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STATISTICAL MECHANICS OF COULOMB GASESAS QUANTUM THEORY ON RIEMANN SURFACEST. Gulden a, M. Janas a, P. Koroteev a;b, A. Kamenev a;
*aDepartment of Physi
s, University of MinnesotaMN 55455, Minneapolis, USAbPerimeter Institute for Theoreti
al Physi
sON N2L2Y5, Canada
William I. Fine Theoreti
al Physi
s Institute, University of MinnesotaMN 55455, Minneapolis, USARe
eived Mar
h 26, 2013Dedi
ated to the memory of Professor Anatoly LarkinStatisti
al me
hani
s of a 1D multivalent Coulomb gas 
an be mapped onto non-Hermitian quantum me
hani
s.We use this example to develop the instanton 
al
ulus on Riemann surfa
es. Borrowing from the formalism de-veloped in the 
ontext of the Seiberg�Witten duality, we treat momentum and 
oordinate as 
omplex variables.Constant-energy manifolds are given by Riemann surfa
es of genus g � 1. The a
tions along prin
ipal 
y
les onthese surfa
es obey the ordinary di�erential equation in the moduli spa
e of the Riemann surfa
e known as thePi
ard�Fu
hs equation. We derive and solve the Pi
ard�Fu
hs equations for Coulomb gases of various 
harge
ontent. Analysis of monodromies of these solutions around their singular points yields semi
lassi
al spe
traas well as instanton e�e
ts su
h as the Blo
h bandwidth. Both are shown to be in perfe
t agreement withnumeri
al simulations.DOI: 10.7868/S00444510130901251. INTRODUCTIONOne of the very last works of Anatoliy Larkin [1℄ wasdevoted to transport through ion 
hannels of biologi
almembranes. An ion 
hannel may be roughly viewedas a 
ylindri
al water-�lled tube surrounded by a lipidmembrane. Its typi
al radius a � 6Å is mu
h smallerthan its length L � 120Å. The important observationwith far-rea
hing 
onsequen
es, made in Ref. [1℄, is thatthe diele
tri
 
onstant of water "water � 80 is signi�-
antly larger than that of the surrounding lipid mem-brane "lipid � 2. This de�nes a new length s
ale� �ra"water"lipid ln "water"lipid � 140Åover whi
h the ele
tri
 �eld stays inside the 
hanneland does not es
ape into the surrounding media. Sin
e*E-mail: kamenev�physi
s.umn.edu

� & L, the ions inside the 
hannel intera
t essentiallythrough the 1D Coulomb potentialU(x1 � x2) � eE0jx1 � x2j;where E0 = 2e=a2"water is a dis
ontinuity of the ele
-tri
 �eld 
reated by a unit 
harge. This fa
t di
tates asigni�
ant energy barrier U(L=4) � 4kBTroom for mov-ing a single ion through the 
hannel. If indeed present,su
h a barrier would essentially impede ion transport,preventing the 
hannel from performing its biologi
alfun
tions.Nature removes su
h Coulomb blo
king by s
reen-ing. A moving ion is s
reened either by mobile ions ofdisso
iated salt [1℄, or by immobilized 
harged radi
alsatta
hed to the walls of the 
hannel [2�9℄. Neverthe-less, due to the pe
uliar nature of the long-range 1DCoulomb potential, the transport barrier proportionalto the 
hannel length L is always present. Its magni-tude, however, is typi
ally suppressed [1℄ down to aboutkBTroom, allowing for a relatively unimpeded trans-port of ions. These 
onsiderations 
all for developing atransport theory of 1D Coulomb gases. Following the595 10*
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elebrated mapping of 1D statisti
al me
hani
s ontoan e�e
tive quantum me
hani
s, pioneered by Edwardsand Lenard [10℄ and Vaks, Larkin, and Pikin [11℄, theauthors of [1℄ mapped the problem onto quantum me-
hani
s with a 
osine potential (we brie�y review thismapping in Se
. 2). The ground-state energy of su
hquantum me
hani
s is exa
tly the equilibrium pressurein the Coulomb plasma. Moreover, the width of thelowest Blo
h band is a spe
i�
 energy barrier for iontransport through the 
hannel.It is instru
tive to noti
e that the 2� 
os � == �(ei� + e�i�) potential des
ribes a mixture of posi-tive, ei�, and negative, e�i�, monovalent ions with 
on-
entration �. We 
an also 
onsider a situation wherethe 
hannel is �lled with a solution of disso
iated mul-tivalent salt, e. g., divalent CaCl2 or trivalent AlCl3.In these 
ases, the 
orresponding 1D statisti
al me-
hani
s is mapped onto the quantum problem with anon-Hermitian potential su
h as �(e2i�=2 + e�i�) or�(e3i�=3 + e�i�) [2; 10℄. This paper is devoted to e�-
ient mathemati
al methods of treating non-Hermitianquantum me
hani
s of this sort.Our parti
ular fo
us here is on a semi
lassi
al treat-ment, appli
able in the regime of a su�
iently large salt
on
entration �. In its framework, the energy spe
trum(and hen
e the pressure) is determined by the Bohr�Sommerfeld quantization 
ondition for the a
tion of
lassi
al periodi
 orbits. On the other hand, the band-width (and hen
e the transport barrier) is given by theexponentiated a
tion a

umulated on an instanton tra-je
tory, running through the 
lassi
ally forbidden partof the phase spa
e. The traditional te
hniques of Her-mitian quantum me
hani
s 
all for �nding 
lassi
al andinstanton traje
tories by solving equations of motion inreal and imaginary time and evaluating 
orrespondinga
tions. This route 
annot be straightforwardly fol-lowed in non-Hermitian quantum problems arising inthe 
ontext of multivalent Coulomb gases. Even leav-ing aside the te
hni
al di�
ulties of solving 
omplexequations of motion, there are 
on
eptual di�
ultieswith identifying periodi
 orbits as well as the meaningof 
lassi
ally allowed vs forbidden regions and with theimaginary time pro
edure.In this paper, we borrow from the algebrai
 topol-ogy methods developed in the past de
ades in the 
on-text of the Seiberg�Witten solution [12, 13℄ and itsappli
ations to integrable systems [14�16℄ (and manyfollow-up 
ontributions). The 
entral idea is to 
onsiderboth the 
oordinate � and the 
orresponding 
anoni
almomentum p as 
omplex variables. This leads to a four-dimensional (4D) phase spa
e. Then (
omplex) energy
onservation restri
ts the traje
tories to live on 2D Rie-

mann surfa
es embedded into the 4D phase spa
e. Thedynami
s of the system are essentially determined bythe topology, i. e., the genus g of su
h Riemann sur-fa
es. We show that mono- and divalent gases aredes
ribed by tori, while trivalent and 4-valent lead togenus-2 surfa
es, et
. The Cau
hy theorem and theresulting freedom to deform the integration 
ontour inthe 
omplex spa
e allows us to avoid �nding spe
i�
 so-lutions of the equations of motion. Instead, we identifythe homology 
y
les on the Riemann surfa
e and �ndthe 
orresponding a
tion integrals, whi
h depend onlyon the topology of the 
y
les and not on their spe
i�
shape. For example, the 
osine potential of a mono-valent gas leads to a torus, whi
h obviously has twotopologi
ally distin
t 
y
les (see Fig. 6 below). Thetwo turn out to be related to 
lassi
al and instantona
tions 
orrespondingly. The genus g � 1 Riemannsurfa
es admit 2g topologi
ally distin
t 
y
les. Below,we identify and explain the meaning of the 
orrespond-ing a
tion integrals.The shape of the spe
i�
 Riemann surfa
e dependson the parameters of the problem, e. g., salt 
on
entra-tion � in our 
ase. Su
h parameters are 
alled mod-uli of the Riemann surfa
e. It turns out that thea
tion integrals, being fun
tions of the moduli, sat-isfy a 
losed ordinary di�erential equation (ODE) ofthe order 2g, known as the Pi
ard�Fu
hs equation.The a
tions 
an be found as solutions of this ODEin the moduli spa
e, rather than by performing inte-grations over 
y
les on the surfa
e. Below, we deriveand solve Pi
ard�Fu
hs equations for several (positiveand negative) ioni
 
harge 
ombinations, su
h as thegenus g = 1 
ases (1; 1); (2; 1) and the genus g = 2
ases (3; 1); (3; 2); (4; 1). We then dis
uss how to 
on-ne
t the prin
ipal 
lassi
al a
tions with the spe
traof the 
orresponding quantum problem. The key ob-servation is that in the moduli spa
e, the a
tions ex-hibit a few isolated bran
hing points. Going aroundsu
h a bran
hing point transforms the a
tions intotheir linear 
ombinations, e�e
ting an Sp(2g;Z) mon-odromy transformation. The invarian
e of quantum ob-servables under monodromy transformations di
tatesBohr�Sommerfeld quantization for one of the prin
ipal
lassi
al a
tions. The remaining a
tions 
an be iden-ti�ed with the instanton pro
esses, e. g., related to theBlo
h bandwidth.Statisti
al me
hani
s of 1D Coulomb gases mayseem to be an isolated problem, not worthy of de-veloping an extensive mathemati
al apparatus. Ourgoal here is to use it as a test-drive example, groundedinto a well-posed physi
s problem, to develop a ma-
hinery appli
able in other setups. Re
ently, the so-596
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al me
hani
s of Coulomb gases : : :
alled PT symmetri
 non-Hermitian quantum me
han-i
s attra
ted mu
h attention for its appli
ation in a
-tive opti
s [17℄ and open quantum systems [18℄, as wellas in the des
ription of antiferromagneti
 latti
es [19℄and 
al
ulating energy states in larger mole
ules [20℄.Our examples also belong to the 
lass of PT symmetri
problems. It seems likely that the methods developedhere may be applied to advan
e analyti
 understand-ing of a broader 
lass of PT symmetri
 quantum me-
hani
s. Another 
ontext where 
omplexi�ed quantumme
hani
s was proven to be extremely useful, is dynam-i
s of large mole
ular spins [21; 22℄. Indeed, fun
tionalintegral representation of the spin dynami
s leads nat-urally to the Hamiltonian formulation, where the pro-je
tive 
oordinates (z; �z) on the sphere play the role ofthe 
anoni
al pair [23℄. It was realized in [21; 22℄ that to�nd instanton traje
tories, one has to 
onsider z and �zas independent 
omplex variables, thus expanding thedynami
s into 4D phase spa
e. The Riemannian ge-ometry methods seem to be well-suited to advan
e thissubje
t as well.This paper is organized as follows. In Se
. 2, we out-line the relation between 1D multivalent Coulomb gasesand non-Hermitian quantum me
hani
s and dis
ussgeneral symmetries of the latter. In Se
. 3, we sum-marize major numeri
al observations regarding 
om-plex spe
tra and the band stru
ture for the family ofHamiltonians 
onsidered here. In Se
. 4, we illustratethe ma
hinery of algebrai
 geometry on Riemann sur-fa
es for the familiar Hermitian 
osine potential quan-tum me
hani
s, whi
h 
orresponds to the monovalent(1; 1) gas. There, we introdu
e the 
omplexi�ed phasespa
e and Riemann tori of 
onstant energy; we then de-rive, solve, and analyze solutions of the Pi
ard�Fu
hsequations. In Se
. 5, we apply the developed methodsfor the divalent (2; 1) Coulomb gas, whi
h is also de-s
ribed by a genus-1 torus. In Se
. 6, we extend themethod for genus-2 example of a trivalent (3; 1) gas,whi
h exhibits some qualitatively new features. The(3; 2) and (4; 1) gases are brie�y dis
ussed in Se
. 7. InSe
. 8, we outline 
onne
tions to the Seiberg�Wittentheory. We 
on
lude with a brief dis
ussion of the re-sults in Se
. 9.2. MAPPING OF COULOMB GASES ONTOQUANTUM MECHANICSWe 
onsider a 1D gas of 
ations with 
harge n1eand anions with 
harge �n2e, where (n1; n2) are posi-tive integers. By Gauss's theorem, the ele
tri
 �eld at adistan
e x larger than the radius of the 
hannel a from

