with matter.

Another captivating observation is related to the
peculiar structure of the spectra near u ~ 0.96 in the
(2,1) gas, u ~ 1.09 in the (3,1) gas, etc. These points
are marked by the condition Im Sy (u)/So(u) = 0, which
is reminiscent of wall crossing phenomena in AV = 2
theories (for a comprehensive review and references see,
e.g., [37]). It is observed that the moduli space M,, has
domains separated by walls such that when “crossing”
a wall, the spectrum of the IR theory changes dramat-
ically. For instance, for the SU(2) theory at small |u],
there are only two states in the spectrum: a monopole
(0,£1) and a dyon (+1,F1). But at large |u|, these
particles can form bound states with higher electric
charges (n,+1) for any integer n. The wall is given
by Imap(u)/a(u) =0

9. DISCUSSION OF THE RESULTS

In this paper we developed a semiclassical treatment
for a family of non-Hermitian P7T-symmetric Hamil-
tonians. These Hamiltonians appear upon transfer-
matrix mapping of 1D classical statistical mechanics of
multivalent Coulomb gases onto quantum mechanics.
The low-energy spectra of the Hamiltonians directly
translate into thermodynamic and adiabatic transport
coefficients of the corresponding Coulomb gases.

We use methods of algebraic topology, traditionally
employed in the context of the Seiberg—Witten theory.
The main advantage of this strategy is that it allows us
to avoid solving equations of motion and finding clas-
sical trajectories explicitly. The latter task is rather
nontrivial (if at all attainable) in the 4D phase space.
Instead, we argue that any constant-energy surface is a
2D Riemann surface of a genus g > 1. The action along
any closed trajectory (not necessarily satisfying equa-
tions of motion) can be written as an integer-valued
linear combination of 2¢g basic periods of the surface.
The periods can be found as solutions of the Picard—
Fuchs ODE in the space of parameters. Finally, rela-
tions between basic periods and the quantum spectra
are established by considering special points in the pa-
rameter space, where the surface degenerates into a
genus-(g — 1) singular surface. Consideration of mon-
odromy transformations in the vicinity of these points
allows identifying classical actions, quantized according
to Bohr—Sommerfeld, as well as the instanton action,
which determines the bandwidth.

The results obtained this way are in excellent
agreement with numerical simulations in a broad
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range of parameters. One of the reasons for this
success is that the method provides with preexponetial
factors on the same footing with the exponential itself.
Another appealing feature of the approach is that none
of our semiclassical calculations required the concept
of imaginary time. In fact, the “time” (i.e., the 1D
coordinate of the Coulomb gas) does not appear at
all. In a sense, it is substituted by evolution in the
space of parameters of the Hamiltonian (the moduli
space). We expect the method to be useful in a broad
class of problems that require instanton calculations
in complex spaces.

We are indebted to A. Gorsky for introducing us to
the algebraic geometry methods and sharing his un-
published notes. The work was partially supported
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