a unit 
harge is E0 = 2e=a2"water. At the lo
ation ofa 
harge n1;2, the ele
tri
 �eld exhibits a dis
ontinuity�2E0n1;2. Sin
e all 
harges are integers, the �eld is
onserved modulo 2E0 along the 
hannel. This allowsde�ning the order parameter [1, 3℄ q = E(x)(mod 2E0),whi
h a
ts like an e�e
tive boundary 
harge �q at thetwo ends of the 
hannel. The Poisson equation in 1D isr2� = �2E0Æ(x), leading to the 1D Coulomb potential�(x) = �E0jxj. The potential energy of the gas is thusU = �eE02 Xi;j �i�j jxi � xj j; (1)where �j is the 
harge n1 or �n2 of an ion at the po-sition xj and we omit the �q boundary 
harges forbrevity. Our goal is to evaluate the grand 
anoni
alpartition fun
tion of the gas in the 
hannel of length L,ZL = 1XN1;N2=0 fN11 fN22N1!N2! N1Yi=1 LZ0 dxi N2Yj=1�� LZ0 dxj exp�� UkBT � ; (2)where f1;2 are fuga
ities of the two 
harge spe
ies. We
an now introdu
e the 
harge density using a delta-fun
tion Æ[�(x)�Pj �jÆ(x�xj)℄. The delta-fun
tion iselevated to the exponent with the help of the auxiliary�eld �(x). This pro
edure de
ouples all xj integrals [1℄,bringing them to the formXN [f R dx ei��(x)℄NN ! = exp�f Z dx ei��(x)� :Intera
tion potential (1), being inverse of the 1DLapla
e operator, leads to expf(T=eE0) R dx ��2x�g. Asa result, partition fun
tion (2) is identi
ally written asa Feynman path integral, in an �imaginary time� x, forthe quantum me
hani
s with the HamiltonianĤ = (i���q)2� [�1 exp(in1�)+�2 exp(�in2�)℄ ; (3)where �1;2 = f1;2kBT=eE0 are dimensionless ion 
on-
entrations. Su
h a Feynman integral is the expe
ta-tion value of the evolution operator during �time� L,leading toZL = *q���X exp0�� eE0kBT LZ0 dx Ĥ1A���q+ ==Xm jhqjmij2 exp��eE0LkBT �m(q)� ; (4)597
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tive Hamil-tonian Ĥ and jmi =  m(�) are its eigenve
tors inthe Hilbert spa
e of periodi
 fun
tions  m(�) ==  m(� + 2�), and �nally the matrix elements arehqjmi = R 2�0 d�e�iq� m(�). The boundary 
hargeq plays the role of the Blo
h quasimomentum andthe spe
trum is obviously periodi
 in q with the unitperiod (re�e
ting the fa
t that the integer part of theboundary 
harge may be s
reened by mobile ions andthus be
omes in
onsequential).The pressure of the Coulomb gas is its free energyper unit length,P = kBT � lnZL�L L!1����! �eE0�0(q); (5)where �0(q) is the eigenvalue with the smallest real part.In equilibrium, the system minimizes its free energyby 
hoosing an appropriate boundary 
harge q. In all
ases 
onsidered below, the minimum turns out to bea nonpolarized state of the 
hannel, i. e., q = 0 (seeRefs. [2℄ for ex
eptions to this rule, however). Adia-bati
 
harge transfer through the 
hannel is asso
iatedwith the boundary 
harge q sweeping through its fullperiod. As a result, the (free) energy barrier for iontransport is U0 = eE0L�0; (6)where�0 is the width of the lowest Blo
h band. There-fore, the ground-state energy and the width of thelowest Blo
h band of Hamiltonian (3) determine ther-modynami
 and transport properties of the (n1; n2)Coulomb gas. The rest of this paper is devoted to asemi
lassi
al theory of the spe
tral properties of su
hHamiltonians. We start by dis
ussing some generalsymmetries of non-Hermitian Hamiltonian (3).2.1. PT SymmetryAlthough the Hamiltonian in (3) is non-Hermitianfor n1 6= n2, it obeys PT symmetry [24; 25℄. Here, theparity operator P a
ts as � ! �� and the time-reversaloperator T works as 
omplex 
onjugation i ! �i.Clearly, the two operations 
ombined leave Hamilto-nian (3) un
hanged. It 
an be proved [25; 26℄ that alleigenvalues of PT -symmetri
 Hamiltonians are eitherreal or o

ur in 
omplex-
onjugate pairs. As shown be-low for positive values of 
on
entrations �1;2 > 0, thelowest-energy band �0(q) is entirely real, ensuring thepositivity of the partition fun
tion. The higher bands�m(q) are in general 
omplex. It is interesting to notethat for unphysi
al negative 
on
entrations �1;2 < 0,

already the lowest band �0(q) is 
omplex, making thefree energy ill-de�ned.2.2. Isospe
tralityThe spe
trum of Hamiltonian (3) is invariant un-der shifts of the 
oordinate � ! � + �0, where �0 isan arbitrary 
omplex number. Under this transfor-mation (preserving the periodi
 boundary 
onditions),the dimensionless 
on
entrations �1;2 renormalize as�1 ! �1 exp(in1�0) and �2 ! �2 exp(�in2�0). Wenote that the 
ombination �n21 �n12 remains invariant.We hen
e 
on
lude that the family of Hamiltonians (3)with �n21 �n12 = 
onst (7)is isospe
tral [10℄. Therefore, without loss of generality,we 
an pi
k one representative from ea
h isospe
tralfamily. It is 
onvenient to 
hoose su
h a representa-tive to manifestly enfor
e 
harge neutrality in the bulkreservoirs. For this, we take �1n1 = �2n2 = �, whi
hbrings Hamiltonian (3) to the formĤ = � �p̂2�� 1n1 exp(in1�)+ 1n2 exp(�in2�)�� ; (8)where we have de�ned the momentum operator asp̂ = ��1=2(�i�� + q); [�; p̂℄ = i��1=2: (9)The 
ommutation relation shows that ��1=2 plays therole of the e�e
tive Plan
k 
onstant. With the helpof isospe
trality 
ondition (7), a proper � 
an alwaysbe 
hosen su
h that the spe
trum of Hamiltonian (8)is identi
al with that of a Hamiltonian with arbitrary�1;2. The physi
al reason for this symmetry is thatthe interior region of the long 
hannel always preserves
harge neutrality, allowing the edge regions to s
reen
harge imbalan
e of the reservoirs. Therefore, irrespe
-tive of the relative fuga
ities of 
ations and anions inthe reservoirs, the thermodynami
s of the long 
hannelis equivalent to the one in 
onta
t with neutral reser-voirs with an appropriate salt 
on
entration �. Here-after, we restri
t ourselves to the neutral Hamiltonian(8) with a single parameter �.3. NUMERICAL ANALYSISIn this se
tion, we dis
uss numeri
al simulation ofthe spe
trum of Hamiltonian (8). We fo
us on unequal
harges n1 6= n2, be
ause the 
ase of n1 = n2 redu
esto the well-known Hermitian 
osine potential [27; 28℄.598
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al me
hani
s of Coulomb gases : : :For unequal 
harges, the Hamiltonian is non-Hermitianbut PT symmetri
, allowing for 
omplex eigenvalues,whi
h appear in 
onjugate pairs [25; 26℄.Sin
e the Hamiltonian Ĥ a
ts in the Hilbert spa
eof periodi
 fun
tions, we 
an 
hoose the 
omplete basisin the form feim�gm2Z. In this basis, the Hamiltonianis represented by an in�nite-size real matrix [2℄Ĥm;m0 = (m� q)2Æm;m0 �� �� 1n1 Æm+n1;m0 + 1n2 Æm�n2;m0� : (10)The boundary 
harge q plays the role of quasimomen-tum residing in the Brillouin zone q 2 [�1=2; 1=2℄.To numeri
ally 
al
ulate the energy spe
trum �m(q),we trun
ate the matrix at a large 
uto�, after verify-ing that a further in
rease in the matrix size does not
hange the low-energy spe
trum. We left the bound-ary 
onditions �open�, i. e., did not 
hange the matrixelements near the 
uto�, after verifying that di�erentboundary 
onditions do not a�e
t the result. It is easyto see that the matrix size should be mu
h more thanp� to a

urately represent the low-energy spe
trum.As an illustration, we show the Hamiltonian 
ut to a5� 5 matrix for the divalent (2; 1) gas:0BBBBBB�(�2�q)2 0 ��=2 0 0�� (�1�q)2 0 ��=2 00 �� (0�q)2 0 ��=20 0 �� (1�q)2 00 0 0 �� (2�q)2
1CCCCCCA :For reasons that be
ome apparent below, it is 
on-venient to represent the spe
trum � on the 
omplexplane of the normalized energy u de�ned asu = n1n2n1 + n2 �� : (11)For the divalent (2; 1) gas, u = 2�=3� and the 
orre-sponding spe
tra are shown in Fig. 1. The spe
trum
onsists of a sequen
e of 
omplex Blo
h bands. Thenumber of narrow bands within the unit 
ir
le juj = 1s
ales as p�. They form three bran
hes, whi
h termi-nate at u = �1 and u = e�i�=3 and approximately lineup along the lines 
onne
ting the termination pointswith the point u = 1. We dis
uss the 
orrespondingbandwidths below. Outside the unit 
ir
le, the bandsare wide and 
entered near the positive real axis of en-ergy.Figure 2 shows the band stru
ture in the �rst Bril-louin zone jqj < 1=2 for � = 1. We note that the lowestBlo
h band is purely real (this is always the 
ase for
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al theory that is bestsuited for the des
ription of exponentially narrow bandspresent at a large 
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al me
hani
s of Coulomb gases : : :4. MONOVALENT (1,1) GASTo introdu
e the methods, we �rst develop a semi-
lassi
al spe
tral theory for the Hermitian Hamiltonianin (8), (9) with n1 = n2 = 1. For this, we look for wave-fun
tions in the form  = exp(i�1=2S), where S is ana
tion for the 
lassi
al problem with the normalizedHamiltonian 2u = p2 � 2 
os �; (12)where u = �=2�, su
h that u = �1 
orrespond to thebottom (top) of the 
osine potential. The semi
lassi
al
al
ulations require knowledge of the a
tion integrals.Our approa
h to su
h integrals is based on 
omplex al-gebrai
 geometry. First, we let z = ei� and 
onsider(z; p) as 
omplex variables. Sin
e p(z) resides on the
onstant-energy hypersurfa
e2u = p2 ��z + 1z� ; (13)we have a family of 
omplex algebrai
 
urvesEu : F(p; z) = p2z � (z2 + 2uz + 1) = 0 (14)parameterized by u. For u 6= �1, it 
an be veri�ed that(�F=�z; �F=�p) does not vanish on Eu, and hen
e ea
hEu is nonsingular. Then F(p; z) impli
itly de�nes a lo-
ally holomorphi
 map p = p(z). The ex
eptions tothis o

ur at z = 0;1; z�, wherez� = �u� ip1� u2 (15)are the roots of p2 = 0 (i. e., 
lassi
al turning points).In the vi
inity of these four bran
hing points, p(z) be-haves as p � z�1=2 (z � 0; ) (16)p � z1=2 (z � 1); (17)p � (z � z�)1=2 (z � z�); (18)i. e., p(z) is lo
ally double-valued. (Note that we haveadded a point at z =1 to the 
omplex plane, therebyrendering it 
ompa
t and topologi
ally equivalent to aRiemann sphere, Fig. 4). To make sense of this double-valuedness, we �rst introdu
e two 
uts between the fourbran
hing points. For 
onvenien
e, we have 
hosen todo so between 0;1 and the turning points z�. On this
ut domain, p(z) is lo
ally holomorphi
.We then introdu
e a se
ond sheet of the z-plane andthe 
orresponding Riemann sphere, 
ut in the same wayas the �rst. We then analyti
ally 
ontinue p(z) on the�rst sheet a
ross the 
uts to the se
ond sheet. If p(z)

0 z+ 0 z+a b
z� z�1 1Im z Re zFig. 4. (a) Complex z-plane with two 
uts. (b ) It 
om-pa
ti�es to the Riemann sphere with two 
uts1 1z�z+ z�z+00 1 10 0z� z�z+ z+10z�z+Fig. 5. Constru
tion of a Riemann surfa
e of genus 1.Two Riemann spheres with two 
uts ea
h are deformedinto tubes to make the gluing in the �nal step more
learis analyti
ally 
ontinued a
ross the bran
h 
ut again,we return to the �rst sphere where we started. In thisway, we obtain p(z) as a lo
ally holomorphi
 fun
tion,whose domain is a double-bran
hed 
over of the Rie-mann sphere. Furthermore, suppose we open up thebran
h 
uts, keeping tra
k of where on the other bran
hp(z) would be if we 
ross one side of a 
ut. Identify-ing these edges, we obtain a torus as in Fig. 5 (wherethe arrows are used to signify the glued together edges).Thus the 
omplex algebrai
 
urve Eu 
an be understood601
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u2 → 1

δ0

δ1δ1

δ0

z
−
 = z+ = ±uFig. 6. Riemann surfa
e of genus 1 with two basi
 
y-
les Æ0 and Æ1 on it. In the limit u ! �1, the torusdegenerates into a singular surfa
e. This 
oin
ides withthe loop Æ0 (but not Æ1) be
oming 
ontra
tible to apointas a 
ompa
t Riemann surfa
e of genus g = 1 (gener-ally, every 
ompa
t Riemann surfa
e is topologi
ally asphere with some number of handles g, 
alled the genusof the surfa
e).At the ex
eptional points u = �1, the two turn-ing points 
ollide (z+ = z� = �1) and the bran
h 
utbetween them 
ollapses. The Riemann surfa
e degener-ates into a sphere with two points identi�ed, a singularsurfa
e of genus 0. This 
oin
ides with one of the loopsof the torus be
oming 
ontra
tible to a point (Fig. 6).4.1. Integration and topology on the torusThe a
tion integrals 
an be understood as S = H
 �over 
lassi
al traje
tories, where�(u) = p(�) d� = p(z)dziz = (z2 + 2uz + 1)1=2iz3=2 dz (19)is the a
tion 1-form that is meromorphi
 on the torus.To visualize the relevant traje
tories, we momentarilyreturn to � and 
onsider it 
omplex. In this represen-tation, there are square-root bran
h 
uts along the realaxis, 
onne
ting the 
lassi
al turning points. The a
-tion integrals run just above or below the real axis be-tween the turning points. Combining them into 
losed
y
les, we 
an push these 
y
les o� the real axis andaway from the turning points without altering the a
-tion integrals (by the Cau
hy theorem). The two de-formed 
y
les, shown in Fig. 7, are hereafter 
alled 
0and 
1.Translating these two 
y
les to the 
omplex z-planeyields the 
ontours in Fig. 8. We note that these areindeed 
y
les (i. e., 
losed 
ontours) owing to the 
ross-ing of bran
h 
uts. On the Riemann surfa
e, bothwind around the torus. For this reason, the integralsSj(u) = H
j � are known as periods of Eu with respe
tto �(u). It 
an be veri�ed that the residue of the a
tionform (19) at in�nity is zero. Indeed, we have � � dp

2�2 4 6
2�2 4 6

�2 
os �321�1�2�31:51:00:5�0:5�1:0�1:5 
0 
1
�

Re �
2u

Fig. 7. The 
lassi
ally allowed (forbidden) region atenergy 2u are shown by the bold solid (dashed) line.A 
lassi
al (instanton) periodi
 orbit, in the 
omplex�-plane, leads to the 
0 (
1) 
y
le
0.5

1.5

1.0

−0.5

−1.0

−1.5

Im z

0.5 1.5−1.5 −0.5−1.0

Re z

γ0

γ1

Fig. 8. Cy
les 
0 and 
1 on the 
omplex z-plane foru = �0:9. The 
y
le 
1 
rosses twi
e the two 
utsfrom the �rst bran
h (solid line) to the se
ond bran
h(dashed line) and ba
kat large z. Therefore, we 
an safely deform the 
on-tour around in�nity in the z-plane. We 
onsider 
y
lesÆ0 and Æ1 as de�ned in Fig. 6. Any 
losed 
y
le on thetorus (after an appropriate deformation) 
an be de
om-posed into a superposition of an integer number of thesetwo basi
 
y
les. For example, the 
y
les 
0 and 
1 are
0 = Æ0; 
1 = 2Æ1 � Æ0: (20)602
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al me
hani
s of Coulomb gases : : :This is evident if we examine the manner in whi
h these
y
les en
ir
le around the torus. Formally, the basi

y
les generate the �rst homology group of the torus(sin
e 
y
les that are alike in this manner are homolo-gous).We 
an also 
onsider the �rst 
ohomology group ofthe torus, generated by two independent 1-forms onthe Riemann surfa
e modulo exa
t 1-forms (the latterintegrate to zero for all 
y
les on the torus by Stokes'theorem). In this work, we 
onsider meromorphi
 1-forms with zero residues. Modulo exa
t forms, theyare dual to 1-
y
les on the torus by the de Rham theo-rem [29℄. The duality implies that there are exa
tly asmany independent 1-forms to integrate upon the sur-fa
e as independent 1-
y
les to integrate along the sur-fa
e. For the torus, the 
ohomology, like the homology,is two-dimensional, i. e., any three (or more) 1-forms onthe torus are linearly dependent up to an exa
t form.4.2. Pi
ard�Fu
hs equationAs a result, there must exist a linear 
ombinationof 1-forms f�00(u); �0(u); �(u)g that is an exa
t form(here, primes denote derivatives w.r.t. u). This 
om-bination 
an be found by allowing for (u-dependent)
oe�
ients in front of the three 1-forms and seeking anexa
t form dz[P2(z)=pz(z2 + 2uz + 1) ℄, where P2(z)is a se
ond-degree polynomial with u-dependent 
oe�-
ients. Mat
hing the 
oe�
ients for powers of z leadsto �ve equations for six unknown parameters, deter-mining the sought 
ombination up to an overall mul-tipli
ative fa
tor. This way, we �nd that the operatorL = (u2 � 1)�2u + 1=4 a
ts on �(u) asL�(u) = ddz " i2 1� z2pz(z2 + 2uz + 1) # : (21)It follows from Stokes' theorem and the exa
tness ofL�(u) that LSj(u) = 0 sin
e 
j is a 
y
le on thetorus. Therefore, Sj(u) satis�es the linear se
ond-orderODE [16℄ (u2 � 1)S00j (u) + 14 Sj(u) = 0: (22)This is an example of the Pi
ard�Fu
hs equa-tion [30; 31℄ (see Ref. [32℄ for a review). Exa
tly thisequation appears extensively in the 
ontext of theSeiberg�Witten theory.Inspe
ting the 
oe�
ient in front of the highestderivative shows that Eq. (22) has regular singularpoints at u =1 and u = �1, where the torus degener-ates into a sphere (see Fig. 6). Changing the variable to


1 
0

�1:5
�0:5
0:5
1:5 Im z

1:50:5�0:5�1:0�1:5 Re z
Fig. 9. The two 
y
les 
0;1 for u = 0. Here, 
1 
an bemapped to 
0 by rotating through 180Æu2, this equation 
an be brought to the standard hyper-geometri
 form [33℄. In the domain j arg(1�u2)j < �, itadmits two linearly independent solutions of the formF0(u2) and uF1(u2), whereF0(u2) = 2F1 ��14 ;�14; 12; u2� ; (23)F1(u2) = 2F1 �+14 ;+14; 32; u2� : (24)These solutions form a basis out of whi
h Sj(u) (andindeed any period of (14)) must be 
omposed:S0(u) = C00F0(u2) + C01uF1(u2); (25)S1(u) = C10F0(u2) + C11uF1(u2): (26)To �nd the 
oe�
ients Cjk , j; k = 0; 1 appropriate forthe a
tion 
y
les 
j , we need to evaluate the periodsat one spe
i�
 value of u. Employing the fa
t thatthe hypergeometri
 fun
tions (23)�(24) are normalizedand analyti
 at u = 0, i. e., Fk = 1+O(u2), we see thatSj(u) = Cj0 + uCj1 + O(u2). Hen
e, to identify Cjk ,we expand Sj(u) to the �rst order in u and evaluatethe integrals at u = 0. The 
orresponding 
y
les inthe z-plane are shown in Fig. 9 and expli
it 
al
ulationyields C00 = e�i�=2C10 = 8��1=2�(3=4)2; (27)C01 = ei�=2C11 = ��1=2�(1=4)2: (28)603
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Fig. 10. Monodromy transformation (u + 1) !! (u+1)e2�i rotates the bran
h 
ut between [z�; z+℄by 180Æ 
ounter-
lo
kwise. This 
hanges the 
y
leÆ1 ! Æ01 = Æ1 � Æ0 along with itThe relations between C0k and C1k are not a

iden-tal. They originate from the fa
t that for u = 0, theturning points are�i and hen
e the 
y
le 
1 transformsinto 
0 under the substitution z0 = e�i�z, Fig. 9. To-gether with Eqs. (25) and (26), these relations implyglobal symmetry between the two periods,S0(u) = e�i�=2S1(ei�u): (29)4.3. Stru
ture of Sj(u) near u = �1Equations (23)�(28) fully determine the two a
tionsS0;1(u) in terms of the hypergeometri
 fun
tions1). Weshould now relate them to physi
al observables. Forthis, we 
onsider the stru
ture of Sj(u) in the neighbor-hood of u = �1. As noted above, the 
y
le 
0 = Æ0 
on-tra
ts to a point as u! �1, and therefore S0(�1) = 0by Cau
hy's theorem. By 
ontrast, S1(�1) remains�nite. Moreover, while S0 is analyti
 near u = �1,it turns out that S1 is not. To see this, we 
hoosesome u & �1 and allow u to wind around �1 (i. e.,(u+ 1) ! (u+ 1)e2�i). Sin
e u � �1, the roots z� in(15) are of the form z� = �1� ip2(u+ 1), and we seethat this transformation ex
hanges these bran
h pointsvia a 
ounter-
lo
kwise half-turn; the bran
h 
ut in ef-fe
t rotates by 180Æ. For the 
y
le Æ0, whi
h en
losesthe turning 
ut, this has no e�e
t: the 
ut turns withinit. Not so for Æ1: as the 
ut rotates, we must allow Æ1to 
ontinuously deform if Æ1 is never to interse
t thebran
h points. The overall e�e
t is shown in Fig. 10.The e�e
t of this monodromy transformation is to pro-du
e a new 
y
le Æ01. Thus, while we have returned tothe initial value of u, the period S1(u) (unlike S0(u))does not return to its original value and therefore S1(u)
annot be analyti
 near u = �1.1) Sin
e the integrals 
onsidered here are in fa
t ellipti
 inte-grals over a 
losed 
y
le, the hypergeometri
 fun
tions presentedhere 
ould have been given dire
tly in terms of the 
omplete el-lipti
 integrals of the �rst and se
ond kind [33℄.

These fa
ts are 
onsistent, of 
ourse, with the originof the integrals as the 
lassi
al and instanton a
tions.As u! �1, the 
lassi
ally allowed region 
ollapses andp(�)! 0, and hen
e the 
lassi
al a
tion at the bottomof the 
osine potential approa
hes that of the harmoni
os
illator S0(u) / (1 + u) (indeed, the 
lassi
al periodT / �uS0 is a 
onstant). For the instanton traje
-tory 
1, the a
tion S1 does not vanish. Moreover, asu! �1, the period on the instanton traje
tory is log-arithmi
ally divergent be
ause the traje
tory goes tothe extrema of the 
osine potential (see Fig. 7). Thisimplies that S1(u) / 
onst + (1 + u) ln(1 + u).In fa
t, more 
an be said. Under the monodromytransformation, the basis 
y
le Æ01 relates to the originalbasis as Æ01 = Æ1� Æ0 (as 
an be seen by 
ounting inter-se
tions of 
y
les or by moving onto the torus). Thus,(Æ0; Æ1) ! (Æ0; Æ1 � Æ0). From the de
omposition of 
0and 
1 noted in (20), it follows that the Sj(u) musttransform as S0(u)S1(u)!!  1 0�2 1! S0(u)S1(u)! ==M�1 S0(u)S1(u)! ; (30)where we have introdu
ed the monodromy matrixM�1of the a
tions near u = �1. Sin
e this variation of S1o

urs for every su
h monodromy near u = �1, S1must have a 
omponent that depends logarithmi
allyon 1 + u. Indeed, ln (1 + u) in
reases by 2�i under themonodromy and sin
e S1 
hanges by �2S0 it must havethe fun
tional form,S1(u) = Q1(u) + i� S0(u) ln(1 + u) ; (31)where Q1(u) and S0(u) are analyti
 fun
tions of 1+ u.As an immediate 
orollary, we 
an use relation (29)between S0 and S1 to �nd the stru
ture of the solutionnear u = 1. Then the fun
tional form of S0(u) nearu = 1 is S0(u) = Q0(u)� i� S1(u) ln(1� u);where Q0(u) = �iQ1(�u) and S1(u) = iS0(�u) areanalyti
 fun
tions of 1 � u. The 
orresponding mon-odromy matrix is M1 =  1 20 1! : (32)While the stru
ture of the periods near u = �1 hasbeen shown through geometri
 reasoning, it 
an also604
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al me
hani
s of Coulomb gases : : :be found dire
tly by seeking solutions of Pi
ard�Fu
hsequation (22) as power series in 1 � u. Su
h a pro
e-dure along with the demand of a 
onstant Wronskianleads to a realization that one of the two solutions mustin
lude (1� u) ln(1� u) terms along with the iterativesequen
e for �nding the 
oe�
ients of the polynomials.This allows dire
tly verifying Eq. (31).4.4. Semi
lassi
al resultsWe now seek semi
lassi
al results for the sequen
eof low-energy bands terminated at u = �1. We inter-pret the period S0(u) that is analyti
 around u = �1 asa 
lassi
al a
tion. It should be quantized a

ording tothe Bohr�Sommerfeld rule to determine the normalizedenergies um of the bands,S0(um) = 2���1=2(m+ 1=2); m = 0; 1; : : : (33)(we do not dis
uss the origin of the Maslov index 1=2here). The se
ond nonanalyti
 period S1(u) is iden-ti�ed as the instanton a
tion, whi
h determines thebandwidth (�u)m a

ording to Gamow's formula(�u)m = !�p� exp�i�1=2S1(um)2 � ; (34)where ! = 2 is the 
lassi
al frequen
y for Hamil-tonian (12). The monodromy of u around �1,Eq. (30), 
arries over to the bandwidth as the fa
torexp[(i=2)�1=2(�2S0(um))℄. Then the Bohr�Sommer-feld quantization in (33) is also a 
ondition for thebandwidth to be invariant with respe
t to monodro-mies.To illustrate these results, we expand the periods inEqs. (25)�(28) near u = �1 to �nd the physi
al energylevels �m = 2�um. To the �rst order, we �ndS0(u) = 2�(u+ 1) ; (35)Q1(u) = 16i� i� (u+ 1) ln (32e); (36)implying �m = �2�+2�1=2 (m+ 1=2). As a result, thepressure of a monovalent gas, Eq. (5), isP = �eE0�0 = 2kBTf �pkBTeE0f: (37)The two terms here are respe
tively the pressure of theideal gas with the fuga
ity f and the mean-�eld De-bye�Hü
kel intera
tion 
orre
tion [2℄.The instanton a
tion, Eq. (31), at the quantized umis S1(um) = 16i+ 2i�m+ 12� ln�m+ 1=232e�1=2 � ; (38)

where the linear term in Q1(u) is absorbed into thelogarithm. Gamow formula (34) leads to(��)m = 2�(�u)m = 2� !�p� �� exp�i�1=2S1(um)2 � = 4� � 32em+ 1=2�m+1=2 �� exp��8�1=2 +�m2 + 34� ln�� ; (39)This 
oin
ides with the known asymptoti
 results forthe Mathieu equation [27; 28; 34℄.4.5. Neighborhood of u =1For 
ompleteness, we also 
onsider the behavior ofthe a
tions at high energy. In the limit u ! 1, Pi-
ard�Fu
hs equation (22) is of the form u2S00(u) ++ S(u)=4 = 0. Seeking a solution in the form S = ur,we �nd r(r � 1) + 1=4 = (r � 1=2)2 = 0 and thus theremust be two independent solutions with the leading be-havior u1=2 and u1=2 ln(u). Therefore, the two periodsshould be of the formSi(u) = u1=2 [Vi(u) +Wi(u) lnu℄ ; (40)where Wi and Vi are analyti
 fun
tions of 1=u. To �ndthese fun
tions, we note that while the 
ontinuation toin�nity for S1 is unambiguous, the result obtained forS0 depends on whether the path to in�nity passes aboveor below u = 1. This is be
ause S0 exhibits a nontrivialmonodromy around u = 1, Eq. (32). In other words,whether u goes to in�nity below or above the real axisdetermines whi
h of the two turning points z� goes tozero or in�nity. Sin
e these are also bran
hing pointsfor the torus, the path of analyti
 
ontinuation deter-mines how the 
y
les on the torus are 
arried along inthe pro
ess.Thus, looking for the asymptoti
 behavior of peri-ods (25)�(28) at u!1� i0, we �nds [34℄V0(u) = i�W1(u)� V1(u); (41)W0(u) = �W1(u); (42)V1(u) = 4ip2 �ln �e2=8�+ 2=u� ; (43)W1(u) = �4ip2 �1� (4u)�2� (44)to leading 
orre
tions in 1=u. Sin
e S0(u) � S1(u) == i�W1(u)u1=2, it readily follows that under the mono-dromy u ! ue2�i, the two a
tions transform with themonodromy matri
esM1�i0 =  �3 2�2 1! ; M1+i0 =  1 2�2 �3! : (45)605
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an be veri�ed that the three monodromy matri
essatisfyM1�i0 =M1M�1; M1+i0 =M�1M1; (46)as expe
ted [33℄: winding around 0 in a large 
ounter-
lo
kwise 
ir
le is the same as winding �1 and 1 se-quentially 
ounter
lo
kwise.From Eqs. (40)�(44), we �nd the unique nonsin-gular period at u ! 1 � i0 to be given by S0(u) �� S1(u) = �i�W1(u)u1=2. As dis
ussed above, it mustbe identi�ed with the 
lassi
al a
tion and subje
t tothe Bohr�Sommerfeld quantization[S0(um)� S1(um)℄ =2 = 2���1=2m:This leads to um � m2=2� and hen
e �m = 2�um == m2, as expe
ted for the high-energy spe
trum.5. DIVALENT (2,1) GASThe divalent (2,1) gas is the simplest 
ase whereHamiltonian (8) is non-Hermitian. In terms of the 
om-plex variable z = ei� and normalized energy u = 2�=3�,it takes the form32 u = p2 ��z22 + 1z� : (47)Similarly to Eq. (13), this de�nes a family of 
omplexalgebrai
 
urvesEu : F(p; z) = 2p2z � �z3 + 3uz + 2� = 0: (48)The map p = p(z) is lo
ally holomorphi
 away fromthe zeros z0; z� (Fig. 11). At these three bran
hingpoints as well as at the singularity at z = 0, thefun
tion p(z) is lo
ally double-valued and behaves asp � (z � zj)1=2; j = 0;� and p � z�1=2, respe
tively.In 
ontrast to the monovalent (1; 1) 
ase in Se
. 4, thefun
tion p(z) is single-valued at z � 1, where it be-haves as p � z, and hen
e no bran
h 
ut extends toz = 1. Nevertheless, there are again four bran
h-ing points. To 
onstru
t the Riemann sphere, we drawtwo bran
h 
uts: one between [0; z0℄ and the other be-tween [z+; z�℄. The resulting Riemann surfa
e is againa g = 1 torus, analogous to that in Fig. 5.Its moduli spa
e u 
ontains four singular pointsu = �1; e�i�=3, and u = 1, where the torus degener-ates into the sphere. (There were only three su
h pointsin the (1,1) 
ase.) For u = �1, the bran
hing pointsz� 
oales
e, while for u = e�i�=3, the bran
hing pointz0 
ollides with z�, 
orrespondingly. As u ! 1, thebran
hing point z0 approa
hes z = 0, while z� ! �i1.

Im z
Re z �z0 z�

z+ 
0
20:51:0
1:5
�0:5�1:0�1:5 1 2
1 a bFig. 11. Complex z-plane with two bran
h 
uts, shownin bold solid lines. (a) Three integration 
y
les
0; 
1; 
2 are displayed for u = 0. (b) The instan-ton 
y
le � = �
1 + 
2. The solid (dashed) linesdenote parts of the 
y
les going over the �rst (se
ond)bran
hThe a
tion integrals are again de�ned as Sj = H
j �,where the 1-form �(u) = p(z)dz=iz is meromorphi
 onthe torus. In general, the 
ounterparts of the turn-ing points in the 
omplex �-plane are not real. Thismakes it more 
onvenient to dis
uss the a
tion 
y
les
j in the z-plane. With three turning points z0; z�, it is
onvenient to take three paths of integration 
0; 
1; 
2,depi
ted in Fig. 11. In terms of the two basi
 
y
lesÆ0 and Æ1 on the torus (see Fig. 6), the three paths aregiven by 
0 = Æ0; 
1 = �Æ1 + Æ0; 
2 = Æ1: (49)We note that 
0�
1�
2 = 0, and hen
e S0 = S1+S2.This equality holds be
ause there are only two inde-pendent 
losed 
y
les on Riemann surfa
e of genus 1.It follows from de Rham's theorem [29℄ that there areexa
tly two independent 1-forms. Therefore, the threeforms f�00(u); �0(u); �(u)g are linearly dependent up toan exa
t form. Following the root outlined in Se
. 4.2(where P2(z) is repla
ed with P3(z), a polynomial ofdegree 3), we obtain the Pi
ard�Fu
hs equation(u3 + 1)S00j (u) + u4 Sj(u) = 0: (50)In agreement with the above dis
ussion, there are regu-lar singular points at the third roots of negative unity,i. e., u = �1; e�i�=3, where the 
oe�
ient in front ofthe highest derivative goes to zero, and at u =1. Twolinearly independent solutions F0(u3) and uF1(u3) ofthis se
ond-order ODE are given in terms of the hyper-geometri
 fun
tions606
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al me
hani
s of Coulomb gases : : :F0(u3) = 2F1��16 ;�16; 23 ;�u3� ; (51)F1(u3) = 2F1�+16 ;+16; 43 ;�u3� : (52)In this basis, the three periods Sj(u), where j = 0; 1; 2,are given bySj(u) = Cj0F0(u3) + Cj1uF1(u3) : (53)Sin
e the hypergeometri
 fun
tions Fj(u3 ! 0) == 1+O(u3), it follows that Sj(u) = Cj0+uCj1+O(u3)as u! 0. We 
an thus �nd 
onstants Cjk by expli
itlyevaluating the a
tions at u = 0, i. e., Cj0 = Sj(0) andCj1 = S0j(0). The 
orresponding integration paths areshown in Fig. 11 and straightforward integration yieldsC00 = C10e�i=3 = C20e��i=3 = 211=63�3=2�(1=6)�(1=3) ; (54)C01 = C11e��i=3 = C21e�i=3 == 31=2�(1=6)�(1=3)211=6�1=2 : (55)These relations along with Eq. (53) imply the three-foldsymmetry between the a
tions (
f. Eq. (29))S0(u) = ei�=3S1 �e�2i�=3u� == e�i�=3S2 �e2i�=3u� : (56)We now need to 
onne
t periods (53) with thequantum spe
trum. We start by dis
ussing the realbran
h of the spe
trum terminating at the singularpoint u = �1 (see Fig. 1). As u! �1, the two bran
h-ing points z� 
oales
e. As a result, the 
0 
y
le degen-erates to a point, leading to S0(u ! �1) ! 0, whileS1;2 remain �nite and a
tually turn out to be nonana-lyti
. This 
an be seen by 
onsidering the monodromyfor a winding of u around �1, i. e., (u+1)! (u+1)e2�i(
f. Se
. 4.3). Su
h a transformation ex
hanges bran
h-ing points z� by a 
ounter-
lo
kwise 180Æ rotation.This leaves the 
y
le Æ0 = 
0, whi
h en
loses these twopoints, un
hanged. On the other hand, the 
y
le Æ1pi
ks up a 
ontribution of �Æ0: Æ01 = Æ1�Æ0. Thus 
1;2,Eq. (49), pi
k up a 
ontribution of �Æ0. As a result, forevery monodromy 
y
le, S1;2 pi
k up a 
ontribution of�S0, and therefore lo
ally they are of the formS1;2(u) = Q1;2(u)� i2�S0(u) ln(1 + u); (57)where Q1;2(u) and S0(u) are analyti
 fun
tions of 1+u(moreover Q1 + Q2 = S0, 
f. Eq. (49)). This al-lows identifying the period S0(u) = (p6�=2)(1 + u) ++O((1+u)2) as the 
lassi
al a
tion, while the instanton

1.0

0.5

0−1.0 −0.5 0.5 1.0Fig. 12. Narrow energy bands (Æ) in the upper half-planeof the 
omplex energy u for � = 200 (
f. Fig. 3a).ImS0(u) = 0 along the real axis, where the smalllines mark ReS0(u) = 2���1=2(m + 1=2). The lineImS1(u) = 0 emerges from u = ei�=3 and interse
tsthe real axis at u � 0:96. To the right of this point, weobserve bands with narrow gaps and use the same 
olor-ing 
onvention as in Figs. 1, 3. The small perpendi
ularlines mark ReS1(u) = 2���1=2(m+ 1=2)a
tion is a 
ombination of the two nonanalyti
 periodsS1;2(u).The 
orresponding monodromy matrix M�1, e. g.,in the basis (S0; S1) (sin
e S2 = S0 � S1 is linearlydependent) is S0(u)S1(u)!!  1 01 1! S0(u)S1(u)! ==M�1 S0(u)S1(u)! : (58)Employing Eqs. (49) and (56), we �nd that at the sin-gular point ei�=3 (e�i�=3), the period S1(u) (S2(u)) isnonsingular and goes to zero. It should be thus iden-ti�ed with the 
lassi
al a
tions for the bran
h of thespe
trum terminating at the respe
tive singular point(see Fig. 1). A 
ombination of the remaining two a
-tions S0 and S2 (S1) form the 
orresponding instanton.The respe
tive monodromy matri
es (again in the basis(S0; S1)) are found asMei�=3 =  1 �10 1 ! ; Me�i�=3 =  2 �11 0 ! : (59)To �nd positions of the bands along the threebran
hes of the spe
trum, terminating at the three sin-gular points u = �1; e�i�=3, we use the Bohr�Sommer-feld quantization for the proper 
lassi
al a
tion Sj(u)with j = 0; 1; 2, 
orrespondingly:Sj(u(j)m ) = 2���1=2(m+ 1=2); m = 0; 1; : : : (60)607



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Figure 12 shows the lines ImS0(u) = 0 and ImS1(u) == 0 interse
ted with the set of lines ReSj(u) == 2���1=2(m+1=2). The numeri
ally 
omputed spe
t-rum sits right at the semi
lassi
al 
omplex energies u(j)m .The ex
ellent agreement holds all the way up to thepoint u � 0:96, where all three periods Sj happen tobe purely real. Beyond this point, the semi
lassi
alapproximation seems to break down, whi
h manifests,e. g., in the appearan
e of wide Blo
h bands. Expan-ding S0(u) near u = �1, we �nds for the energy le-vels �m = 3u(0)m �=2 in the semi
lassi
al approximation,�m � �3�=2+p6�(m+1=2). The 
orresponding pres-sure P = �eE0�0 in (5) 
onsists of two 
ontributions:that of the ideal (2; 1) gas and of the mean-�eld De-bye�Hü
kel intera
tion 
orre
tion.Taking into a

ount that there is no physi
al dif-feren
e between S1 and S2 and that the monodromyaround u = �1 in Eq. (57) should leave the band-width in Gamow's formula (34) invariant (i. e., it addsthe fa
tor expf(i=2)�1=2(�2S0(u(0)m ))g), we identify theinstanton 
y
le with � = �
1 + 
2 (see Fig. 11):Sinst(u) = �S1(u) + S2(u). This 
an also be found byinspe
ting the 
y
les in Fig. 11: we see that the 
om-bined � = �
1 + 
2 
y
le 
onne
ts z� turning pointsthrough the �
lassi
ally forbidden region�, similarly tothe 
1 instanton 
y
le in the (1; 1) 
ase (
f. Fig. 8).However, we do not have a rigorous proof of this fa
t.Rather, our 
hoi
e of the integration 
y
le should be
onsidered as an edu
ated guess, whi
h is veri�ed bythe numeri
s.Expanding the S1;2(u) a
tions near u = �1 and sub-stituting u(0)m from the Bohr�Sommerfeld quantizationin (60) with j = 0, we �nd the Blo
h bandwidths ofthe 
entral spe
tral bran
h (
f. Eq. (34) with ! = p6 )(��)m = 32�(�u)m = 2p6�  36p6em+ 1=2!m+1=2 �� exp ��3p6�+�m2 + 34� ln�� : (61)Of spe
ial interest is the bandwidth of the lowest en-ergy band, due to its dire
t relation to the transportbarrier of the ion 
hannel, Se
. 2. Setting m = 0 yields(��)0 � 34:14�3=4 e�7:35p�: (62)This is in very good agreement with the numeri
al si-mulations (Fig. 13).Finally, we fo
us on the behavior at u = 1. ThePi
ard�Fu
hs equation is of the form u3S00 + uS=4 == 0. Sear
hing for a solution of the form S(u) = ur

1:0 1:5 2:0 2:5 3:0 3:5 4:0 4:5p��25

0
�20�15�10�5

ln(��)0

Fig. 13. Analyti
 (numeri
al) results for the logarithmof the bandwidth of the lowest band versus square rootof the 
harge 
on
entration with (1; 1) as dotted line(
ir
les), (2; 1) dashed line (diamonds), and (3; 1) assolid line (stars)leads to (r � 1=2)2 = 0, signifying two independent so-lutions with the leading asymptoti
 behavior u1=2 andu1=2 lnu. Upon the monodromy transformation u !! ue2�i, the �rst of these solutions 
hanges sign, whilethe se
ond, along with the sign 
hange, pi
ks up a 
on-tribution from the �rst one. Considering the asymp-toti
 forms of S1;2(u), Eq. (53), at u ! +1, we �ndthe SL(2; Z) monodromy matrixM1 =  �1 03 �1! : (63)It 
an be veri�ed thatM1 =Mei�=3M�1Me�i�=3 ; (64)as it should be: winding on
e around 0 in a large 
oun-ter
lo
kwise rotation is identi
al to winding 
ounter-
lo
kwise in sequen
e around the other three singularpoints. 6. TRIVALENT (3,1) GASThe trivalent (3,1) Hamiltonian with the normal-ized energy u is43 u = p2 ��z33 + 1z� : (65)It gives a family of algebrai
 
urvesEu : F(p; z) = 3p2z � (z4 + 4uz + 3) = 0 (66)608
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u4 → 1

Fig. 14. (a) Double torus 
urve Eu for u4 6= 1, havingfour basi
 
y
les. (b ) When u4 = 1, the g = 2 torusdegenerates into a singular g = 1 surfa
e. This makesone of the basi
 
y
les to pass through the singularity,and renders another 
y
le 
ontra
tible to a pointover 
omplex (z; p). They are nonsingular if u4 6= 1,and therefore F(p; z) impli
itly de�nes a lo
ally holo-morphi
 map p = p(z) almost everywhere on (p; z). Inthis 
ase, there are six square-root bran
hing points atz = 0;1 and at the four turning points (i. e., four rootsof p2(z) = 0).Hen
e, while Eu is a double-bran
hed 
over of theRiemann sphere, three 
uts (instead of two as in thegenus-1 
ase) are required per bran
h. After openingup 
uts and identifying edges under analyti
 
ontinu-ation, this leads to a double torus, i. e., a sphere withtwo handles, Fig. 14a. Unlike the mono- or divalent
ases, the trivalent 
hannel gives a family of genus-2Riemann surfa
es. The ex
eptional u4 = 1 
ases makeEu singular at (p; z) = (0;�u), due to 
ollision of twoturning points, Fig. 14b. The double torus then degen-erates into a simple torus with two points identi�ed (asingular surfa
e of genus 1).As in the genus-1 
ases, the a
tions 
an be under-stood as integrals Sj = H
j � of the meromorphi
 a
tion1-form �(u) = p(z)dz=iz upon these Riemann surfa
es.Owing to the four turning points, there are four su
h
y
les 
j with j = 0; 1; 2; 3. These are 
hosen as in thedivalent 
ase, with the inner ar
s of ea
h being takento start on the prin
ipal bran
h. They are shown foru = 0 in Fig. 15a. The u-dependen
e of these periodsis governed by the Pi
ard�Fu
hs equation.Be
ause the double torus is a genus-2 surfa
e, thereare four independent 
y
les (as opposed to two forgenus 1). Therefore, the homology � and so too, asargued before, the 
ohomology � is not two- but four-dimensional: any �ve meromorphi
 1-forms on the dou-ble torus are linearly dependent up to an exa
t form.Thus �(u) and its �rst four derivatives 
an be usedto produ
e an exa
t form; this is done by �nding 
o-

Γ

−1.5

−0.5

0.5

1.0

1.5
Im z

1 Re z−1

γ2

γ3

γ0

γ1

a b

Fig. 15. The Riemann surfa
e is doubly bran
hed witha total of three 
uts, shown in bold lines. The four
y
les 
j with j = 0; 1; 2; 3, along with the instanton
y
le � (de�ned for later referen
e) are displayed foru = 0. The solid (dashed) lines denote parts of the
y
les going over the �rst (se
ond) bran
he�
ients in a polynomial entering the exa
t form, asdis
ussed in Se
. 4.2. Stokes' theorem implies thatS(u) = H
 �(u) must satisfy a 4th-order linear ODE inu, i. e., a Pi
ard�Fu
hs equation, whi
h in the present
ase takes the form(u4 � 1)S(4) + 8u3S(3) + 21718 u2S00 ++ uS0 + 65144 S = 0: (67)It has regular singular points at fourth roots of unity,i. e., u 2 f�1;�ig and at u =1. By 
hanging the vari-able to u4, we 
an 
ast the Pi
ard�Fu
hs equation asa generalized hypergeometri
 equation. In the 
ut do-main j arg(1�u4)j < �, it has four linearly independentsolutions of the form ukFk(u4), where k = 0; 1; 2; 3 andF0(u4) = 4F3��18 ;�18 ; 524 ; 1324 ; 14 ; 12 ; 34 ; u4� ; (68)F1(u4) = 4F3�+18 ;+18 ; 1124 ; 1924 ; 12 ; 34 ; 54 ; u4� ; (69)F2(u4) == 4F3 �+38 ;+38 ; 1724 ; 2524 ; 34 ; 54 ; 32 ; u4� ; (70)F3(u4) == 4F3 �+58 ;+58 ; 2324 ; 3124 ; 54 ; 32 ; 74 ; u4� (71)are generalized hypergeometri
 series. We note that theparameters of ea
h 4F3(faig; fbjg;u4) satisfy P bi ��P ai = 1; su
h hypergeometri
 series are known asone-balan
ed or Saals
hützian [35℄.11 ÆÝÒÔ, âûï. 3 (9) 609



T. Gulden, M. Janas, P. Koroteev, A. Kamenev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Writing the a
tions in this basis asSj(u) = 3Xk=0CjkukFk(u4); (72)we note that Sj(u) = P3k=0 Cjkuk + O(u4) (be
ausegeneralized hypergeometri
 fun
tions are unity at zeroand analyti
 nearby). We expand ea
h Sj(u) up tou3 around u = 0 and evaluate the resulting integrals(Fig. 15a) to obtain the fCjkg2). For S0, for example,this yieldsC00 = +27=2 � 3�9=8��1=2�(5=8)�(7=8); (73)C01 = +2�1=2 � 3�7=8��1=2�(1=8)�(3=8); (74)C02 = �2�5=2 � 3�13=8��1=2�(1=8)�(3=8); (75)C03 = �7 � 2�1=2 � 3�27=8��1=2�(5=8)�(7=8): (76)When u = 0, the turning points satisfy z4 + 3 = 0 andtherefore lie on a 
ertain 
ir
le in the 
omplex plane.Hen
e, 
j and 
j+1 are only di�erent by a �=2 rotation(Fig. 15a). As a result, we �nd the four-fold symmetryrelationsS0(u) = e�i=4S1(e��i=2u) = e�i=2S2(e��iu) == e��i=4S3(e�i=2u) (77)for u in the 
ut domain j arg(1� u4)j < �.We now 
onsider the periods in the neighborhood ofu = �1. As before, the 
y
le 
0 be
omes 
ontra
tibleto a point as u ! �1, and therefore S0(�1) = 0 byCau
hy's theorem. The other three a
tions remain �-nite, but S1 and S3 are nonanalyti
. This 
an be seenby 
onsidering the monodromy around u = �1. As inthe genus-1 
ases, the shrinking bran
h 
ut near z = 1makes a half-turn. Examining the a
tion 
y
les, it isonly 
1 and 
3 that interse
t the 
ut rotating under themonodromy within the 
0 
y
le. Hen
e, it is these two
y
les that 
hange under monodromy and thus havelogarithmi
 nonanalyti
ity near u = �1. More pre-
isely, (S1; S3) ! (S1 + S0; S3 � S0) under the mon-odromy, and therefore these a
tions are of the formS1;3(u) = Q1;3(u)� i2� S0(u) ln(1 + u); (78)where Q1;3(u) as well as S0(u) and S2(u) are ana-lyti
 near u = �1. Sin
e S1(u) + S3(u) is seen to beinvariant under the monodromy, there are a total of2) Note that the integrals that arise at the u2-order and higherare divergent near the turning points; however, they are 
on-vergent near 0 and 1 and 
an be 
al
ulated by deforming the
ontours to run between these points.

three independent periods that have trivial monodromyaround u = �1. This is again supported by 
onsider-ing series solutions of Pi
ard�Fu
hs equation (67) nearu = �1. This way, we �nd three regular solutions withthe leading behavior (1 + u)0, (1 + u)1, (1 + u)2 alongwith an irregular solution with the leading behavior(1 + u) ln(1 + u). For reasons of spa
e, we omit the
orresponding 4� 4 monodromy matrix.Although analyti
 fa
ts about the 4F3 series aresparse (see [33; 35℄ for the relevant dis
ussion), thereare simple 
onsisten
y 
he
ks that our solutions (72)must pass. First, the vanishing of the 
lassi
al a
tionS0(u) at u = �1 implies the identity3Xk=0C0k(�1)kFk(1) = 0 (79)for the hypergeometri
 fun
tions given above. In ad-dition, inspe
tion of Hamiltonian (65), shows that the
lassi
al frequen
y near u = �1 is ! = p8. This im-plies S00(�1) = (4=3)2�=! and thus3Xk=0C0k ddu�ukFk(u4)�u=�1 = p8�3 : (80)Being 
he
ked numeri
ally, both relations hold up to10�16.Now we turn to the analysis of the spe
trum ofHamiltonian (65) at large �. There are three spe
tralbran
hes terminating at the singular points u = �1;�i(see Fig. 3b ) (noti
e that the fourth point u = 1 lies inthe middle of the spe
trum and does not have an ob-vious semi
lassi
al interpretation). To determine posi-tions of the bands, we quantize the 
orresponding a
-tions j = 0; 1; 3 (but not j = 2, whi
h is responsiblefor the period vanishing at u = 1) a

ording to theBohr�Sommerfeld rule:Sj(u(j)m ) = 2���1=2(m+ 1=2);m = 0; 1; : : : ; j = 0; 1; 3: (81)Figure 16 shows the semi
lassi
al energies u(j)m alongwith numeri
ally found energy bands. We notes theperfe
t agreement between these two for Reu . 1:09.At the point u � 1:09, all three a
tions S0;1;3 are purelyreal and the 
orresponding instanton a
tion (see below)goes through zero. Beyond this point, energy bands arenot exponentially narrow and the semi
lassi
al approx-imation may not be appli
able. This point is unmis-takably di�erent from the singular point u = 1. Fo
u-sing on the real energies at the bottom of the spe
trumand expanding near u = �1, we use identities (79)and (80) to �nd S0(u) = (p8�=3)(1 + u) +O(1 + u)2.610
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1.0

0.5

0−1.0 −0.5 0.5Fig. 16. Narrow energy bands in the upper half-planeof the 
omplex energy u for � = 200 (
f. Fig. 3b ).ImS0(u) = 0 along the real axis, where the shortlines mark ReS0(u) = 2���1=2(m + 1=2). The lineImS1(u) = 0 emerges from u = i and interse
ts thereal axis at u � 1:09. To the right of this point, weobserve bands with narrow gaps and use the same 
olor-ing 
onvention as in Figs. 1, 3. The small perpendi
ularlines mark ReS1(u) = 2���1=2(m+1=2); Æ dots are thenumeri
ally 
omputed narrow bandsBohr�Sommerfeld rule (81) leads to �m = 4u(0)m �=3 == �4�=3 + 2p2�1=2(m + 1=2). Employing Eq. (5),this yields the pressure of the trivalent Coulomb gas asP = 4�=3�p2�. The two terms here are respe
tivelythe ideal gas pressure and the mean-�eld Debye�Hü
kel
orre
tion.We now fo
us on the width of the Blo
h bands nearu = �1. This requires identifying a 
y
le 
orrespondingto the instanton a
tion. Guided by the 
osine potentialexample (
f. Fig. 7), we take the 
orresponding 
y
leas 
onne
ting the turning points of the 
lassi
al a
tionS0 through the �
lassi
ally forbidden region�. This sug-gests the 
y
le � shown in Fig. 15b, whi
h is essentiallyof the same form as the 
1 instanton 
y
le in (1; 1)
ase. Considering interse
tions of these 
y
les showsthat � = 
3 � 
2 � 
1. Upon the monodromy transfor-mation around u = �1, the instanton a
tion thus a
-quires a 
ontribution �2S0(u), Eq. (78), whi
h leavesthe bandwidth invariant thanks to Bohr�Sommerfeldquantization (81). The resulting instanton a
tion isSinst(u) = Qinst(u) + i� S0(u) ln(1 + u); (82)where Qinst = Q3 � S2 � Q1 is the regular part ofSinst(u) (
f. Eq. (78)). To the �rst order in 1+ u, thisis Qinst(um) � 14:12i� 6:71i(1 + u), where, e. g., theleading term originates from

Qinst(�1) = Sinst(�1) ==Xj=0 (C3j � C2j � C1j) (�1)jFj(1) � 14:12i:Then, for u(0)m along the real u-axis satisfyingthe Bohr�Sommerfeld quantization, Gamow's formulayields the bandwidth(��)m = 4�3 (�u)m = 4�3 3!2�p� �� exp�i�1=2Sinst(um)2 � � 4p2� � 581:14m+1=2�m+1=2�� exp��7:06p�+�m2 + 34� ln�� : (83)The width of the lowest band (��)0 is 
ompared withthe numeri
al results in Fig. 13. As in the previous
ases, the two results are in strong a

ord3).For 
ompleteness, we address the u = 1 behavior.For large u, the Pi
ard�Fu
hs equation is of the formu4S(4)+8u3S(3)+217u2S00=18+uS0+65S=144 = 0:The trial S(u) = ur brings four independent solutionswith the leading asymptoti
 forms fu1=2, u1=2 ln(u),u�5=6, u�13=6g. The �rst two are familiar from thegenus-1 
ases, but the last two are novel to the ge-nus-2 
ase. The fra
tional powers proportional to 1=6may seem unexpe
ted, given the four-fold symmetriesof the periods. However, this symmetry is manifest atthe level of 
y
les at u = 0, where four turning pointsare equally spa
ed on a 
ir
le in the 
omplex z-plane.By 
ontrast, as u ! 1, the turning points must sat-isfy either z3 � �u or 1=z � �u, thus only three ofthe four turning points tend towards in�nity and onetowards zero. This leads to the three-fold ex
hange ofa
tions upon the monodromy transformation aroundu = 1. Thus the ur behavior of the periods with r == �integer=(2�3) is exa
tly what is needed to 
onstru
ta proper SL(4; Z) monodromy matrix.7. HIGHER-VALENCE GASESHere, we brie�y summarize our 
urrent state of un-derstanding of the higher valen
e (4; 1) and (3; 2) gases.3) In writing the Gamow formula above, we 
onje
tured theoverall preexponential fa
tor of 3 rather than 2 as in the (1,1)and (2,1) 
ases, possibly due to the di�erent stru
ture of the u
-tuation determinant. A detailed evaluation of the preexponentialfa
tor is beyond the s
ope of the present work.611 11*
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orresponding Hamiltonians are(4,1) : 54 u = p2 ��z44 + 1z� ; (84)(3,2) : 56 u = p2 ��z33 + 12z2� : (85)In both 
ases, there are �ve turning points in the z-pla-ne given by the equation p2(z) = 0. The behavior atz = 0 and z = 1 is somewhat di�erent: for (4; 1),there is a bran
hing point at z = 0, but not at z = 1(
f. the (2,1) problem); while for (3; 2), the opposite istrue: there is no bran
hing point at z = 0, but there isone at z = 1. In either 
ase, there are six bran
hingpoints, whi
h di
tate three bran
h 
uts. The resultingRiemann surfa
e is the double torus, as in the (3; 1)
ase (see Fig. 14). In these 
ases, it is not degenerateas long as u5 6= �1; otherwise, two of the �ve turningpoints 
ollide, leading to a 
ontra
tion of one of the
y
les. Therefore, we expe
t �ve bran
hes of the spe
-trum terminating at u = (�1)1=5, in agreement withFigs. 3
,d.Sin
e the Riemann surfa
es are of genus 2, there is alinear 
ombination of the 1-form �(u) = p(z)dz=iz andits four u-derivatives that sum up to an exa
t form.Therefore, any period S = H � must satisfy a 4th-orderODE in u. This is found by mat
hing 
oe�
ients ina polynomial entering the exa
t form (see Se
. 4.2),yielding the Pi
ard�Fu
hs equations(4,1): (u5 + 1)S(4)(u) + 9u5 � 1u S(3)(u) ++ 23516 u3S00(u) + 54 u2S0(u) + 3964 uS(u) = 0; (86)(3,2): (u5 + 1)S(4)(u) + 9u5 � 1u S(3)(u) ++ 1409 u3S00(u) + 54 u2S0(u) + 119144 uS(u) = 0: (87)While the 
oe�
ients seem arbitrary, some features arenotable. First, 
hanging the variable to u5, the equa-tions 
an be brought to the generalized hypergeometri
form; we then �nd four independent solutions of theform ukFk(u5), where k = 0; 1; 2; 4 and Fk are 
ertain4F3 hypergeometri
 series4). We note the absen
e of ak = 3 solution. This 
an be veri�ed dire
tly from thePi
ard�Fu
hs equations, whose leading behavior nearu = 0 is given by S(4)(u)� u�1S(3)(u) = 0. Substitut-ing S / uk gives k(k � 1)(k � 2)(k � 4) = 0.4) While we omit the parameters of these series for reasons ofspa
e, we note that they satisfy the one-balan
ed 
ondition [35℄stated in the (3,1) 
ase.

Se
ond, we fo
us on the vi
inities of �fth roots of�1, e. g., on u = �1. Notably, both Eqs. (86) and(87) have the same leading behavior 5(u+ 1)S(4)(u) ++10S(3)(u) = 0, with all other terms being subleading.Looking for a solution in the form S(u) � (1 + u)s, we�nd 5s(s � 1)2(s � 2) = 0 for the s-exponent. There-fore, in both 
ases there are three analyti
 solutionswith the leading behavior (1 + u)0; (1 + u)1; (1 + u)2,while the double root at s = 1 signi�es that the fourthindependent solution is of the form (1 + u) ln(1 + u)5).This observation indi
ates a nontrivial monodromymatrixM�1, allowing one to identify the polynomial infront of the ln(1 + u) with the 
lassi
al a
tion S0(u).Being quantized a

ording to Bohr�Sommerfeld, thelatter determines the spe
trum along the bran
h ter-minating at u = �1 (see Figs. 3
,d).Finally, we 
onsider the behavior at u ! 1. Bytaking trial solutions in the form S(u) � ur, we ob-tain 4-th order algebrai
 equations for the exponent r.The four roots of these equations are f1=2, 1=2, �3=4,�13=4g in the (4; 1) 
ase and f1=2, 1=2, �7=6, �17=6gin the (3; 2) 
ase. Remarkably, there is a doubly degen-erate root at r = 1=2 in both 
ases, leading to two so-lutions with the leading asymptoti
 behavior u1=2 andu1=2 ln(u). This was also the 
ase in all the examples
onsidered above. The �rst of these solutions, beingquantized, leads to �m = m2, expe
ted at large ener-gies. The other two roots bring two additional solutionswith the respe
tive leading behavior u�3=4; u�13=4 oru�7=6; u�17=6 for the (4; 1) and (3; 2) 
ases. The de-nominators of these fra
tional powers may be relatedto the fa
t that four and three turning points go toin�nity as u ! 1 in the two respe
tive 
ases. Themonodromy transformation M1 inter
hanges the 
or-responding periods (possibly with a sign 
hange). Thisis a
hieved by having �integer=4 and �integer=(2 � 3)powers in the 
orresponding solutions.8. CONNECTIONS TO THESEIBERG�WITTEN SOLUTIONHere, we brie�y review the main features of theSeiberg�Witten (SW) solution [12, 13℄, whi
h wereadopted in our 
al
ulations [36℄. The original SW 
on-stru
tion gives the spe
trum of a four-dimensional su-persymmetri
 SU(2) Yang Mills theory (SYM). The5) An existen
e of 3 = 4�1 analyti
 solutions near u = �1follows from a theorem on generalized hypergeometri
 equationsgoing ba
k to Po
hhammer [33℄; the analogous behavior of themono-, di-, and trivalent gases near u = �1 also provides in-stan
es of this theorem.612
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al me
hani
s of Coulomb gases : : :spe
trum of the infrared theory appears to be given bythe set of ele
tri
ally and magneti
ally 
harged parti-
les (BPS dyons), whi
h are di�erent from the funda-mental parti
les of the initial UV theory. The latter
onsists of a ve
tor multiplet transforming in the ad-joint representation of SU(2), whose 
omponents areone 
omplex s
alar �eld �, a pair of Weyl fermions(gluini), and an SU(2) gauge �eld (gluon). In the 
las-si
al UV va
uum, � aligns along the Cartan generatorof SU(2) as h�i = a�3=2, where the 
omplex expe
-tation value a parameterizes the manifold of 
lassi
alva
ua. In the quantum theory, a more 
onvenient 
o-ordinate is u = htr�2i (88)(su
h that in the 
lassi
al limit u ! 1, one has u �� a2), de�ning the moduli spa
eMu of quantum va
uaof the theory.Given the expe
tation value a, one de�nes the gen-erating fun
tion (prepotential) F(a) as a logarithmof the partition fun
tion of the theory, restri
ted byh�i = a�3=2. It allows introdu
ing a 
anoni
ally 
on-jugate 
omplex variableaD = �F(a)�a ; (89)where one may regard (a; aD) as the 
oordinate andmomentum on Mu. The underlying supersymmetryallows arguing that a(u) and aD(u) are holomorphi
fun
tions on the moduli spa
e, ex
ept possibly for fewisolated singular points. In the UV limit u ! 1, one�nds a one-loop 
orre
tion of the formaD � ia� �1 + ln a2�2� ; (90)where � is a dynami
al s
ale. We re
all that a � puin this region. Therefore, when the argument of u
hanges by 2�i, a 
hanges its sign and aD transformsas aD ! �aD + 2a. This rule 
an be parameterizedusing the following monodromy matrix in the (aD ; a)basis: M1 =  �1 20 �1! : (91)Finding the spe
trum of the IR theory means 
om-puting masses of parti
les that are prote
ted by su-persymmetry (so-
alled BPS dyons). The BPS massformula isMne;nm(u) = jnea(u) + nmaD(u)j; (92)

where (ne; nm) are ele
tri
 and magneti
 
harges of adyon; for example, a monopole has (ne; nm) = (0;�1).The above relation 
an be understood semi
lassi
ally(at large u) by evaluating the energy fun
tional for theUV theory on the ele
tri
ally and magneti
ally 
harged
on�gurations. The N = 2 supersymmetry guaranteesthat the very same formula works at a strong 
ouplingas well. There are spe
ial lo
i in the u plane where themasses in (92) vanish. These points 
an be identi�edas singularities for a and aD.We 
onsider the point u0 where the monopole be-
omes massless, aD(u0) = 0. By a 
onformal transfor-mation, we 
an always s
ale u0 = 1. In the vi
inity ofthis point, aD behaves as aD / u� 1, and hen
e nearthis point aD(u) is holomorphi
, while a(u) is expe
tedto be singular. A one-loop 
al
ulation similar to theone near u = 1, in the framework of the dual theory,gives a relation similar to (90),a � iaD� ln aD� : (93)Re
alling that aD / u � 1, we �nd the monodromymatrix near u = 1, again in (aD ; a) basis:M1 =  1 0�2 1! : (94)From the symmetry 
onsiderations one may arguethat there should be at least one more singularity inaddition to u = 1 and u = 1. This follows from thefa
t that if a singularity exists at some value of u0, thenthere ought to be another one at �u0. The Z2 symme-try, whi
h �ips the sign of u, is a result of breaking theglobal U(1) symmetry (so-
alled R-symmetry) of theIR a
tion. That symmetry is a remnant of the analo-gous symmetry in the UV theory, whi
h is 
ommon forgauge theories with an extended supersymmetry. It ex-ists on the 
lassi
al level, but is broken by quantum 
or-re
tions (both perturbative and instanton) down to Z2for u = htr�2i. Therefore, there are at least three singu-larities in Mu, e. g., at u =1 and u = �1. The thirdsingular point u = �1 
orresponds to a massless dyon ofunit ele
tri
 and magneti
 
harges a(�1)+aD(�1) = 0.The monodromy matrix around it 
an be 
omputed us-ing the 
ompleteness relation M1M�1 = M1 in the
omplex u-plane.The nontrivial realization of the SW 
onstru
tionis that 
omplex variables (aD(u); a(u)) with the ana-lyti
 properties dedu
ed above 
an be viewed as periodsof algebrai
 
urves (tori) Eu, de�ned over the modulispa
e Mu, with respe
t to some meromorphi
 di�er-ential �SW . The simplest way to parameterize su
h a
urve is613
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omplex. The above equation de-s
ribes a double 
over of the x-plane bran
hed overthe four points x = �1; u and x = 1. Moreover, the
over is singular any time two of these points 
oales
e,i. e., at u = �1;1, as required. A basis in the �rst(
o)homology of Eu (2D in this 
ase) is given by inte-grals of a one-form over one-
y
les. We pi
k the ho-mology basis Æ0; Æ1 in Fig. 6 and the one-form �SW (u)(SW di�erential) su
h thataD(u) = ZÆ0 �SW ; a(u) = ZÆ1 �SW : (96)To pi
k a proper SW di�erential �SW (u), we re
all thatthere are only two linearly independent meromorphi
1-forms on the torus up to an exa
t form. These twoforms 
an be 
hosen as �1 = dx=y and �2 = x dx=y,when
e �SW = �1(u)dxy + �2(u)x dxy ;where �1;2(u) are fun
tions of u only. The requirementthat the period integrals in (96) reprodu
e the 
orre
tasymptoti
 behavior of a(u) and aD(u) at u = 1 andu =1 (Eqs. (90) and (93)) allows determining �1;2(u).Finally, we obtain�SW = p22� px� upx2 � 1 dx: (97)This allows evaluating the periods in (96) in terms ofellipti
 integrals. They in turn yield the entire infor-mation about BPS mass spe
trum (92) and prepoten-tial (89).Close parallels to our 
al
ulations are apparent. Infa
t, the SW 
onstru
tion outlined above essentiallymirrors the (1; 1) gas 
al
ulations. Ellipti
 
urve (95)is isogeni
 to torus (14) and the two SW periodsin (96) are dire
tly related to the two a
tion integralsas S0 � aD and S1 � a + aD. In fa
t, they 
an beshown [15, 16℄ to satisfy exa
tly the same Pi
ard�Fu
hsequation (22) as our a
tions. Therefore, the two basissolutions (25) and (26), expressible through the 
om-plete ellipti
 integrals of the �rst and se
ond kind6), arealso a basis for the SW periods aD(u); a(u).An interesting open question is whether our mul-tivalent examples have analogs in SYM theories. Forexample, the (2; 1) 
ase 
orresponding to a torus withthe residual Z3 symmetry in the u-plane may be relatedto the SU(2) theory with several fundamental hyper-multiplets added. Other examples, leading to g = 26) See the footnote 1) on p.

surfa
es with Z4 and Z5 symmetries, may be related to
ertain SU(3) SYM theories with matter.Another 
aptivating observation is related to thepe
uliar stru
ture of the spe
tra near u � 0:96 in the(2; 1) gas, u � 1:09 in the (3; 1) gas, et
. These pointsare marked by the 
ondition ImS1(u)=S0(u) = 0, whi
his reminis
ent of wall 
rossing phenomena in N = 2theories (for a 
omprehensive review and referen
es see,e. g., [37℄). It is observed that the moduli spa
eMu hasdomains separated by walls su
h that when �
rossing�a wall, the spe
trum of the IR theory 
hanges dramat-i
ally. For instan
e, for the SU(2) theory at small juj,there are only two states in the spe
trum: a monopole(0;�1) and a dyon (�1;�1). But at large juj, theseparti
les 
an form bound states with higher ele
tri

harges (n;�1) for any integer n. The wall is givenby Im aD(u)=a(u) = 0.9. DISCUSSION OF THE RESULTSIn this paper we developed a semi
lassi
al treatmentfor a family of non-Hermitian PT -symmetri
 Hamil-tonians. These Hamiltonians appear upon transfer-matrix mapping of 1D 
lassi
al statisti
al me
hani
s ofmultivalent Coulomb gases onto quantum me
hani
s.The low-energy spe
tra of the Hamiltonians dire
tlytranslate into thermodynami
 and adiabati
 transport
oe�
ients of the 
orresponding Coulomb gases.We use methods of algebrai
 topology, traditionallyemployed in the 
ontext of the Seiberg�Witten theory.The main advantage of this strategy is that it allows usto avoid solving equations of motion and �nding 
las-si
al traje
tories expli
itly. The latter task is rathernontrivial (if at all attainable) in the 4D phase spa
e.Instead, we argue that any 
onstant-energy surfa
e is a2D Riemann surfa
e of a genus g � 1. The a
tion alongany 
losed traje
tory (not ne
essarily satisfying equa-tions of motion) 
an be written as an integer-valuedlinear 
ombination of 2g basi
 periods of the surfa
e.The periods 
an be found as solutions of the Pi
ard�Fu
hs ODE in the spa
e of parameters. Finally, rela-tions between basi
 periods and the quantum spe
traare established by 
onsidering spe
ial points in the pa-rameter spa
e, where the surfa
e degenerates into agenus-(g � 1) singular surfa
e. Consideration of mon-odromy transformations in the vi
inity of these pointsallows identifying 
lassi
al a
tions, quantized a

ordingto Bohr�Sommerfeld, as well as the instanton a
tion,whi
h determines the bandwidth.The results obtained this way are in ex
ellentagreement with numeri
al simulations in a broad614
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al me
hani
s of Coulomb gases : : :range of parameters. One of the reasons for thissu

ess is that the method provides with preexponetialfa
tors on the same footing with the exponential itself.Another appealing feature of the approa
h is that noneof our semi
lassi
al 
al
ulations required the 
on
eptof imaginary time. In fa
t, the �time� (i. e., the 1D
oordinate of the Coulomb gas) does not appear atall. In a sense, it is substituted by evolution in thespa
e of parameters of the Hamiltonian (the modulispa
e). We expe
t the method to be useful in a broad
lass of problems that require instanton 
al
ulationsin 
omplex spa
es.We are indebted to A. Gorsky for introdu
ing us tothe algebrai
 geometry methods and sharing his un-published notes. The work was partially supportedby U.S.�Israel Binational S
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